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ABSTRACT Convolutional neural networks (CNNs) have recently attracted considerable attention due to
their outstanding accuracy in applications, such as image recognition and natural language processing.While
one advantage of the CNNs over other types of neural networks is their reduced computational cost, faster
execution is still desired for both training and inference. Since convolution operations pose most of the
execution time, multiple algorithms were and are being developed with the aim of accelerating this type of
operations. However, due to the wide range of convolution parameter configurations used in the CNNs and
the possible data type representations, it is not straightforward to assess in advance which of the available
algorithms will be the best performing in each particular case. In this paper, we present a performance
evaluation of the convolution algorithms provided by the cuDNN, the library used by most deep learning
frameworks for their GPU operations. In our analysis, we leverage the convolution parameter configurations
from widely used the CNNs and discuss which algorithms are better suited depending on the convolution
parameters for both 32 and 16-bit floating-point (FP) data representations. Our results show that the filter size
and the number of inputs are the most significant parameters when selecting a GPU convolution algorithm
for 32-bit FP data. For 16-bit FP, leveraging specialized arithmetic units (NVIDIA Tensor Cores) is key to
obtain the best performance.

INDEX TERMS Neural network, convolution, deep learning, cuDNN, GPU, volta.

I. INTRODUCTION
Deep neural networks (DNNs) have received consider-
able attention in recent years due to their outstanding
results in applications such as image classification and
segmentation, natural language understanding, or speech
recognition [14], [17], [20]. In particular, convolutional neu-
ral networks (CNNs) have positioned as one of the most
efficient ways to address this type of problems, yielding
remarkable performance in terms of computing time and
accuracy [10].

This emergence has been motivated by two main factors.
First, the availability of overwhelmingly large input datasets,
annotated with the expected output, which are required to
fine-tune the network parameters to attain high accuracy.
A relevant example in the context of object recognition is the
ImageNet project [6], which provides over fourteen million
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images manually classified into twenty thousand different
categories. Second, the high throughput of modern heteroge-
neous computing systems, equipped with accelerators such
as graphics processing units (GPUs), which are necessary
to reduce the training time of large CNNs from weeks to a
few days or even several hours. This reduction in training
time enables researchers to iterate on the design of a CNN
within a reasonable time frame. High-performance systems
are also necessary to reduce inference time for latency sensi-
tive applications such as pedestrian detection in autonomous
vehicles [2].

CNNs are characterized by the inclusion of convolutional
layers as part of the neural network. As in a fully-connected
layer, an output element of a convolutional layer is the result
of applying a non-linear function (activation) to the weighted
sum of several input elements; however, there are two main
differences. (1) Each output only depends on a small set of
input values (e.g. a 2D tile of an image), instead of being
a function of all the input elements; and (2) convolutional
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layers use a much smaller number of weights, which are
shared by all output computations. For 2D inputs, such as
images, the number of weights is a multiple of the size of the
input tile considered for each output (i.e., a set of 2D weight
matrices with the size of the input tile), instead of featuring
one weight per each pair of input–output elements. To imple-
ment theweighted sums (with sharedweights) of tiles of input
elements, convolutional layers use a mathematical operation
named ‘‘convolution’’, which is the origin of their name. The
layer’s weights are frequently named ‘‘filters’’ or ‘‘kernels’’.

In terms of benefits compared to fully-connected layers,
convolutional layers feature reduced storage and computa-
tional costs, and these costs no longer depend on the input and
output size. Instead, these layers are defined by a set of hyper-
parameters (like the size of the 2D tiles of weights), which are
defined by the designer of the CNN. In the context of image
classification and segmentation tasks (a major field of appli-
cation of CNNs) convolutional layers yield another important
advantage, commonly referred as ‘‘translation invariance’’.
Since the filters are tuned during the training stage (as any
other weight of the neural network), and these are reused
in several positions over the image, filters ‘‘learn’’ to detect
patterns independently of the position where these appear in
the image. In contrast, the weights of a fully connected layer
are position dependent. Thus, to be able to detect a given
pattern in any position of an image, a fully connected layer
requires amuchmore complex training dataset with examples
of this pattern in all possible positions.

Convolutional layers may be understood as a form of
automatic feature extractors. This provides CNNs a great
advantage over other classification/detection methods where
the feature extractors have to be manually designed to detect
the relevant patterns. Such design needs to be performed by
experts in the field and is often time consuming. Contrarily,
in CNNs, the features are learned automatically by the con-
volutional layers as part of the neural network training.

