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ABSTRACT

We consider simulation optimization in the presence of input uncertainty. In particular, we assume that the
input distribution can be described by some continuous parameters, and that we have some prior knowledge
defining the probability distribution for these parameters. We then seek the simulation design that has the
best expected performance over the possible parameters of the input distributions. Assuming correlation
of performance between solutions and also between input distributions, we propose modifications of two
well-known simulation optimization algorithms, Efficient Global Optimization and Knowledge Gradient
with Continuous Parameters, so that they work efficiently under input uncertainty.

1 INTRODUCTION

Simulation optimization, i.e., the search for a design or solution that optimizes some output value of the
simulation model, allows to automate the design of complex systems and has many real-world applications.
Consequently, various simulation optimization methods have been developed, including metaheuristics such
as simulated annealing (Branke, Meisel, and Schmidt 2008) or response surface methods such as Efficient
Global Optimization (EGO) (Jones, Schonlau, and Welch 1998) or Knowledge Gradient for Continuous
Parameters (KG) (Scott, Frazier, and Powell 2011). These methods can deal with the stochastic output
usually produced by stochastic simulation models. However, a simulation is never a perfect model of
reality. When constructing the simulation model, the decision maker often faces the challenge of defining
proper input distributions (eg. the mean of an arrival time distribution) in particular if multiple candidate
distributions can fit the input data reasonably well, or the distributions are based on predictions and expert
judgement. This issue, generally known as ”input uncertainty”, has obtained increasing interest of the
simulation community in recent years.

This paper adapts two successful and well-known simulation optimization methods, namely EGO and
KG, to allow for input uncertainty. We assume that the design as well as the possible input distributions
can be described by some continuous parameters each and that one has a probability distribution over
the parameter determining the input distribution. This is, for example, the case if the input distribution
parameters are estimated by a group of experts, and the different opinions are aggregated into one probability
distribution over the input distribution parameter. We furthermore assume that the output of the simulation
model is correlated across designs as well as input distribution parameters. Then, given a budget of
simulation runs (i.e., runs of the simulation with a given design and input distribution parameter), the
goal is to identify the design with the best expected performance over the probability distribution of input
distribution parameters.

The paper is structured as follows. We start with an overview of related work in Section 2, followed
by a formal definition of the problem in Section 3. Section 4 explains the newly proposed methods for
simulation optimization in the presence of input uncertainty, which are then empirically tested and compared
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to some benchmarks in Section 5. The paper concludes with a summary and some suggestions for future
work.

2 LITERATURE REVIEW

When trying to find the best design based on a small number of simulation runs, Bayesian Optimization
based on Gaussian Processes, or Kriging models, have gained much attention. These methods build a
surrogate model of the response surface based on a few initial samples and then use an acquisition function
(sometimes called infill criterion) to iteratively decide where to sample next to improve the model and find
better solutions. The most popular Bayesian Optimization algorithm is the Efficient Global Optimization
(EGO) algorithm of Jones, Schonlau, and Welch (1998) that combines a Gaussian Process to interpolate an
expensive function and an expected improvement criterion for deciding where to sample next. The SKO
algorithm (Huang, Allen, Notz, and Miller 2006) extends the EGO algorithm by proposing an acquisition
function that also accounts for noise in function evaluations. The Knowledge Gradient for Correlated
Normal Beliefs (Frazier, Powell, and Dayanik 2009) is a myopic sampling policy that aims to maximize
the new predicted performance after one sample. It can be applied when using a Gaussian Process with
a discretized input, has a theoretical basis in dynamic programming and provides myopic and asymptotic
guarantees. The Knowledge Gradient policy for Continuous Parameters (Scott, Frazier, and Powell 2011)
generalizes the EGO algorithm to noisy functions. Perhaps the most interesting difference between the
Knowledge Gradient policy and previous policies is that the Knowledge Gradient accounts for covariance
when judging the value of a sample, i.e., the expected improvement takes into account the possibility that
as a result of the new sample, the predicted performance at other previously sampled points may change.

