

No. 2008–95

CONSTRAINED OPTIMIZATION IN SIMULATION: A NOVEL
APPROACH

By Jack P.C. Kleijnen, Wim van Beers, Inneke Van Nieuwenhuyse

November 2008

ISSN 0924-7815

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6764998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Constrained Optimization in Simulation: a Novel Approach

November 6, 2008

Jack P.C. Kleijnen, Wim van Beers

Department of Information Management
Tilburg University

Postbox 90153, 5000 LE Tilburg, Netherlands

Inneke Van Nieuwenhuyse

Department of Decision Sciences and Information Management
K.U.Leuven

Leuven, Belgium

Abstract This paper presents a novel heuristic for constrained optimization of random

computer simulation models, in which one of the simulation outputs is selected as the objective

to be minimized while the other outputs need to satisfy prespecified target values. Besides

the simulation outputs, the simulation inputs must meet prespecified constraints including the

constraint that the inputs be integer. The proposed heuristic combines (i) experimental design

to specify the simulation input combinations, (ii) Kriging (also called spatial correlation mod-

eling) to analyze the global simulation input/output data that result from this experimental

design, and (iii) integer nonlinear programming to estimate the optimal solution from the Krig-

ing metamodels. The heuristic is applied to an (s, S) inventory system and a realistic call-center

simulation model, and compared with the popular commercial heuristic OptQuest embedded in

the ARENA versions 11 and 12. These two applications show that the novel heuristic outper-

forms OptQuest in terms of search speed (it moves faster towards high-quality solutions) and

consistency of the solution quality.

Keywords Simulation; Design of experiments; Statistical analysis

JEL C0,C1,C9

1

1 Introduction

In this paper, we present a novel heuristic for constrained optimization of random computer

simulation models. The importance of optimization, and the crucial role of computer simulation

are widely recognized—especially in engineering (see Oden 2006). Though many other fields

(e.g., logistics, supply chain management) have since long embraced the possibilities of simula-

tion, its use in these areas has focused on system evaluation and what-if analysis. The interest

in simulation for optimization purposes is still quite new, and has undoubtedly been stimulated

by the availability of optimization tools in commercial software packages, such as OptQuest in

the Arena simulation package; see Kelton et al. (2007).

In general, simulation optimization is recognized as a hard problem. Simulation outputs are

implicit functions of the inputs, specified by the simulation code. Moreover, in random simu-

lation, these outputs exhibit noise. The number of inputs may be very large, and running the

simulation model may be computationally expensive. Simulation models for logistics systems

present some additional problems. Typically, these are discrete-event models, where the input

factors of interest are discrete (often integer) variables. Historically, research efforts in simu-

lation optimization have focused on the continuous variable case (Fu 2002). Moreover, models

of logistics systems produce multiple outputs. The optimization problem needs to reflect the

trade-offs between these outputs. This problem can be approached in various ways (see the

surveys by Beyer and Sendhoff 2007, Greenberg and Morisson 2008, and Rosen et al. 2007).

A classic approach selects one output as ‘the’ objective, while requiring the other outputs to

satisfy given threshold values; this is referred to as the mathematical programming approach.

However, good algorithms for handling random constraints are scarce (Fu 2002).

In this paper, we present a novel heuristic for constrained nonlinear optimization of ran-

dom simulation models that allows for integer inputs. It combines methodologies from three

research fields: Design of Experiments (DOE), Kriging metamodeling, and Mathematical Pro-

gramming (MP). We apply our heuristic to a realistic call-center simulation model, and compare

its performance with the most popular commercial heuristic in simulation optimization, namely

OptQuest. The empirical results show that our heuristic outperforms OptQuest in terms of

search speed (it moves faster towards high-quality solutions) and consistency of the solution

quality. This is undoubtedly desirable in case of computationally expensive experiments, but

also in general because obtaining a high quality solution in the fewest number of evaluations is

a core problem (Kelly 2002).

The remainder of this paper is organized as follows. Section 2 presents an Integer Non-

2

Linear Programming (INLP) formalization of the optimization problem. Next, Section 3 briefly

presents the basics of Kriging metamodeling. Section 4 details our heuristic. Section 5 compares

its computational results with results obtained by OptQuest for two test problems, namely an

(s, S) inventory optimization model (Section 5.1), and a call-center staffing problem (Section

5.2). Section 6 presents our conclusions and topics for future research.

2 Mathematical Programming formulation

Formally, we try to solve the following constrained nonlinear stochastic optimization problem:

min
d

E(w0(d)) (1)

where w0 denotes the output that is selected as goal or objective variable, and d denotes the

k-dimensional input (or decision) vector. The other (say) (r − 1) outputs wh′ must satisfy the

prespecified constraints

E(wh′(d)) ≤ ah′(h′ = 1, . . . , r − 1) (2)

where the right-hand coefficients ah′ are given. The objective function and the constraint

functions are estimated through simulation; the simulation estimates are denoted by wh(d)

(h = 0, . . . , r − 1). The k (deterministic) inputs dj (j = 1, . . . , k) are required to be non-

negative integers:

dj ∈ N (3)

where N denotes the set of natural numbers including zero. Moreover, the inputs must satisfy

given constraints:

fh′′(d) ≤ ch′′ with h′′ = 1, . . . , v. (4)

These constraints may include box constraints of the form lj ≤ dj ≤ hj where lj and hj refer

to the lower and upper bounds of input factor j (j = 1, . . . , k). Other linear or nonlinear

constraints are also possible, as we shall show in our two applications.

A well-known academic example of this type of problems is the (s, S) inventory control

system. In this system, the re-order level s and the order-up-to level S need to be determined in

order to minimize expected total cost, which typically consists of the sum of expected inventory

carrying costs and expected ordering costs. In practice, disservice costs are hard to quantify,

so (dis)service is commonly treated as a constraint; e.g., the expected disservice percentage

(complement of the fill rate) should not exceed 5% so a1 = 0.05 in (2). The search area for s

and S is typically limited by predetermined upper and lower bounds, and s < S.

3

The research literature on stochastic simulation optimization is dominated by continuous-

variable problems. An example is the Sequential Kriging Optimization method (Huang et al.

2006), which is based on the Efficient Global Optimization (EGO) method (Jones et al. 1998),

and which focuses on continuous and unconstrained optimization. Bashyam and Fu (1998)

propose a feasible directions procedure that is generally applicable for continuous optimization

problems with a single noisy constraint. For unconstrained discrete-valued problems, random

search methods (e.g., simulated annealing) are mostly used (Fu 2002, Fu et al. 2005, Andradóttir

1999, 2002). Research on integer constrained optimization of stochastic simulations seems to be

scarce. The procedure by Abspoel et al. (2001) uses local linear approximations, and hence may

encounter problems when either the objective or the constraints are highly nonlinear. Moreover,

as demonstrated by Driessen et al. (2006a), the use of local approximations for solving integer

optimization problems can easily result in inferior solutions. Recently, Atlason et al. (2008) pub-

lished an algorithm for constrained integer simulation optimization based on the cutting-plane

method; this method, however, requires that the constraint functions are pseudoconcave. The

algorithm developed by Cezik and L’ Ecuyer (2008) runs into similar problems when exploring

regions of the search area where the constraint functions are nonconcave. Recently, Davis and

Ierapetritou (2007) combined the use of Kriging metamodels (for global exploration) and Re-

sponse Surface Modelling (for local exploration) for optimizing process synthesis problems. In

their setting, however, the uncertainty stems solely from the noise on the input variables; both

objective and constraints are explicit functions of the input variables. As described above, the

issues in discrete-event simulation tend to be different.

3 Ordinary Kriging

Kriging is a type of metamodel that enables adequate approximations of the input/output (I/O)

function implied by the underlying simulation model when the simulation experiment covers a

”big” area; i.e., the experiment is global, not local (see Kleijnen 2008a). Kriging models are

commonly used for prediction. A general review of Kriging is given in Kleijnen (2009). Ordinary

Kriging—from now on, briefly called Kriging—is univariate in nature, and makes the following

two assumptions:

(i) the model assumption is that the simulation output w(d) at input combination d consists

of a constant µ and an error term δ(d):

w(d) = µ + δ(d); (5)

4

(ii) the predictor assumption is that the predictor y(dc) at an arbitrary input combination

dc is a weighted linear combination of all the observed output data w(di) at n already simulated

input combinations di (i = 1, ..., n):

y(dc) =
n∑

i=1

λiw(di). (6)

To select the optimal weights in (6), Kriging uses the Best Linear Unbiased Predictor

(BLUP) criterion, which minimizes the Mean Squared Error (MSE) of the predictor y. This

”Unbiased” condition means

E[y(dc)] = E[w(dc)]. (7)

It can be proven that the solution of the constrained minimization problem implied by the

BLUP criterion implies
n∑

i=1

λi = 1. (8)

Furthermore, it can be proven that the optimal weights are given by the vector

λ = Γ−1(γ + 1
1− 1′Γ−1γ

1′Γ−11
) (9)

where

Γ =cov(w(di), w(di′)) with i, i′ = 1, . . . , n is the n×n (symmetric and positive semi-definite)

matrix with the covariances between the n available outputs;

γ =cov(w(di), w(dc)) is the n-dimensional vector with the covariances between the n avail-

able outputs and the output to be predicted.

