9,985 research outputs found

    Formal Representation of the SS-DB Benchmark and Experimental Evaluation in EXTASCID

    Full text link
    Evaluating the performance of scientific data processing systems is a difficult task considering the plethora of application-specific solutions available in this landscape and the lack of a generally-accepted benchmark. The dual structure of scientific data coupled with the complex nature of processing complicate the evaluation procedure further. SS-DB is the first attempt to define a general benchmark for complex scientific processing over raw and derived data. It fails to draw sufficient attention though because of the ambiguous plain language specification and the extraordinary SciDB results. In this paper, we remedy the shortcomings of the original SS-DB specification by providing a formal representation in terms of ArrayQL algebra operators and ArrayQL/SciQL constructs. These are the first formal representations of the SS-DB benchmark. Starting from the formal representation, we give a reference implementation and present benchmark results in EXTASCID, a novel system for scientific data processing. EXTASCID is complete in providing native support both for array and relational data and extensible in executing any user code inside the system by the means of a configurable metaoperator. These features result in an order of magnitude improvement over SciDB at data loading, extracting derived data, and operations over derived data.Comment: 32 pages, 3 figure

    Performance Evaluation of cuDNN Convolution Algorithms on NVIDIA Volta GPUs

    Get PDF
    Convolutional neural networks (CNNs) have recently attracted considerable attention due to their outstanding accuracy in applications, such as image recognition and natural language processing. While one advantage of the CNNs over other types of neural networks is their reduced computational cost, faster execution is still desired for both training and inference. Since convolution operations pose most of the execution time, multiple algorithms were and are being developed with the aim of accelerating this type of operations. However, due to the wide range of convolution parameter configurations used in the CNNs and the possible data type representations, it is not straightforward to assess in advance which of the available algorithms will be the best performing in each particular case. In this paper, we present a performance evaluation of the convolution algorithms provided by the cuDNN, the library used by most deep learning frameworks for their GPU operations. In our analysis, we leverage the convolution parameter configurations from widely used the CNNs and discuss which algorithms are better suited depending on the convolution parameters for both 32 and 16-bit floating-point (FP) data representations. Our results show that the filter size and the number of inputs are the most significant parameters when selecting a GPU convolution algorithm for 32-bit FP data. For 16-bit FP, leveraging specialized arithmetic units (NVIDIA Tensor Cores) is key to obtain the best performance.This work was supported by the European Union's Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie under Grant 749516, and in part by the Spanish Juan de la Cierva under Grant IJCI-2017-33511Peer ReviewedPostprint (published version

    Multicore-optimized wavefront diamond blocking for optimizing stencil updates

    Full text link
    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multi-core wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor

    A Survey on Array Storage, Query Languages, and Systems

    Full text link
    Since scientific investigation is one of the most important providers of massive amounts of ordered data, there is a renewed interest in array data processing in the context of Big Data. To the best of our knowledge, a unified resource that summarizes and analyzes array processing research over its long existence is currently missing. In this survey, we provide a guide for past, present, and future research in array processing. The survey is organized along three main topics. Array storage discusses all the aspects related to array partitioning into chunks. The identification of a reduced set of array operators to form the foundation for an array query language is analyzed across multiple such proposals. Lastly, we survey real systems for array processing. The result is a thorough survey on array data storage and processing that should be consulted by anyone interested in this research topic, independent of experience level. The survey is not complete though. We greatly appreciate pointers towards any work we might have forgotten to mention.Comment: 44 page
    • …
    corecore