The topic of input uncertainty has recently gained significant attention in the simulation community,
for a general introduction see, e.g., Lam (2016). However, so far simulation optimization usually assumes
the input distributions are known. Zhou and Xie (2015) argue that input uncertainty should be taken into
account in simulation optimization and discuss various risk formulations that could be used to capture input
uncertainty in the optimization criterion including worst-case optimization (minimizing risk) and expected
performance (risk neutral) and demonstrate that this may be beneficial.

One area of simulation optimization that focuses on the case of few alternatives is ranking and selection,
see, e.g., (Branke, Chick, and Schmidt 2007, Chen, Chick, Lee, and Pujowidianto 2015), and a few recent
papers in this area have considered input uncertainty, although mostly in the sense of worst-case performance.

Song, Nelson, and Hong (2015) examine the impact of input uncertainty on indifference zone ranking
and selection procedures. They conclude that a straightforward application of IZ selection can invalidate the
probability of correct selection guarantee. Fan, Hong, and Zhang (2013) and Gao, Xiao, Zhou, and Chen
(2016) consider a discrete set of alternatives and scenarios, and no correlation between either alternatives
or scenarios. They aim to identify the best alternative according to the worst case input distribution. Fan,
Hong, and Zhang (2013) propose an indifference-zone based ranking and selection procedure that works
in two-stages: first it identifies for each design the worst case, then it identifies the best design based on
the identified worst case scenario. On the other hand, the algorithm by Gao, Xiao, Zhou, and Chen (2016)
is based on the optimal computing budget allocation (OCBA) framework. Zhang and Ding (2016) while
still assuming independence among alternatives, take into account correlations among the performance
measures of an alternative under different input distributions. They still aim for the best alternative in the
worst case, and propose an algorithm based on the Knowledge Gradient framework.

Different from previous work, in this paper we focus on a continuous set of alternatives (continuous
parameter to be optimized), a set of input distributions described by a continuous parameter, and the
correlation between alternatives and across input distributions. Also, our aim is not to find the alternative
which is best in the worst case, but the solution that has the best expected performance based on a prior
distribution on the input distribution parameter. We propose myopic sampling strategies based on EGO
and KG.
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3 PROBLEM FORMULATION

Given a simulation model with a tunable parameter that specifies the possible designs a ∈ A and an input
distribution with parameter x ∈ X (henceforth simply called ”input”) following an assumed distribution P[x]
independent of a. When running a simulation with design a and input x, we observe an output following an
unknown noisy function f (x,a) = θ(x,a)+ ε where θ(x,a) = E[ f (x,a)] is a deterministic latent function
defining the expected outcome and ε ∼ N(0,σ2

ε ) is independent white noise with constant variance. The
objective of the user is to identify the design a that maximizes the expected performance simultaneously
across the input parameter distribution

F(a) =
∫

X
θ(x,a)P[x]dx. (1)

We assume we have a fixed budget of N samples (simulation runs with a specific design and input), and that
we can sample iteratively, i.e., we can select the design and the input from which to sample performance
f (x,a) based on the information collected so far.

Although for reasons of simplicity we use scalar notation, the approach applies to multi-dimensional
inputs and designs.

4 SAMPLING METHODS

In this section, we show how to modify two well know global optimization methods, Efficient Global
Optimization (EGO) and Knowledge Gradient with Continuous Parameters (KG) to the case of input
uncertainty. We assume that we can use a Gaussian Process to model the underlying latent performance
function θ(x,a) given the data observed. For simplicity, let us denote the location and value n-th observation
by xn,an and yn. Given all the data collected (x1,a1,y1), ...,(xn,an,yn), we define X̃ = {(x1,a1), ...,(xn,an)}
and Y n = (y1, ...,yn), and the sigma algebra F n generated by all the data {(x1,a1,y1), . . . ,xn,an,yn)}. A
Gaussian Process regression model treats the underlying latent function, θ(x,a), at any given finite set of
points (eg (x,a) and (x′,a′)) as a multivariate Gaussian random variable whose mean and covariance are
given by