Consequently, the optimal weights (9) depend on the covariances in Γ and γ. Kriging

assumes that these covariances are determined by the distances between the input combinations.

Moreover, Kriging usually assumes that the covariances in the k-dimensional space are the

product of the k individual covariances. A popular correlation function is

ρ = exp(−
k∑

j=1

θj |dj;i − dj;c|pj) =
∏k

j=1
exp(−θj |dj;i − dj;c|pj) (10)

where

|dj;i − dj;c| denotes the distance between the j-th input factor of combination i and combi-

nation c;

θj denotes the importance of input factor j; i.e., the higher θj is, the faster the correlation

decreases with the distance;

pj denotes the smoothness of the correlation function; so-called ”exponential” and ”Gaus-

sian” correlation functions have p = 1 and p = 2 respectively.

5

Other types of correlation functions (e.g., spherical, cubic, linear) can be found in Lophaven

et al. (2002). All these types imply correlation functions that are decreasing in the distances

between the inputs. This implies that the optimal weight λi associated with output w(di) in

(6) will be relatively high for di close to dc.

The true correlation function is unknown, so both the type and the parameter values θj

must be estimated—for each simulation output separately—from the available data (i.e., the n

available input combinations di with the associated simulation output wh(di), h = 0, .., r − 1).

To estimate these parameters, Kriging usually applies Maximum Likelihood Estimators (MLEs).

The MLEs of the correlation parameters θj require constrained maximization. This optimization

is a hard problem, because matrix inversion is necessary, multiple local maxima may exist,

etc.; see Martin and Simpson (2004, 2005). To estimate the correlation functions and the

corresponding optimal weights, we use the Matlab Kriging toolbox called DACE, which is well

documented and free of charge; see Lophaven et al. (2002).

We point out that some of the weights may be negative. Furthermore, for an ”old” in-

put combination di the predictor is an exact interpolator ; i.e., it equals the observed average

simulation output:

y(di) = w(di), (11)

which implies that all weights are zero except the weight of the observed output, which has the

value one. Recently, Ankenman et al. (2008) investigated Kriging (for random simulation) that is

not an exact interpolator; however, no software is available yet. As Kriging (and, hence, DACE)

treats the simulation outputs as univariate, it does not incorporate cross-correlations between

the r random simulation outputs. This could be accomplished through so-called multivariate

Kriging (discussed in Chapter 5 of Chilès and Delfiner 1999). Our heuristic, however, uses

univariate Kriging per output type.

4 Novel simulation-optimization heuristic

Our approach is iterative; for ease of reference, the different steps are summarized in Figure 1.

Each step will be discussed in detail in the following subsections; here, we present an overview.

We start by selecting an initial space-filling design (step 1), and simulate all input combina-

tions of this design (step 2). This yields the multiple simulation outputs wh(di) (h = 0, .., r−1)

for each input combination di. Next, we fit r univariate Kriging metamodels to these simulation

I/O data (step 3) and validate these models (step 4). As long as one or more metamodels is

judged to be invalid, the design is updated by simulating an additional input combination (step

6

5) from the global search area, in order to further fine-tune the metamodels. The heuristic then

loops back to step 3, to refit the Kriging models using the newly available I/O information.

When all r Kriging metamodels are judged to be valid, an INLP solver is used to estimate the

location of the optimum based on the Kriging models (step 6). We check whether the indicated

optimum has already been simulated (step 7). If this is the case indeed, then this implies that

the I/O data of this point are already available in the design, and we rerun the INLP code to

determine the ”next best” point (step 8), i.e., that input combination that is optimal when all

already simulated points are excluded from the optimization. The newly found point (from step

6 or step 8) is then simulated, and its I/O data are added to the design (step 9). In step 10,

we compare the simulation output data of the newly simulated point with the output data of

the best point found so far. If the last a INLP runs were unable to point out an input combi-

nation yielding a statistically significant improvement in the objective, we stop the procedure

and accept the point that currently has the best value for the objective as the optimum. The

parameter a can be chosen by the user; we set it equal to 30 in our experiments. As long as the

stopping condition is not met, the Kriging metamodels are updated with the newly available

I/O information, and the heuristic continues its search.

Note that the initial design is sequentially updated: additional points are added in steps 5

and 9 respectively (a similar sequential approach is proposed in Bates et al. 2006 and Kenett

and Steinberg 2006). Points in step 5 are selected to improve the metamodel, which is called

”geometry improving” in Driessen et al. (2006a); points in step 9 are selected to find the

optimum. These two reasons are also related to ”exploration” and ”exploitation” respectively,

in classic simulation optimization; see e.g. Fu (2007).

4.1 Step 1: Select initial space-filling design

We start with a small space-filling initial design (or pilot sample), which is determined by an

n0 × k design matrix D with rows d′= (d1, . . . , dk). Space-fillingness is a desirable property

for the initial design, in order to capture as much information as possible on the behavior of

objective and constraints throughout the search space (we assume that we have no advance

information on this behavior). We opt for a maximin LHS design (as suggested in Driessen

et al. 2006a, but other spacefilling designs are possible, see Cioppa and Lucas 2007 and Kleijnen

2008a). The rule of thumb given in the literature calls for a design size n0 equal to 10k; see

Jones et al. (1998). However, as our design is sequentially updated, we propose to limit the

desired initial design size to n0 = 5 + 2k. Intuitively, it seems reasonable to estimate a smooth

curve for the correlation functions (10) from at least four distances between points, so a basic

7

1. Select initial space-filling design

2. Simulate initial design points

3. Fit kriging metamodels to available
I/O data

4.Valid
metamodels?5. Add point near

“worst point” to
design, and simulate
this point

False True

6. Estimate optimum
via INLP

7.Optimum already
simulated?

9. Add new point to design,
and simulate this point

False

8. Find “next best” point via
INLP

True

10. No
significant
improvement
in objective
function for
last a INLP
runs?

STOP: input combination that meets all constraints and has best
average value for the objective function is considered to be optimal

True

False

1. Select initial space-filling design

2. Simulate initial design points

3. Fit kriging metamodels to available
I/O data

4.Valid
metamodels?

4.Valid
metamodels?5. Add point near

“worst point” to
design, and simulate
this point

False True

6. Estimate optimum
via INLP

7.Optimum already
simulated?

7.Optimum already
simulated?

9. Add new point to design,
and simulate this point

False

8. Find “next best” point via
INLP

True

10. No
significant
improvement
in objective
function for
last a INLP
runs?

STOP: input combination that meets all constraints and has best
average value for the objective function is considered to be optimal

True

False

Figure 1: Heuristic: stepwise approach.

8

rule-of-thumb could be n0 = 5. The remaining 2k combinations are added to ensure sufficient

observations for cross-validation (see Section 4.4 below).

The pilot sample includes only input combinations that satisfy the input constraints in

(4). The standard maximin LHS design can take into account the box constraints in (4), by

coding the inputs such that they are between 0 and 1, yielding real values ui;j (where ui;j

denotes the value for input j in combination i, 0 ≤ ui,j ≤ 1). This standard design, however,

needs adaptation for the integer constraints (3) and for any non-box input constraints (4). To

account for the integer constraints (3), the ui;j are transformed into the integer input values

di;j = lj + b(hj − lj + 1)ui;jc (12)

where bxcdenotes the floor function of x so the real x is rounded downwards to the closest

integer. To account for any non-box input constraints (4), we estimate the feasible fraction f ,

which is the fraction of the k-dimensional search space that satisfies these constraints. Because

these constraints may be rather complicated, we use a simple Monte Carlo estimate f̂ ; i.e., we

take a design of size n (with n >> n0), apply the transformation in (12), and compute

f̂ =
∑n

i=1 I[∀h′′ : fh′′(d) ≤ ch′′]
n

(13)

where the indicator function I[.] = 1 if the input combination d satisfies all non-box input

constraints in (4); else I[.] = 0.

We then select a maximin LHS design with sample size n̂0 =dn0/f̂e where d.emeans rounding

upwards to the next integer. If the realized acceptable number of combinations from the design

is different from the targeted n0, we repeat the procedure (with or without a change in n̂0)—until

an acceptable initial number of feasible input combinations is obtained.