E[ f (x,a)|F n] = µ
n(x,a)

= µ
0(x,a)− k0((x,a), X̃n)(k0(X̃n, X̃n)+ Iσ)−1(Y n−µ

0(X̃n)) (2)

Cov[ f (x,a), f (x′,a′)|F n] = kn((x,a),(x′,a′))
= k0((x,a),(x′,a′))− k0((x,a), X̃n)(k0(X̃n, X̃n)+ Iσ)k0(X̃n,(x′,a′)) (3)

where µ0(x,a) is the prior mean which is typically set to µ0(x,a) = 0 and k0((x,a),(x′,a′)) is the kernel
of the Gaussian Process that allows the user to encode known properties of the latent function θ(x,a) such
as smoothness and periodicity. In Section 5, we use the popular squared exponential kernel, though also
the Matern class of kernels has been widely used for simulation optimization.

4.1 Efficient Global Optimization for Input Uncertainty

The well-known EGO algorithm sequentially collects objective function evaluations and was originally
designed for deterministic global optimization problems. It starts by evaluating the function at a randomly
distributed set of inputs to the function. Then, the location of the next sample is determined by maximizing
the expected improvement of a new function evaluation over the current best evaluation. The predic-
tive distribution of the new noiseless sample is given by yn+1 ∼ N(µn(a),kn(a,a)) and so the expected
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improvement over the current best of a hypothetical sample at parameter a is given by

EGO(a) = E[max{y1, ...,yn+1}]− max
i=1,...,n

yi (4)

= E[max{0,yn+1− max
i=1,...,n

yi}] (5)

= ∆Φ(∆/σ)−σφ(∆/σ) (6)

where φ(x) and Φ(x) are the standard normal density and cumulative functions, ∆ = µn(a)−maxi=1,...,n yi

and σ =
√

kn(a,a). Note that the expectation in Equation 5 is over the maxima of two linear functions,
one of which is a constant, with a normally distributed input. When function evaluations are deterministc,
the previous best sample value does not change with the new sample. The EGO aqcuisition function given
in Equation 6 is easily and cheaply optmised to find the location of the most promising new function
evaluation, xn+1an+1, and then the objective function is evvaluated and a stochastic yn+1 = f (xn+1,an+1)
is observed. The Gaussian Prcoess model is updated and the search for the location of the next sample is
performed again, a new function value is obeserved and the algortihm repeats until the budget of function
evaluations is exhausted.

Adapting this method to allow for noise and input uncertainty we need to answer two questions, namely
what is the value of the current best upon which we aim to improve, and what is the predictive distribution
of the value after a new hypothetical sample is generated. We calculate a prediction of the current best upon
which we aim to improve by adapting Equation 1, replacing the unknown θ(x,a) with the model prediction,
µn(x,a), and the continuous integral over X can be replaced by a Monte-Carlo integral, a summation over
NX random inputs XMC = {x1, ...,xNX} ∼ P[x]

F̂n(a) =
1

NX
∑

xi∈XMC

µ
n(xi,a). (7)

and the current best upon which we aim to improve is given by maximizing F̂n(a) over a. This maximization
can be done cheaply using any off-the-shelf optimization algorithm as the function is based only on posterior
means. This is further explained in Section 5. NX is a parameter that may be chosen by the user to determine
accuracy and in Section 5 we use NX = n, so that accuracy increases over the run.

In order to answer the second question, we require an updating formula for the posterior mean to derive
the predictive distribution of F̂n+1(a) given only the data available at time n. By setting the posterior mean
and covariance after n samples, µn(x,a), kn(x,a,x′,a′), as the prior mean and covariance in Equation 2,
we can write the formula for the mean for the (n+1)th sample as

µ
n+1(x,a) = µ

n(x,a)+
kn((x,a),(x,a)n+1)

kn((x,a)n+1,(x,a)n+1)+σ2
ε

(yn+1−µ
n(x,a)), (8)

where (x,a)n+1 is determined by the algorithm and yn+1 is unknown. However the Gaussian Process model
provides a prior predictive distribution for the new function value

yn+1 ∼ N(µn((x,a)n+1),kn((x,a)n+1,(x,a)n+1)+σ
2
ε )

and therefore it is possible to factorize Equation 8 as follows

µ
n+1(x,a) = µ

n(x,a)+ σ̃
n(x,a,(x,a)n+1)Z (9)

where Z ∼ N(0,1) is the z-score of yn+1 on it’s prior predictive distribution, and σ̃n((x,a);(x,a)n+1) is a
deterministic function of x, a parametrized by (x,a)n+1 that is the additive update to the posterior mean
scaled by Z

σ̃
n((x,a);(x,a)n+1) =

kn((x,a),(x,a)n+1)√
kn((x,a)n+1,(x,a)n+1)+σ2

ε

.
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Therefore the predictive distribution of the new posterior mean is then given by

µ
n+1(x,a)∼ N(µn(x,a), σ̃((x,a);(x,a)n+1)2)

and the predicted performance after a new sample can then be written as

F̂n+1(a;(x,a)n+1) =
1

NX
∑

xi∈XMC

µ
n+1(xi,a) (10)

=
1

NX
∑

xi∈XMC

µ
n(xi,a)+Z

1
NX

∑
xi∈XMC

σ̃
n(xi,a;(x,a)n+1) (11)

= F̂n(a)+Z Σ̃
n(a;(x,a)n+1). (12)

where Σ̃n(a,(x,a)n+1) is given by the final term in Equation 11. The predictive distribution of the new
design a after a random sample at (x,a)n+1 is then given by

F̂n+1(a;(x,a)n+1)∼ N
(
F̂n(a), Σ̃

n(a;(x,a)n+1)2) .
The above summation does not include the sampled input xn+1 however this can be included with a unique
weighting and is discussed in Section 4.3. The expression gives the updated value for arbitrary a caused
by a new sample at (x,a)n+1. If we only consider the updated value at the sampled design an+1 = a then
the expected improvement over the previous optimal predicted design is given by

EGO(x,a) = E[max{max
a′

F̂n(a′), F̂n+1(a;(x,a))}]−max
a′

F̂n(a′) (13)

= E[max{0, F̂n(a)−max
a′

F̂(a′)+ZΣ̃
n(a;(x,a))}] (14)

= ∆Φ(∆/Σ̃)− Σ̃φ(∆/Σ̃) (15)

where ∆ = F̂n(a)−maxa′ F̂n(a′) and Σ̃ = Σ̃n(a;(x,a)). Samples are sequentially allocated to (x,a) pairs
that maximise EGO(x,a). After each sample, the Monte-Carlo points, XMC, may be regenerated to avoid
overfitting to one particular discretization of the distribution P[x].

4.2 Knowledge Gradient for Input Uncertainty

The new sample at (x,a)n+1 causes the posterior mean to change at other designs and inputs according
to the additive update Zσ̃n((x,a);(x,a)n+1). Therefore the design a with the highest value after the new
sample varies and may not be the previous best nor the sampled design an+1. The EGO algorithm compares
the old highest value (which is assumed to be constant) with the value of the new sampled design. The
Knowledge Gradient compares the old highest value with the new highest value which may or may not
correspond to the previous best design or the design sampled. We define the set of previously evaluated
designs as An = {a1, ...,an} and An+1 includes the next sampled design a assuming an+1 = a. Traditional
Knowledge Gradient for Continuous Parameter using Gaussian Processes (Scott, Frazier, and Powell 2011)
allocates samples to maximize the following expected improvement

KG(a) = E[ max
a′′∈An+1

{µn+1(a′′)}]− max
a′∈An+1

{µn(a′)} (16)

= E[max{µn+1(a1), ...,µn+1(an),µn+1(a)}]− max
a′∈An+1

{µn(a′)} (17)