Note that n0 increases linearly in k; this implies that—for high-dimensional search spaces

(large k)—a large set of initial simulations will be required. This is, in general, a drawback of

using global metamodels (Driessen et al. 2006a). We therefore recommend to first reduce the

number of input variables by adding a preceding screening step (Kleijnen 2008b). Moreover,

a small value of k is desirable to make the resulting integer design noncollapsing ; i.e., the

projection of the design points in the k-dimensional space onto any of the k axes gives a uniform

spacing of that axis without any points becoming identical (Driessen et al. 2006a). Collapsing

occurs in integer designs whenever n0 exceeds the number of integer values allowed for any input

variable.

9

4.2 Step 2: Simulate initial design points

Once we have obtained an experimental design with size n0, we simulate all combinations in

this design. At this point, we need to decide on the desired number of replicates mi for input

combination i (i = 1, . . . , n). The choice of mi reflects the magnitude of the noise we wish to

accept. In our experiments, we use two options:

(i) simulate a fixed number of replications per input combination, so mi = m;

(ii) select the number of replicates mi based on a relative precision requirement; i.e., select

mi such that the halfwidth lh(mi, α) of the (1−α) confidence interval for the average simulation

output wh(di) is within γ% of the true mean for all outputs h (h = 0, .., r − 1). Law (2007),

pp. 500-503 implies that if

∀h :
lh(mi, α)∣∣∣wh(di)

∣∣∣
≤ γ

1 + γ
, (14)

then mi realizes the relative precision γ with 0 < γ < 1. The halfwidth of the (1−α) confidence

interval is given by

lh(mi, α) = tmi−1;1−α/2

√
̂var(wh(di))
mi

where tmi−1;1−α/2 denotes the (1− α/2) quantile of the tmi−1 distribution. The average simu-

lation output is

wh(di) =
∑mi

l=1 wh;l(di)
mi

(15)

with wh;l(di) denoting simulation output h of replication l of input combination di. The esti-

mated variance is

̂var(wh(di)) =
∑mi

l=1(wh;l(di)− wh(di))2

mi − 1
with mi > 1. (16)

Because we use the I/O data to fit metamodels, we prefer a high signal/noise ratio. If the

mi are too small, then the signal/noise is too small and we fit Kriging models largely to noise.

We therefore expect our heuristic to perform better with option (ii).

Another tactical issue is the possible use of a Variance Reduction Technique (VRT). We use

Common Random Numbers (CRN) (see Law 2007) because we expect CRN to create positive

correlation between outputs—so even outputs at input combinations that are relatively far away

from the input combination to be predicted, still contain information (the parameters θj in (10)

become smaller).

10

4.3 Step 3: Fit Kriging metamodels to available I/O data

In this step, we use the DACE toolbox to fit r univariate Kriging models to the available

simulation I/O data. We fit the metamodels in the total experimental area; i.e., we also include

those subareas that are either clearly infeasible (i.e., the input combinations located in that area

violate the output constraints in (2)), or clearly suboptimal (feasible, but with a significantly

higher goal output). The reason is that information regarding the location of infeasible or

suboptimal regions is important for steering the INLP search in steps 6 and 8.

4.4 Step 4: Validate the Kriging metamodels

We apply cross-validation, similar to the procedure in Kleijnen (2008a). The procedure can

be outlined roughly in the following six stages (we shall discuss each of these stages in further

detail):

1. From the set of simulation I/O data, delete one input combination at a time—but avoid

extrapolation.

2. Based on the remaining I/O data, compute the Kriging predictors for every output h

(h = 0, ..., r − 1) at the left-out combination.

3. Estimate the predictor variance for every output h (h = 0, ..., r − 1) at the left-out com-

bination di.

4. Compute the Studentized prediction error th,i
mi−1 for every output h (h = 0, ..., r − 1) of

the left-out combination i, which is replicated mi times.

5. Repeat the preceding four steps, until all combinations available for cross-validation have

been left out one-at-a-time.

6. Determine the highest absolute value of the observed th,i
mi−1 over all h and i, and determine

if this value is statistically significant. If this is the case, all r Kriging models are rejected

(simulation gives estimates of all r outputs; the heuristic then moves to step 5). Else, the

metamodels are accepted as being valid (in which case they are ready for use in the INLP

procedure, step 6).

Now we discuss each of these stages in further detail.

Sub (1): To avoid extrapolation, the set of input combinations that can be left out in

the cross-validation is restricted to those combinations di for which none of the input factors

11

(d1,...,dk) contains an extreme value (i.e., the highest or lowest value for that input factor, across

the n points already simulated). The reason is that the literature suggests that Kriging models

should not be used for extrapolation: for input combinations that fall in one of the extreme

bins for a given input factor, Kriging will give bad predictions—even if the Kriging model is

valid (see Kleijnen and Van Beers 2004). This implies that we cross-validate only ncv = n− 2k

I/O combinations.

Sub (2): Deleting I/O combination i (i = 1, . . . , ncv) from the set of simulation I/O data

yields a corresponding remaining I/O data set (d−i,w−i). We call this data set the cross-

validation set. Note that for any I/O combination i, the cross-validation set consists of n − 1

combinations. To predict output h at the left-out combination i from this cross-validation set,

we re-estimate only the optimal Kriging weights (we may refer to these as λ−i) through (9),

using the current MLE estimates for the correlation function in (10). This yields a predictor

y−h (di) for every output h. We do not re-estimate the correlation functions in (10), as the

current estimates (based on all n observations) are more reliable. This approach is also followed

by Jones et al. (1998) and Joseph et al. (2008).

Sub (3): To estimate the variance of the Kriging predictor, the literature often uses a biased

estimator (see e.g. Lophaven et al. 2002, Jones et al. 1998). This literature does not account

for the estimation of the parameters θj in (10), which makes the Kriging predictor a nonlinear

estimator (Den Hertog et al. 2006). We use an unbiased estimator based on distribution-free

bootstrapping, analogously to the procedure in Van Beers and Kleijnen (2008). In our procedure,

however, we face three complications: firstly, every replicate l of a given input combination di

gives a multivariate output vector (w0,l(di), w1,l(di), . . . , wr−1,l(di))T . For example, a relatively

high realization of w0 (namely, w0,l(di) > w0(di)) tends to occur together with a relatively high

realization of w1 (namely, w1,l(di) > w1(di)) if these two outputs are positively correlated.

Secondly, the use of CRN makes the output vectors of the same replicate l of the n simulated

input combinations positively correlated (Kleijnen and Deflandre 2006). Thirdly, the number

of replicates mi may differ depending on the input combination di, when the relative precision

requirement is used to determine mi (see Section 4.2). We account for these three complications

in the following distribution-free bootstrapping procedure:

1. Define the maximum number of replicates across the different input combinations of the

cross-validation set: m = max{mz| z 6= i} (i = 1, ..., ncv).

2. Bootstrap the replicate numbers from 1 to m (i.e., sample m replicate numbers l from the

uniform distribution with constant probability 1/m for the m integers [1, 2, . . . , m]). This

12

yields a set of m replicate numbers {l1,l2,...,lm}.

3. For each input combination dz in the cross-validation set, include the output vectors

(w0,l1(dz), w1,l1(dz), . . . , wr−1,l1(dz)) to (w0,lm(dz), w1,lm(dz), . . . , wr−1,lm(dz)) in the

bootstrapped data set. This yields a bootstrapped data set containing m∗
z output vectors

per combination z. Note that if mz < m for an input combination dz (which is likely to be

the case when the simulations were run according to the relative precision requirement),

it may happen that some of the output vectors do not exist (so m∗
z < m). If m∗

z = 0 for

any input combination dz, the bootstrap sample is rejected.

4. Compute the bootstrap outputs w∗h(dz) (h = 0, ..., r − 1) averaged over replications, for

all combinations dz in the cross-validation set:

w∗h(dz) =

∑m∗
z

j=1 wh,lj (dz)
m∗

z

(h = 0, . . . , r − 1), (17)

5. Calculate the bootstrapped estimated optimal Kriging weights λ∗h and the corresponding

bootstrapped Kriging predictor y∗h(di) using the n− 1 bootstrapped averages w∗h(dz) for

simulation output h in (17).

To decrease the sampling effects of bootstrapping, we repeat this whole procedure until we

have B successful bootstrap samples (in our experiments, we select B = 200), yielding estimated

optimal Kriging weights λ∗h,b and bootstrapped Kriging predictors y∗h,b(di) with b = 1, . . . , B.

These B values enable estimation of the variance of the Kriging predictor, analogously to (16):

̂var(y∗h(di)) =
ΣB

b=1(y
∗
h;b(di)− y∗h(di))2

B − 1
(18)

where

y∗h(di) =
ΣB

b=1y
∗
h;b(di)
B

. (19)

Sub (4): Compute the Studentized prediction error for every output h (h = 0, ..., r − 1) of

the left-out combination di:

th,i
mi−1 =

wh(di)− y−h (di)√
̂var(wh(di)) + ̂var(y∗h(di))

(i = 1, . . . , ncv) (20)

where ̂var(wh(di)) = ̂var(wh(di))/mi and ̂var(wh(di)) follows from (16). Note that the nu-

merator of (20) uses y−h (di), not y∗h(di); see (19). We conjecture that both y−h (di) and y∗h(di)

have the same asymptotic mean as B ↑ ∞ (where B ↑ ∞ means B increases to infinity).

However, had we used y∗h(di) in the numerator, then in the denominator of (20) we would use

13

̂var(y∗h(di)) = ̂var(y∗h(di))/B. But the latter expression decreases to zero as B ↑ ∞. Actually

we use ̂var(y∗h(di)) in the denominator, for which ̂var(y∗h(di)) −→ σ2 > 0 as B ↑ ∞, where σ2

denotes the unknown predictor variance (see the numerator and denominator in (18)). Note

that ̂var(y∗h(di)) is an estimator of ̂var(y−h (di)), and this ̂var(y−h (di)) ↓ 0 as n ↑ ∞ (not as

B ↑ ∞). Also see Efron and Tibshirani (1993), pp. 124-140.

Sub (5): Repeat the preceding four steps, until all ncv combinations have been left out one-at-

a-time. This results in ncv Studentized prediction errors th,i
mi−1 per output type h (h = 0, ..., r−1).

Sub (6): Determine the highest absolute value of these Studentized prediction errors and

determine if this value is statistically significant. The error is considered to be significant if

max
h

[max
i

∣∣∣th,i
mi−1

∣∣∣] > tmmin−1;1−[α/(2ncvr)] (h = 0, . . . , r − 1; i = 1, . . . , ncv). (21)

where the right-hand side uses degrees of freedom mmin = min{mi| i = 1, ..., ncv} and a signifi-

cance level that follows from Bonferroni’s inequality, which implies that the classic type-I error

rate (in this case α/2) is divided by the number of tests (in this case ncvr)—resulting in the

”experimentwise” or ”familywise” type-I error rate. We choose α = 0.15 in our experiments

(higher values than the traditional 0.10 or 0.01 are acceptable in experimentwise testing; see

Miller 1981). We call the input combination that causes the rejection of the metamodels the

worst point.

4.5 Step 5: Add point near ”worst point” to design

If the Kriging models are rejected, we augment the design with a new combination to improve

the (global) Kriging models. Because the worst point gives the maximum Studentized prediction

error (see (21)), we need extra information about the metamodels’ behavior in the neighborhood

of the worst point. Simulating a point too close to that point (or any other point in the

current design), however, would give little new information, because Kriging assumes that

input combinations near each other have outputs with high positive correlations. Therefore, we

select the point halfway the worst point and its nearest neighbor in the current design, where

distances between points are measured through Euclidean distances (as in the ”distance list” of

Cioppa and Lucas 2007). In case of ties (which certainly occur in the maximin pilot sample), we

select the nearest neighbor with the minimum simulated value for the goal variable. To ensure

that the new combination satisfies the integer constraints and any non-box constraints in (4),

the coordinates of this point are rounded to the next lower integers. The simulation output

data from the newly selected point are added to the I/O data, so all r Kriging models can be

14

re-estimated in step 3. We keep adding new points in this way, until all r Kriging models are

accepted as valid.

4.6 Steps 6-7: Estimate optimum via INLP, and check if it is new

Given the integer input constraints and the nonlinear behavior of both the objective and

the constraints, we apply an INLP code to the Kriging metamodels, in order to estimate

the optimum input combination. Many INLP codes are available (see e.g. Pintér 2007 and

http://www.gamsworld.org/minlp/solvers.htm). In our experiments, we use the bnb20.m code,

which is a branch-and-bound type of algorithm written for the Matlab environment and available

for free download at http://www.mathworks.com/matlabcentral/fileexchange. A disadvantage

of this solver is that it guarantees only local optimality. Hence, it needs to be used with multiple

starting points; we chose to use three starting points in our experiments. In principle, the user

may apply any INLP code in this step; the use of a more advanced solver is likely to further

improve the effectiveness of the heuristic.

If the optimum input combination determined by the INLP code has already been simulated

(and, hence, is part of the simulated design), the heuristic goes to step 8. Otherwise, it proceeds

to step 9.

4.7 Step 8: Find ”next best” point by INLP

In Step 6, INLP may give a previously simulated point as the optimum. In that case, we rerun

the INLP code with the additional constraint that it should return a point that is not yet part

of the design. This point is then referred to as the ”next best point”. Let dt (t = 1, . . . , T)

denote the (say) T points that have already been simulated during the previous iterations. To

select a new point excluding these dt requires the following T additional constraints

1 ≤
k∑

j=1

(dt;j − dj)2 (t = 1, . . . , T). (22)

These constraints allow INLP to explore other promising points in a big neighborhood around

the old optimum. The location of the next best point strongly depends on the behavior of both

the objective function and the constraint functions; hence, it may be located far away from the

old optimum.

4.8 Step 9: Add new point to design, and simulate

In this step we add the latest estimated optimal input combination —determined either in step

6 or in step 8—to the design, and simulate this point.

15

4.9 Step 10: No significant improvement for last a INLP runs?

This step embodies the stopping rule for our heuristic. After we have simulated the input

combination determined by INLP, we check the following two conditions: (i) feasibility: the

point needs to meet all output constraints, and (ii) optimality: if it is a feasible point, its

corresponding objective value needs to be significantly better than the best point found so far.

Only if both conditions are satisfied, the newly simulated point is considered to be the new best

point.

Condition (i) is satisfied if the (r−1) simulation estimates meet their corresponding thresh-

olds ah. For condition (ii), we compare the average objective value of the current combination

(say) dcurr with that of the best point found so far (say) dbest using the following test statistic:

tυ =
w0(dcurr)− w0(dbest)√
̂var(w0(dcurr)) + ̂var(w0(dbest))

with ν = min(mcurr,mbest) where m still denotes the number of replicates. Only if tυ <

−tυ;1−α/2, the new input combination dcurr is significantly better than dbest. We use α = 0.1

in our experiments.

We use a counter to keep track of the number of consecutive times that at least one of the

checks ”fails”; i.e., INLP failed to come up with a statistically significantly better combination.

We propose to stop the heuristic when this counter crosses a user-determined threshold a (we

chose a=30 in our experiments). The simulated input combination that has the lowest average

value for the objective, and simultaneously meets all constraints, is the final optimum.

Our heuristic ensures convergence to the true optimum as the expended computational effort

grows (i.e., the number of replicates per input combination tends to infinity and the number of

input combinations simulated approaches the—finite—size of the search space; see also Cezik

and L’ Ecuyer 2008). Increasing the number of replicates reduces the noise of the outputs, which

ensures that the simulation estimates for the objective value and the constraints approach their

true values. The number of possible input combinations is by definition finite in our setting

because of the combination of integer and box constraints.

5 Computational results

Unfortunately, there are no standard testbeds for constrained random simulation optimization

(in contrast to, e.g., Mathematical Programming). In the literature, it is common to test

heuristics on known mathematical functions, augmented with additive white noise (e.g., Angün

et al. 2002). The appendix to our article illustrates the application of our heuristic to such a

16

”toy problem”. In this section, we report the computational results of our heuristic for two test

problems taken from the field of manufacturing and logistics.

Section 5.1 discusses the performance for a variant of the popular (s, S) inventory problem

by Bashyam and Fu (1998) (which was also used by Kleijnen and Wan 2007). Section 5.2 uses

a call center staffing problem taken from Kelton et al. (2007). We compare the computational

results of our heuristic with those of the popular simulation-optimization software OptQuest

(provided by OptTek System Inc, and available as an add-on to simulation software such as

Arena, CrystallBall, MicroSaint, ProModel, and Simul8; it also comes free of charge with the

student version of the Arena software, which is provided by Rockwell Software). OptQuest uses

a combination of tabu search, neural networks, and scatter search to estimate the optimum; for

commercial reasons, however, the exact heuristic remains a black box.

Unfortunately, different versions of Arena with OptQuest give different results; we report

results for two recent versions, namely the Arena versions 11 and 12. The heuristic is written

in Matlab’s version 7.4. For each test problem, we use ten macroreplicates for our heuristic and

OptQuest. The number of replications per input combination was either fixed or determined

by a relative precision requirement with γ = 0.15. For each macroreplicate, we present (i) the

reported optimum, (ii) the total number of design points simulated by the heuristic (imax), and

(iii) the sequence number of the reported optimum in the list of points simulated (rank dopt).