= E[max{µn(a1)+Zσ̃(a1;a), ...,µn(a)+Zσ̃(a;a)}]− max
a′∈An+1

{µn(a′)} (18)

= E[max{c1 +Zm1, ...,cn+1 +Zmn+1}] (19)
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where ci = µn(ai)−maxa′∈An+1 µn(a′) and mi = σ̃n(ai,a). The final expectation is the maximum of (n+1)
linear functions with a normally distributed argument and may be computed using Algorithm 1 in (Scott,
Frazier, and Powell 2011). In contrast, EGO(a) is the maximum over only two linear functions with a
normally distributed argument as a result of not accounting for changes in the posterior mean at unsampled
designs a 6= an+1. We adapt KG(a) to the input uncertain case KG(x,a) by replacing µn(a) and σ̃(a,an+1)
in the above equations with their Monte-Carlo counterparts F̂n(a) and Σ̃(a;(x,a)n+1).

KG(a,x) = E[ max
a∈An+1

{F̂n+1(a)}]− max
a′∈An+1

{F̂n(a′)} (20)

= E[max{F̂n(a1)+ZΣ̃(a1;(x,a))), ..., F̂n(a)+ZΣ̃(a;(x,a))}]−max
a′∈An
{F̂n+1(a′)} (21)

= E[max{c1 +Zm1, ...,cn+1 +Zmn+1}] (22)

where ci = F̂n(ai)−maxa′∈An+1 F̂n(a′) and mi = Σ̃n(ai,(x,a)). The final expectation may be evaluated using
Algorithm 1 below that takes a vector of gradients m and intercepts c and returns the expectation over the
normally distributed Z. As with the adapted EGO algorithm, this KG for input uncertainty algorithm also
has a single parameter NX that determines the granularity of the MonteCarlo integration and can be chosen
by the user. In our benchmarks we set NX = n so that the accuracy increases with the sample size over the
run.

4.3 Including the Sampled Input in the Monte-Carlo Integral

The proposed Monte-Carlo integral may be improved by importance sampling by setting XMC ∼G[x] where
G[x] is a proposal distribution such that G[x] ∝ P[x]σ̃((x,a),(a,x)n+1). Meaning that in order to minimise
error the Monte-Carlo integral should focus samples where the density of inputs is high and also where the
new function evaluation has great affect on the prediction of other inputs. The above proposed methods set
XMC ∼ P[x], focusing the integration only where P[x] is high. When using a stationary kernel, one may set
XMC to be a cluster around xn+1 so that samples are allocated to where G[x] ∝ σ̃((a,x),(a,x)n+1), focussing
where changes in the guassian process are high. However in practice this leads to expensive computation and
the EGO and KG functions become less smooth and harder to optimise. In order to appropriatly focus the
Monte-Carlo integration whilst still being generelizable to any input uncertainty distibrution and kernel we
therefore propose a basic mix of these two possible approaches. Using a standard Monte-Carlo integral as
well as the sampled point xn+1 which may be seen as a cluster of size 1 focussed where σ̃((x,a),(an+1,xn+1))
is likely to be greatest. The sampled input is not a sample from P[x] therefore simply including the input
in the Monte-Carlo sum would lead to biases, for example if P[xn+1] = 0, the sampled input should not
be included at all. Therefore we include the sampled input with a unique weight that assumes it is from a
single point from a uniform distribution G[x] = 1/VX where VX =

∫
X dx is the volume of input parameter

domain. Therefore the importance weight is simply P[xn+1]/G[xn+1] = P[xn+1]VX . Therefore we may adjust
the Monte-Carlo integrals as follows

F̂n(a) =
1

NX +1

(
∑

xi∈XMC

µ
n(xi,a)+P[xn+1]Vxµ

n(xn+1,a)

)
(23)

Σ̃
n(a;(x,a)n+1) =

1
NX +1

(
∑

xi∈XMC

σ̃
n((xi,a);(x,a)n+1)+P[xn+1]Vxσ̃

n((xn+1,a);(x,a)n+1)