Though OptQuest allows the user to select a ”relative precision requirement”, we apply it only

with a fixed number of replications per design point. The reason is that the interpretation of

this ”requirement” seems to differ; the User’s Guide (version 11.00) indicates that it is used

to determine whether a design point looks promising enough (in objective value) to continue

additional replications. For each macroreplicate, we report the status of OptQuest’s estimated

optimum after having simulated the number of points that our heuristic required.

5.1 The (s, S) inventory system

We consider an infinite-horizon periodic-review (s, S) inventory simulation model with full back-

logging that was originally studied by Bashyam and Fu (1998). This model assumes that demand

per time period is exponentially distributed with an average of 100 units. The inventory po-

sition (defined as stock on hand minus backorders plus any outstanding orders) is checked at

the end of every time period; when the inventory position has dropped to a value smaller than

or equal to the reorder level s, a replenishment order is placed to bring the inventory position

back to S. Replenishment lead times are Poisson distributed with an average of 6 time periods,

so replenishment orders may cross in time. Replenishment orders are received at the beginning

17

of a period (Kleijnen and Wan 2007 study a variant of this model, where orders are received

at the end of a previous period). The holding cost per period is 1, the fixed ordering cost is

36, and the variable ordering cost (per unit) is 2. The objective is to determine the values of s

and Q = S − s that minimize TC, which denotes the expected Total Costs (consisting of aver-

age ordering and holding cost) per period, subject to the constraint that the disservice rate δ

(fraction of demand that is not met from stock on hand) is at most 10%. Because this problem

is analytically intractable due to the order crossings, simulation is required. The simulation

uses 30,000 periods per replication (as in Bashyam and Fu 1998). The search area is limited to

900 ≤ s ≤ 1250 and 1 ≤ Q ≤ 500.

The number of replications per input combination is either fixed at mi = m = 10 (as in

Bashyam and Fu 1998) or determined by a relative precision requirement with γ = 0.15; given

the long replication length (30,000 periods), only 4 to 6 replications per design point suffice to

reach this precision.

Table 1 shows the results of our heuristic (DOE-Kri-MP) for 10 macroreplicates. It also

shows the OptQuest results (obtained with Arena versions 11 and 12) for the same 10 macrorepli-

cates, for mi = m = 10, starting from the initial solution (1075, 250). Table 2 summarizes the

performance results of the different heuristics, in terms of the average, minimum and maximum

of the objective and constraint values. Note that the OptQuest version embedded in ARENA 11

does not return the estimated value of the constraint outputs; hence, the corresponding entries

in the table are set to ”NA” (not available).

The detailed results from Table 1 show that the quality of the optimal solution found by our

heuristic consistently outperforms the solutions provided by the Optquest version embedded

in ARENA 11. The ARENA 12 version succeeds in finding a superior optimum (with lower

objective value) in only 3 out of 10 macroreplicates (i.e., macroreplicates 2, 3, and 7). Table

2, however, shows that the quality of the solution found by Optquest in ARENA 12 varies

more widely over the macroreplicates. The performance of our heuristic varies less over the

macroreplicates; it clearly moves faster towards the constraint boundary.

As mentioned above, the use of a low relative precision criterion saves simulation time and

effort, because it requires fewer replicates per design point. This does not seem to impact the

performance of our heuristic substantially. Contrary to our expectations, it—in general—causes

the heuristic to need fewer points to simulate before meeting the stopping criterion. While Table

2 seems to suggest that the quality of the optimum tends to be higher when lower precision is

used (i.e., lower values for the objective are obtained), these results should be interpreted with

caution, because the estimates for objective and constraint values are less reliable.

18

Table 1: Results for the (s, S) inventory model
macrorepl Heuristic dopt E(TC) E(δ) imax rank dopt

1 OptQuest (Arena 12) mi = 10 (1009,287) 716.16 0.0828 60 60
OptQuest (Arena 11) mi = 10 (1047,108) 660.91 NA 60 59

DOE-Kri-MP mi = 10 (1043,70) 638.34 0.0992 60 14
DOE-Kri-MP γ = 0.15 (1021,114) 640.09 0.0991 54 41

2 OptQuest (Arena 12) mi = 10 (1027,84) 632.42 0.0993 68 21
OptQuest (Arena 11) mi = 10 (1047,97) 656.79 NA 68 68

DOE-Kri-MP mi = 10 (1043,70) 638.34 0.0992 68 14
DOE-Kri-MP γ = 0.15 (1061,31) 634.74 0.0999 61 27

3 OptQuest (Arena 12) mi = 10 (1050,44) 632.77 0.0993 81 63
OptQuest (Arena 11) mi = 10 (1047,85) 650.60 NA 81 81

DOE-Kri-MP mi = 10 (1043,70) 638.34 0.0992 81 14
DOE-Kri-MP γ = 0.15 (1062,29) 634.19 0.0999 58 40

4 OptQuest (Arena 12) mi = 10 (1061,191) 713.74 0.0746 69 69
OptQuest (Arena 11) mi = 10 (1047,103) 657.35 NA 69 69

DOE-Kri-MP mi = 10 (1057,41) 636.36 0.0999 69 48
DOE-Kri-MP γ = 0.15 (1076,12) 637.39 0.0993 61 40

5 OptQuest (Arena 12) mi = 10 (1129,35) 700.19 0.0711 81 80
OptQuest (Arena 11) mi = 10 (1047,99) 657.90 NA 81 80

DOE-Kri-MP mi = 10 (1043,70) 638.34 0.0992 81 14
DOE-Kri-MP γ = 0.15 (1041,73) 638.04 0.0983 66 12

6 OptQuest (Arena 12) mi = 10 (1002,209) 671.28 0.0936 66 66
OptQuest (Arena 11) mi = 10 (1047,95) 655.28 NA 66 66

DOE-Kri-MP mi = 10 (1043,70) 638.34 0.0992 66 14
DOE-Kri-MP γ = 0.15 (1047,58) 635.20 0.0998 62 22

7 OptQuest (Arena 12) mi = 10 (1027,84) 632.02 0.0998 73 25
OptQuest (Arena 11) mi = 10 (1047,99) 657.86 NA 73 70

DOE-Kri-MP mi = 10 (1043,70) 638.34 0.0992 73 14
DOE-Kri-MP γ = 0.15 (1041,73) 638.04 0.0983 54 12

8 OptQuest (Arena 12) mi = 10 (1054,59) 642.44 0.0956 75 75
OptQuest (Arena 11) mi = 10 (1047,122) 667.34 NA 75 75

DOE-Kri-MP mi = 10 (1046,59) 635.63 0.0996 75 55
DOE-Kri-MP γ = 0.15 (1057,40) 634.62 0.0990 55 27

9 OptQuest (Arena 12) mi = 10 (1061,69) 714.79 0.0739 69 69
OptQuest (Arena 11) mi = 10 (1047,92) 652.85 NA 69 69

DOE-Kri-MP mi = 10 (1043,70) 638.34 0.0992 69 14
DOE-Kri-MP γ = 0.15 (1039,73) 636.24 0.0992 71 38

10 OptQuest (Arena 12) mi = 10 (999,185) 655.21 0.0972 63 63
OptQuest (Arena 11) mi = 10 (1047,109) 661.05 NA 63 63

DOE-Kri-MP mi = 10 (1043,70) 638.34 0.0992 63 14
DOE-Kri-MP γ = 0.15 (1049,54) 636.14 0.0999 67 40

19

Table 2: Performance summary for the (s, S) inventory model
Heuristic Total Costs TC Disservice rate δ

average max min average max min
OptQuest (Arena 12) mi = 10 671.11 716.17 632.02 0.0887 0.0998 0.0711
OptQuest (Arena 11) mi = 10 657.80 667.34 650.60 NA NA NA

DOE-Kri-MP mi = 10 637.88 638.35 635.63 0.0993 0.0999 0.0992
DOE-Kri-MP γ = 0.15 636.47 640.10 634.19 0.0993 0.0999 0.0983

5.2 The call-center staffing problem

In this section, we summarize the results for the call-center simulation model used in Kelton

et al. (2007). Other types of simulation models for call center staffing—applying different

optimization heuristics—are presented by Avramidis et al. (2007) and Atlason et al. (2008),

who also review related publications.

The telephone call-center handles three types of calls (Kelton et al. 2007, p. 195): (i) techni-

cal support, (ii) sales, and (iii) order-status checking. Calls arrive according to a nonstationary

Poisson process. Customers call a central telephone number, which feeds a number of trunk

lines. Next, customers choose from the three options listed under (i), (ii), and (iii) above. If

customers select (i), then they must next select whether they want technical support for product

1, 2, or 3. If they select (iii), a computer handles their order-status checking; however, after

receiving this computerized information, the customer may ask for a sales person—but then

the customer gets lower priority than customers of type (ii). If customers call in when all trunk

lines are busy, they get a busy signal and cannot enter the system.

The center opens at 8 AM and closes at 6 PM; after 6 PM a smaller staff serves any remaining

calls. So each simulation run starts and ends with an empty system. Staffing levels vary over

the day (Kelton et al. 2007, p. 226). Staff is specialized: most personnel can handle only one

type of call, i.e., either sales and order-status checking calls (Sales staff), or technical calls for a

given product type (Tech1, Tech2 or Tech3 staff); some operators are able to handle all technical

calls (Tech All staff). Some technical calls are so special that they require handling by people

outside the call center; when these people call back to a technical staff member, that member

calls the customer—with priority over incoming customer calls.

Additional staff may be hired (Sales, Tech 1, Tech2, Tech3 or Tech All) for the time period

between noon and 4 PM (the busiest period). Moreover, additional trunk lines may be obtained.

Trunk lines are available throughout the day. Kelton et al. (2007) make each simulated day

identically and independently distributed, so one day is one run.

In this example, the decision variables in our equation (1) are the total number of trunk

20

lines to be hired (d1), along with the additional staffing levels for each of the five staff types (d2

= Tech1, d3 = Tech2, d4 = Tech3, d5 = TechAll, d6 = Sales), in order to minimize the Total

Cost TC incurred per week (which includes the salaries of all staff, the cost for hiring all trunk

lines, and a separate penalty cost per minute that customers of a specific type wait on hold).

There is a single output constraint, namely the Percent Rejected Calls δ should be below 5%.

The number of trunk lines d1 must satisfy the box constraint

26 ≤ d1 ≤ 50. (23)

Moreover, the personnel inputs must satisfy the linear constraint

d2 + d3 + d4 + d5 + d6 ≤ 15. (24)

All six input variables (k = 6) should be integers.

Table 3 shows the results of our heuristic for 10 macroreplicates. The number of replicates

per input combination is either fixed at mi = m = 110 or determined by a relative preci-

sion requirement with γ = 0.15. The table also shows the OptQuest results for the same 10

macroreplicates, for mi = m = 110, starting from the initial solution (29, 3, 3, 3, 3, 3) (as

suggested in Kelton et al. 2007). Table 4 summarizes the performance results of the different

heuristics.

Table 3 shows that our heuristic outperforms OptQuest (both in ARENA 11 and ARENA 12)

in every macroreplication. Table 4 shows that our heuristic moves faster towards the constraint

boundary than OptQuest does, and obtains high-quality solutions with fewer design points.

We recommend the relative precision criterion because it controls the magnitude of the

”noise” relative to the ”signal”; moreover, it gives replication numbers that vary with the input

combination (we assume that the noise does not remain constant as we move over the search

area).

6 Conclusions and future research

In this article, we developed a heuristic for constrained optimization of random simulation mod-

els. One simulation output is selected as the objective to be minimized, while the other (r− 1)

outputs must satisfy prespecified target values. The (deterministic) simulation inputs must

meet prespecified constraints, including integer constraints. The heuristic combines features

from (i) design of experiments, (ii) Kriging modeling, to approximate the global I/O functions

per output type implied by the underlying simulation model, and (iii) INLP, to estimate the

21

Table 3: Results for the call center model
macrorepl Heuristic dopt E(TC) E(δ) imax rank dopt

1 OptQuest (Arena 12) mi = 110 (28,1,2,1,0,2) 22034.52 3.94 62 49
OptQuest (Arena 11) mi = 110 (26,2,1,1,0,3) 21449.08 NA 62 56

DOE-Kri-MP mi = 110 (26,0,1,1,2,2) 21424.02 4.72 62 59
DOE-Kri-MP γ = 0.15 (26,1,0,1,2,3) 21586.87 4.80 53 38

2 OptQuest (Arena 12) mi = 110 (28,0,1,2,1,3) 21826.21 3.14 63 62
OptQuest (Arena 11) mi = 110 (26,2,1,1,0,3) 21621.16 NA 63 56

DOE-Kri-MP mi = 110 (26,0,0,0,3,2) 21323.31 4.96 63 47
DOE-Kri-MP γ = 0.15 (26,1,2,1,0,3) 21562.87 4.77 53 38

3 OptQuest (Arena 12) mi = 110 (28,0,2,2,0,2) 21930.79 3.70 62 51
OptQuest (Arena 11) mi = 110 (26,2,1,1,0,4) 21741.81 NA 62 55

DOE-Kri-MP mi = 110 (26,0,0,0,3,3) 21261.21 4.92 62 61
DOE-Kri-MP γ = 0.15 (27,1,1,1,1,2) 21578.75 4.09 71 62

4 OptQuest (Arena 12) mi = 110 (28,0,2,1,0,3) 22122.93 4.27 67 55
OptQuest (Arena 11) mi = 110 (26,2,2,1,0,2) 21633.66 NA 67 56

DOE-Kri-MP mi = 110 (27,0,1,1,1,2) 21194.63 4.47 67 59
DOE-Kri-MP γ = 0.15 (27,0,1,0,2,3) 21412.04 4.36 63 61

5 OptQuest (Arena 12) mi = 110 (28,1,2,1,0,2) 22113.72 3.85 66 51
OptQuest (Arena 11) mi = 110 (26,2,1,1,0,3) 21650.91 NA 66 56

DOE-Kri-MP mi = 110 (26,0,0,1,2,3) 21546.72 4.99 66 54
DOE-Kri-MP γ = 0.15 (26,1,1,0,2,3) 21638.75 4.80 74 60

6 OptQuest (Arena 12) mi = 110 (28,0,2,2,0,3) 22282.48 3.67 70 53
OptQuest (Arena 11) mi = 110 (26,2,1,1,0,3) 21682.38 NA 70 56

DOE-Kri-MP mi = 110 (26,1,1,1,1,2) 21443.62 4.71 70 64
DOE-Kri-MP γ = 0.15 (26,0,2,1,1,7) 22736.19 4.60 57 27

7 OptQuest (Arena 12) mi = 110 (27,1,2,1,0,3) 21976.32 4.17 93 79
OptQuest (Arena 11) mi = 110 (26,2,1,1,0,3) 21614.37 NA 93 56

DOE-Kri-MP mi = 110 (26,0,1,0,3,2) 21522.46 4.66 93 58
DOE-Kri-MP γ = 0.15 (26,1,2,1,0,2) 20327.66 3.82 78 57

8 OptQuest (Arena 12) mi = 110 (27,1,1,1,0,2) 21452.64 4.98 128 84
OptQuest (Arena 11) mi = 110 (26,1,2,1,0,2) 21398.62 NA 128 96

DOE-Kri-MP mi = 110 (26,1,1,0,2,2) 21299.95 4.54 128 96
DOE-Kri-MP γ = 0.15 (26,0,0,1,2,3) 21020.93 4.85 60 52

9 OptQuest (Arena 12) mi = 110 (28,1,1,1,0,2) 21933.02 4.27 87 79
OptQuest (Arena 11) mi = 110 (26,2,1,1,0,3) 21564.11 NA 87 56

DOE-Kri-MP mi = 110 (27,0,1,1,1,3) 21231.51 4.02 87 81
DOE-Kri-MP γ = 0.15 (27,0,1,1,1,2) 20915.47 4.31 101 100

10 OptQuest (Arena 12) mi = 110 (28,1,2,1,0,2) 22078.51 3.91 75 61
OptQuest (Arena 11) mi = 110 (26,2,2,1,0,2) 21854.64 NA 75 56

DOE-Kri-MP mi = 110 (26,0,1,2,1,3) 21620.26 4.76 75 57
DOE-Kri-MP γ = 0.15 (27,0,1,0,2,3) 21200.80 4.24 54 47

Table 4: Performance summary for the call center model
Heuristic TC δ

average max min average max min
OptQuest (Arena 12) mi = 10 21975.11 22282.48 21452.64 3.99 4.98 3.14
OptQuest (Arena 11) mi = 10 21621.07 21854.64 21398.62 NA NA NA

DOE-Kri-MP mi = 10 21386.77 21620.26 21194.63 4.68 4.99 4.03
DOE-Kri-MP γ = 0.15 21398.04 22736.19 20327.67 4.47 4.85 3.83

22

optimal solution based on the Kriging models. The resulting stepwise procedure contains ele-

ments of both global and local search. We proposed solutions for a number of tactical problems,

such as the validation of the Kriging metamodels, bootstrapping in case of CRN and unequal

replication numbers, and statistically testing whether a newly obtained solution yields a signif-

icant improvement. We applied our heuristic to various simulation models, and compared its

performance with OptQuest. The results suggest that our heuristic gives an optimum solution

much faster than OptQuest does.

Though we selected two test cases from the fields of manufacturing and logistics, our heuris-

tic is general in the sense that it is applicable to problem formulations that share the same

characteristics: random objective, random output constraints, and integer input constraints.