)
. (24)

Secondly, we combine the original Monte-Carlo integral and the single sample Monte-Carlo integral
according to their sample size NX and 1. The modified Monte-Carlo integrals may be directly used in the
EGO(x,a) and KG(x,a) and are used for the numerical experiments in Section 5.
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Algorithm 1 The KG Function The following algorithm takes a vector of intercepts and gradients and
finds the epigraph, or ”ceiling”, of all the linear functions and calculates the expectation over a normally
distributed input. Z̃ is the vector of Z values at the vertices of the epigraph, I is the vector of indices of
the corresponding linear functions that are part of the epigraph. The algorithm starts with an epigraph of
two functions with the lowest gradients, and at each step adds a steeper function and updates the epigraph.
All vector indices start from 1.
Require: c, m ∈ RnA

Sort the elements of c and m in increasing order of m
c← c−max{c}
I← [1,2]
Z̃← [−∞, c1−c2

m2−m1
]

for i = 3 to nA do
endloop← False
repeat

j← last(I)
z← ci−c j

m j−mi

if z < last(Z̃) then
Delete last element of I
Delete last element of Z̃

else
Add i to end of I
Add z to end of Z̃
endloop← True

end if
until endloop

end for
Z̃← [Z̃,∞]

return
length(I)

∑
i=1

cIi(Φ(Z̃i+1)−Φ(Z̃i))+mIi(φ(Z̃i)−φ(Z̃i+1))

5 NUMERICAL BENCHMARK

We apply our algorithms to two benchmarks based on the same test function but with different assumed
distributions of the input. The set of inputs is X = [0,100], the set of designs is A = [0,100] and the
test function θ : X ×A→ R. We generate a synthetic test function by sampling from a Gaussian Process
with a squared exponential kernel with hyper-parameters lX = 10, lA = 10, σ2

0 = 1, σ2
ε = (0.1)2, the test

function θ(x,a) is shown in Figure 1 (a) top. The first input parameter distribution is uniform P[x] = 1/100,
thus the sampling procedure must sample across all inputs to learn about the best alternative. The second
distribution is a triangular distribution P[x] = x 2

10,000 such that the mode input is x = 100 and the mean
input is x = 66.67 and the sampling procedure must prioritize high P[x]. Given these input parameter
distributions, the true F(a) is calculated via numerical integration and shown in Figure 1 (a) bottom.

At the start of sampling 10 samples are allocated by the random sampling methods described below,
the Gaussain process prediction of θ(x,a) and F̂10(a) after the initial allocation are shown in Figures 1
(b) and (e) for the uniform and triangular distribution cases respectively. Then the sequential methods are
used to allocate a following 90 samples reaching a full budget of 100, Figures 1 (d) and (g) show θ(x,a)
and F̂100 after 100 samples have been allocated according to EGO. Then, based on the learned Gaussian
Process model, the design a∗ with the largest predicted performance over a sample of 1000 inputs, XR, is
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Figure 1: In all plots A is on the horizontal axis, small points represent function evaluations. (a) θ(x,a) and
F(a) measured using the uniform test inputs (black) and triangular test inputs (red). µ10(x,a) and F̂10(a)
with upper and lower confidence bounds after 10 samples are shown for uniform inputs (b) and triangular
inputs (e). (c)and (f) top EGO(x,a), bottom KG(x,a) after the initial 10 samples with uniform inputs (c)
and triangular inputs (f), large points show the peaks. (d) and (g) µ100(x,a) and F̂100(a) (with F̂10(a) in
grey) after 100 samples allocated by EGO, (d) uniform and (g) triangular.

recommended to the user

a∗ = argmax
a′

F̂N(a′) = argmax
a′

1
1000 ∑

xi∈XR

µ
N(xi,a′)

where F̂N(a) is optimised by evaluating for all integer values a ∈ 0,1, ...,100 and the highest value is used
as a seed for sequential parabolic interpolation to find the optimal a∗ to high accuracy.