Our heuristic is flexible in the sense that it can be easily modified to represent other settings

such as deterministic simulation. Moreover, the procedures implemented in steps 1 (initial

space-filling design), 3 (fitting the metamodels), 6 and 8 (estimating optima through INLP)

may be replaced by better procedures as the knowledge in each of the related fields (DOE,

Kriging, INLP) evolves. Other types of global metamodels may also be considered: Classifica-

tion And Regression Trees (CART), Generalized Linear Models (GLM), Multivariate Adaptive

Regression Splines (MARS), Neural Networks (NN), nonlinear regression models, nonparamet-

ric regression analysis, radial functions, rational functions, splines, support vector regression,

symbolic regression, and wavelets. If readers prefer such an alternative metamodel, then they

can replace our Kriging metamodel by their favorite metamodel and adapt our heuristic.

Our future research will concentrate on further improvement of our heuristic. We do not

recommend the use of a fixed number of replicates per point; i.e., we recommend the use of the

relative precision criterion. The use of the signal/noise criterion in Kriging metamodeling re-

quires more research. We may also study variations on the acceptance of constrained simulation

outputs; i.e., we may accept a point with average outputs that give nonsignificant violations of

the threshold values (currently, we accept only points with average outputs that do not exceed

the threshold values). We might add a postprocessing step (to be run after our heuristic stops),

aimed at ordering high-quality solutions (see Kelly 2002). Such a step may use Multiple Ranking

and Selection procedures; see Kleijnen (2008a), p. 102. Selecting such a procedure is discussed

by Branke et al. (2007). Moreover, the current heuristic is based on ordinary Kriging, which is

univariate and was originally developed for deterministic simulation. Multivariate Kriging that

accounts for stochastic simulation with replications and output variances that vary with the

simulated input combinations, may further improve performance. Unfortunately, there is no

software yet for multivariate stochastic Kriging—free and well-documented like DACE. Finally,

23

we would like to adapt our heuristic for continuous inputs, replacing the INLP code by some

NLP code; an advantage of Kriging is that in this case the metamodel also gives an estimate of

the gradient, at no extra cost (see Biles et al. 2007).

Finally, we would like to see the simulation community develop standard testbeds for

different heuristics for simulation optimization. Such testbeds are popular in Mathemati-

cal Programming, but they do not yet exist in our field. A start is made with the website

http://www.simopt.org (based on Pasupathy and Henderson 2006), but its test problems are

not available as code so they require recoding, which is a major source of errors.

References

Abspoel, S.J., L.F.P. Etman, J. Vervoort, R.A. van Rooij, A.J.G. Schoofs, J.E. Rooda. 2001. Simulation
based optimization of stochastic systems with integer design variables by sequential multipoint
linear approximation. Struct. Multidiscip. Optim. 22 125–138.

Andradóttir, S. 1999. Accelerating the convergence of random search methods for discrete stochastic
optimization. ACM Transactions on Modeling and Computer Simulation 9 349–380.

Andradóttir, S. 2002. Simulation Optimization: Integrating research and practice. INFORMS J. Comput.
14 216–219.

Angün, E., D. den Hertog, G. Gürkan, J.P.C. Kleijnen. 2002. Response surface methodology revisited.
E. Yucesan, C.H. Chen, J.L. Snowdon and J.M. Charnes, eds. Proc. 2002 Winter Simulation Con-
ference 377–383.

Ankenman, B., B.L. Nelson, J. Staum. 2008. Stochastic Kriging for simulation Metamodeling. Oper.Res.
(conditionally accepted).

Atlason, J., M.A. Epelman, S.G. Henderson. 2008. Optimizing call center staffing using simulation and
analytic center cutting-plane methods. Management Sci. 54 295–309.

Avramidis, A.N., O. Pisacane, M. Gendreau, P. L’ Ecuyer. 2007. Simulation-based optimization of agent
scheduling in a multiskill call center. J. Ottjes, H. Veeke, eds. 5th International Industrial Simulation
Conference, ISC’2007, Delft, Netherlands, 255-263.

Bashyam, S., M. C. Fu. 1998. Optimization of (s, S) inventory systems with random lead times and a
service level constraint. Management Sci. 44 243–256.

Bates, R.A, R.S., Kenett, D.M. Steinberg, H.P. Wynn. 2006. Achieving robust design from computer
simulations. Quality Technology and Quantitative Management 3 161–17.

Beyer, H., B. Sendhoff. 2007. Robust optimization—a comprehensive survey. Comput. Meth. Appl. Mech.
Eng. 196 3190–3218.

Biles, W.E., J.P.C. Kleijnen, W.C.M. van Beers, I. van Nieuwenhuyse. 2007. Kriging metamodels in
constrained simulation optimization: an explorative study. S. G. Henderson, B. Biller, M.-H. Hsieh,
J. Shortle, J. D. Tew, R. R. Barton, eds. Proc. 2007 Winter Simulation Conference 355–362.

Branke, J., S.E. Chick, C. Schmidt. 2007. Selecting a selection procedure. Management Sci. 53 1916–
1932.

Cezik, M.T., P. L’ Ecuyer. 2008. Staffing multiskill call centers via linear programming and simulation.
Management Sci. 54 310–323.

Chilès J-P., P. Delfiner. 1999. Geostatistics: modeling spatial uncertainty. Wiley, New York.
Cioppa, T.M., T.W. Lucas. 2007. Efficient nearly orthogonal and space-filling Latin hypercubes. Tech-

nometrics 49 45–55.
Davis, E., M. Ierapetritou. 2007. A Kriging based method for the solution of mixed-integer nonlinear

programs containing black-box functions. J. Glob. Optim. (in press)

24

Deflandre, D., J.P.C. Kleijnen. 2003. Statistical analysis of random simulations: bootstrap tutorial.
Simulation News Europe 38/39 29–34.

Den Hertog, D., J.P.C. Kleijnen, A.Y.D. Siem. 2006. The correct Kriging variance estimated by boot-
strapping. J. Oper. Res. Soc. 57 400–409.

Driessen, L., R.C.M. Brekelmans, M. Gerichhausen, H. Hamers, D. den Hertog. 2006a. Why methods
for optimization problems with time consuming function evaluations and integer variables should
use global approximation models. CentER Discussion Paper 2006-04, CentER, Tilburg University,
Tilburg, the Netherlands.

Driessen, L., R. Brekelmans, H. Hamers, D. den Hertog. 2006b. On D-optimality based trust regions for
black-box optimization problems. Struct. Multidiscip. Optim. 31 40–48.

Efron, B., R.J. Tibshirani. 1993. An introduction to the bootstrap. Chapman & Hall, New York.
Fu, M.C. 2002. Optimization for Simulation: Theory vs. Practice, Informs J. Comput. 14 192–215.
Fu, M.C. 2007. Are we there yet? The marriage between simulation & optimization. OR/MS Today 34

16–17.
Fu, M.C., F.W. Glover, J. April. 2005. Simulation optimization: a review, new developments, and appli-

cations. M.E. Kuhl, N.M. Steiger, F.B. Armstrong, J.A. Joines, eds. Proc 2005 Winter Simulation
Conference. Piscataway, New Jersey, 83–95.

Greenberg, H.J., T. Morisson. 2008. Robust optimization. A.R. Ravindran, ed. Handbook of Operations
Research and Management Science. CRC Press, Boca Raton, Florida.

Huang, D., T.T. Allen, W. Notz, N. Zheng. 2006. Global optimization of stochastic black-box systems
via sequential Kriging meta-models. J. Glob. Optim. 34 441–466.

Jones, D.R., M. Schonlau, W.J. Welch. 1998. Efficient global optimization of expensive black-box func-
tions. J. Glob. Optim. 13 455–492.

Joseph, V. R., Hung, Y., and Sudjianto, A. 2008. Blind Kriging: a new method for developing meta-
models. J. Mech. Des. , 130, in press.

Kelly, J.P. 2002. Simulation optimization is evolving, Informs J. Comput. 14 223–225.
Kelton, W.D., R.P. Sadowski, D.T. Sturrock. 2007. Simulation with Arena. 4th ed. McGraw-Hill, Boston.
Kenett, R., D. Steinberg. 2006. New frontiers in design of experiments. Quality Progress 61–65.
Kleijnen, J.P.C. 2008a. Design and analysis of simulation experiments. Springer Science + Business

Media.
Kleijnen, J.P.C. 2008b. Factor screening in simulation experiments: review of sequential bifurcation.

Working Paper, Tilburg University, Tilburg, Netherlands.
Kleijnen, J.P.C. 2009. Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192 707–716.
Kleijnen, J.P.C., D. Deflandre. 2006. Validation of regression metamodels in simulation: bootstrap ap-

proach. Eur. J. Oper. Res. 170 120–131.
Kleijnen, J.P.C., W.C.M. van Beers. 2004. Application-driven sequential designs for simulation experi-

ments: Kriging metamodeling. J. Oper. Res. Soc. 55 876–883.
Kleijnen, J.P.C., J. Wan. 2007. Optimization of simulated systems: OptQuest and alternatives. Simul.