The quality of the sampling procedure is determined by the opportunity cost, the difference in true
performance between the design with the highest predicted value and the true best design, which is measured
over a separate random sample of 1000 inputs Xtest that have not been used in the algorithm. The true
value of a given alternative is calculated by

F(a) =
1

1000 ∑
xi∈Xtest

θ(xi,a).
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Figure 2: (a) the opportunity cost when the input distribution is uniform, (b) when the input distribution
is triangular. EGO on the mean input (red, solid) and mode input (red, dashed) perform worst, followed
by Random Sampling (pink) which is significantly worse than EGO (green) and KG (blue).

Therefore the opportunity cost is given by

Opportunity Cost = max
a′

F(a′)−F(a∗). (25)

Code is available online for all experiments and benchmarks at http://www2.warwick.ac.uk/fac/cross fac/
complexity/people/students/dtc/students2013/pearce/.

5.1 Benchmark Methods

• Random Sampling Given a budget N, samples are randomly distributed over the joint input-design
space by Latin Hyper Cube (in the uniform input case) or by sampling from the input distribution
and latin hypercube in the A space. We consider this the simplest uninformed brute-force approach.

• EGO on the mean and mode input We apply a single parameter EGO to the mean input and to
the mode input. This represents a typical approach used in practice, where the input uncertainty
is simply reduced to using the most likely or most typical input parameter value. Technically this
is equivalent to using the EGO algorithm described above with only one constant sample in the
Monte-Carlo integral. In the uniform case we only use the mean input x = 50, and in the triangular
case we use the mean x = 66.67 and the mode x = 100. At the end of sampling the best a on the
single input alone is recommended while opportunity cost is measured over all test inputs.

5.2 Results

F̂n(a) provides a point estimate of the true performance, ∑θ(xi,a), averaged over a given set of inputs,
XMC, the posterior variance of the estimate is given by

1
N2

X
∑

xi∈XMC

∑
x j∈XMC

kn((xi,a),(x j,a))

http://www2.warwick.ac.uk/fac/cross_fac/complexity/people/students/dtc/students2013/pearce/
http://www2.warwick.ac.uk/fac/cross_fac/complexity/people/students/dtc/students2013/pearce/
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and is plotted in Figure 1 as confidence bounds. In Figures 1 (d) and (g) it can be seen that samples are
focussed around the true optimal a and the error in F̂100(a) is much lower around the optimal a.

In Figure 2, in both cases applying EGO to the mean input and the mode input results in the opportunity
cost not decreasing to zero and the algorithm converges to the wrong design, so reducing input uncertainty
to just a typical input parameter value can clearly lead to inferior solutions. In this example, the EGO
focusing on the mode input even converges to a solution that is worse than the solution obtained after the
initial 10 samples of the methods that take input uncertainty into account. Of the methods that account for
input uncertainty, KG works best, followed by EGO and then the simply random sampling.

6 CONCLUSION

When building a simulation model, the user usually faces the challenge to define proper input distributions.
Input uncertainty arises when one is not completely certain what distributions and/or parameters to use. In
this paper, we proposed two simulation optimization methods based on EGO and KG ideas that are capable
to take into account input uncertainty, and identify the design that has the best expected performance over
the assumed known distribution of input distribution parameters.

Numerical experiments demonstrated that the new algorithms indeed sample the search space very
efficiently, and are much more efficient than random sampling. The approach to simply use EGO on
a typical input distribution parameter such as the mode or the mean of the assumed distribution clearly
performed worse, which demonstrates the importance of properly accounting for input uncertainty.

There are various avenues for future work. While we assumed in this paper that the design space and
the input distribution parameter space can each be described by a single continuous parameter, the proposed
methods should also be tested in higher dimensions and with discrete parameters. It would be interesting
to examine the impact of parameter Nx. Finally, one could consider worst case performance rather than
expected performance.
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