Model. Pract. Theory 15 354–362.
Law, A.M. 2007. Simulation modeling and analysis. 4th ed. McGraw-Hill, Boston.
Lophaven, S.N., H.B. Nielsen, J. Sondergaard. 2002. DACE: a Matlab Kriging toolbox, version 2.0. IMM

Technical University of Denmark, Lyngby.
Martin, J.D., T.W. Simpson. 2004. A Monte Carlo simulation of the Kriging model. 10th AIAA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, AIAA-2004-4483.
Martin, J.D., T.W. Simpson. 2005. Use of Kriging models to approximate deterministic computer models.

AIAA J. 43(4) 853–863.
Miller, R.G. 1981. Simultaneous statistical inference. Rev. 2nd ed. Springer, New York.
Oden, J.T. 2006. Revolutionizing engineering science through simulation. National Science Foundation

(NSF), Blue Ribbon Panel on Simulation-Based Engineering Science.

25

Pasupathy, R., S. G. Henderson. 2006. A testbed of simulation-optimization problems. L. F. Perrone, F.
P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, R. M. Fujimoto, eds. Proc. 2006 Winter Simulation
Conference. 255–263.

Pintér, J.D. 2007. Computational global optimization: state-of-the-art and perspectives. OR/MS Today
34(5) 18–19.

Rosen, S.C., C.M. Harmonosky, M.T. Traband. 2007. Optimization of systems with multiple performance
measures via simulation: survey and recommendations. Comput. Ind. Eng. 54(2) 327–339.

Van Beers, W.C.M., J.P.C. Kleijnen. 2008. Customized sequential designs for random simulation exper-
iments: Kriging metamodeling and bootstrapping. Eur. J. Oper. Res. 186(3) 1099–1113.

A Computational results for the ”toy problem”

The outputs of the so-called toy problem are generated by second-order polynomials augmented

with noise. The problem is based on Angün et al. (2002); however, to increase the integer-valued

search area, we transform the original decision variables z1 and z2 into d1 and d2 as follows:

z1 =
d1

10
, z2 =

d2

10
− 2, 0 ≤ d1 ≤ 30, 0 ≤ d2 ≤ 30. (25)

This gives the following optimization problem:

minimize E(w0) = E[5(d1
10 − 1)2 + (d2

10 − 7)2 + 4d1
10(d2

10 − 2) + e0]
subject to E(w1) = E[(d1

10 − 3)2 + (d2
10 − 2)2 + d1

10(d2
10 − 2) + e1] ≤ 4

E(w2) = E[
(

d1
10

)2
+ 3

(
d2
10 − 0.939

)2
+ e2] ≤ 9

0 ≤ d1 ≤ 30, 0 ≤ d2 ≤ 30; d1, d2 ∈ N.

(26)

The random errors e0, e1, and e2 are normally distributed with means 0, variances σ0,0 = 0.7500

(so σ0 =
√

0.75 = 0.87), σ1,1 = 0.0169, σ2,2 = 0.1200, and correlations ρ0,1 = 0.82, ρ0,2 = 0.30,

ρ1,2 = −0.07. Because the simulation noise is purely additive in this problem, we do not use CRN

to sample the multivariate normal noise at different input combinations. The true optimum for

this integer problem is (12, 24), with E(w0) = 23.28, E(w1) = 3.88, E(w2) = 7.8436.

Table 5 shows the results of our heuristic for 10 macroreplicates. The number of replicates

per input combination is either fixed at mi = m = 110 or determined by a relative preci-

sion requirement with γ = 0.15. This table also shows the OptQuest results for the same 10

macroreplicates with mi = m = 110, starting from the initial solution (15, 15).

ARENA Version 12 finds the optimum after only 9 points in each macroreplicate. Strangely

enough, Version 11 gives very different results; it requires between 55 and 90 points! Our

heuristic finds the optimum after 12 to 30 points; our heuristic uses a pilot sample with 9

points, which explains why it needs more than 9 points to find the optimum.

26

Table 5: Results for the toy problem obtained by the heuristic
macrorepl Heuristic dopt E(w0) E(w1) E(w2) imax rank dopt

1 OptQuest (Arena 12) mi = 110 (12,24) 23.31 3.89 7.82 105 9
OptQuest (Arena 11) mi = 110 (13,24) 23.504 NA NA 105 55

DOE-Kri-MP mi = 110 (12,24) 23.31 3.89 7.82 105 12
DOE-Kri-MP γ = 0.15 (11,23) 22.64 3.93 6.72 56 14

2 OptQuest (Arena 12) mi = 110 (12,24) 23.41 3.89 7.85 103 9
OptQuest (Arena 11) mi = 110 (12,24) 23.41 NA NA 103 90

DOE-Kri-MP mi = 110 (12,24) 23.41 3.89 7.85 103 13
DOE-Kri-MP γ = 0.15 (13,24) 22.83 3.44 7.97 62 30

3 OptQuest (Arena 12) mi = 110 (12,24) 23.34 3.89 7.85 93 9
OptQuest (Arena 11) mi = 110 (12,24) 23.34 NA NA 93 90

DOE-Kri-MP mi = 110 (12,24) 23.34 3.89 7.85 93 15
DOE-Kri-MP γ = 0.15 (12,24) 22.49 3.79 7.74 61 13

4 OptQuest (Arena 12) mi = 110 (12,24) 23.31 3.88 7.81 104 9
OptQuest (Arena 11) mi = 110 (13,24) 23.84 NA NA 104 55

DOE-Kri-MP mi = 110 (12,24) 23.31 3.88 7.81 104 12
DOE-Kri-MP γ = 0.15 (12,24) 23.05 3.82 7.86 60 12

5 OptQuest (Arena 12) mi = 110 (12,24) 23.28 3.89 7.79 105 9
OptQuest (Arena 11) mi = 110 (13,24) 23.67 NA NA 105 55

DOE-Kri-MP mi = 110 (12,24) 23.28 3.89 7.79 105 13
DOE-Kri-MP γ = 0.15 (11,23) 22.67 3.93 6.95 47 18

6 OptQuest (Arena 12) mi = 110 (12,24) 23.22 3.87 7.81 71 9
OptQuest (Arena 11) mi = 110 (13,24) 23.65 NA NA 71 55

DOE-Kri-MP mi = 110 (12,24) 23.22 3.87 7.81 71 12
DOE-Kri-MP γ = 0.15 (12,24) 23.08 3.85 7.86 49 12

7 OptQuest (Arena 12) mi = 110 (12,24) 23.28 3.88 7.83 91 9
OptQuest (Arena 11) mi = 110 (13,24) 23.64 NA NA 91 55

DOE-Kri-MP mi = 110 (12,24) 23.28 3.88 7.83 91 16
DOE-Kri-MP γ = 0.15 (12,24) 23.21 3.86 7.66 63 15

8 OptQuest (Arena 12) mi = 110 (12,24) 23.29 3.88 7.84 98 9
OptQuest (Arena 11) mi = 110 (13,25) 23.15 NA NA 98 78

DOE-Kri-MP mi = 110 (13,25) 23.15 3.77 8.97 98 16
DOE-Kri-MP γ = 0.15 (12,23) 23.22 3.65 6.96 56 17

9 OptQuest (Arena 12) mi = 110 (12,24) 23.27 3.87 7.89 75 9
OptQuest (Arena 11) mi = 110 (13,24) 23.55 NA NA 75 55

DOE-Kri-MP mi = 110 (12,24) 23.27 3.87 7.89 75 11
DOE-Kri-MP γ = 0.15 (11,23) 23.08 3.94 6.81 55 12

10 OptQuest (Arena 12) mi = 110 (12,24) 23.20 3.86 7.82 98 9
OptQuest (Arena 11) mi = 110 (13,25) 23.33 NA NA 98 78

DOE-Kri-MP mi = 110 (12,24) 23.20 3.86 7.82 98 11
DOE-Kri-MP γ = 0.15 (12,24) 23.07 3.79 8.03 54 14

Table 6: Performance summary for the toy problem
Heuristic w0 w1 w2

average max min average max min average max min
OptQuest (Arena 12) mi = 10 23.29 23.41 23.20 3.88 3.89 3.86 7.83 7.89 7.79
OptQuest (Arena 11) mi = 10 23.39 23.84 22.26 NA NA NA NA NA NA

DOE-Kri-MP mi = 10 23.28 23.41 23.15 3.87 3.89 3.77 7.94 8.97 7.79
DOE-Kri-MP γ = 0.15 22.93 23.22 22.49 3.80 3.94 3.44 7.46 8.03 6.72

27