In this paper we present a performance survey of the
state–of–the–art of production convolution algorithms used
in the context of CNNs: matrix–matrix multiply (GEMM),
fast Fourier transform (FFT), and Winograd. We evalu-
ate vendor-provided implementations of these algorithms
in the most recent high-end computing and deep learning
platform based on GPU technology. cuDNN, provided by
NVIDIA as a fine-tuned library for its GPUs, is supported
by most deep learning frameworks used in production, such
as TensorFlow [1], PyTorch [26], or Caffe2 [8]. We analyze
the performance of the cuDNN implementation of the afore-
mentioned algorithms on 602 different convolution param-
eter configurations, and discuss which parameters are more
relevant to select the best performing algorithm for a given
convolution configuration. We also profile the execution of
several representative configurations to further explain the
reasons behind the observed performance behaviors.

The convolution parameter configurations used in our
experimental evaluation are extracted from five of the
most well known CNNs, a total of over 7,000 test cases.

Doing this, we ensure that the performed analysis is focused
on the most used and widely known convolution configura-
tions, in order to obtain relevant conclusions for the neural
network community.

The results we present in this paper were obtained using
the latest NVIDIA GPU for high-performance computing
(Tesla V100), which is particularly well-suited for comput-
ing convolutions, using the most recent versions of CUDA
and cuDNN (9.1 and 7.1, respectively). In this article we
provide an extended discussion of the experimental results
and a set of guidelines to aid in the selection of the fastest
algorithm depending on the convolution parameters. To the
best of our knowledge, this article presents the first in-depth
performance analysis of all available implementations of con-
volution algorithms in the latest NVIDIA platform.

The rest of this manuscript is distributed as follows.
Section II introduces some background information relevant
to understand the subsequent sections. Section III presents
the analysis objective of this work. Section IV provides rec-
ommendations based on the previous analysis. Section V
summarizes our findings.

II. BACKGROUND
In this background section we introduce the details necessary
to understand the rest of this article on convolutions, convo-
lutional layers in CNNs, and convolutional algorithms.

A. CONVOLUTION
Convolutions are widely used in several domains. For
instance, in signal processing convolutions are used to com-
pute the output of linear time-invariant (LTI) systems given
an input signal and the impulse response of the system.
In probability theory, on the other hand, convolutions are used
to compute the probability density function of the sum of two
independent random variables.

In general terms, a convolution is a mathematical operation
that computes the integral of the product of a function f with
the reversed and translated version of a function g. It may be
understood as a weighted moving average of f , where g are
the weights:

(f ∗ g)(x) =
∫
∞

−∞

f (u)g(x − u)du

A discrete convolution features a similar definition, with
the two input functions being discrete sequences:

(f ∗ g)[n] =
∑
m

f [m]g[n− m]

B. CONVOLUTIONAL LAYERS IN CNNs
Convolutional layers are composed by a set of 3D filters (also
called ‘‘kernels’’) and receive a set of 3D inputs (usually
referred as ‘‘input batch’’). The convolution is performed
on each input–filter pair, resulting in a set of 3D outputs.
The convolution of an input–filter pair generates one X-Y
plane of the output. The results of the convolutions of one
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FIGURE 1. Convolution operations in a convolutional layer. The grayed
output element is the result of the scalar product of Filter 0 with the
grayed patch of input elements performed during the filter translation
over the input.

particular input with all the filters are stacked in the Z direc-
tion, generating the corresponding 3D output (see Figure 1).
The same process is applied to all the inputs of the batch,
resulting on a set of 3D outputs. The sets of inputs, filters, and
outputs may be seen as 4D arrays (also known as ‘‘tensors’’),
corresponding to the 3 dimensions of each input/filter/output,
plus the dimension to identify each of these within the set.
Mathematically, each output element is computed using the
following formula:

Outn,i,j,k =
Wf−1∑
x=0

Hf−1∑
y=0

C−1∑
z=0

Filterk,x,y,z · Inn,i+x,j+y,z

where the subscripted coordinates represent the input/filter/
output index, followed by the X, Y, and Z coordinates of a
given element.

The final step in a convolutional layer consists of adding
an offset array called ‘‘bias’’ in the convolution outputs to
subsequently apply a non-linear activation function, such as
sigmoid or ReLU [27], as in fully-connected layers. Since
the cost of these operations is negligible with respect to the
convolutions, we do not include them in our analysis.

In the context of CNNs, we use the term ‘‘convolution’’
to mean ‘‘2D discrete convolutions’’. In fact, using a strict
mathematical terminology, a convolution is a 2D discrete
cross-correlation, since the filter is not reversed as stated in
the mathematical definition of convolution.

In CNNs, since the filter weights are learned during the
training, using cross-correlation instead of convolution does
not affect the final network results; it only changes the actual
values learned. The advantage of cross-correlation is that it
avoids the additional step of flipping the filters to perform
the convolutions.

Convolutions in CNNs work on 3D arrays, even though
they are bi-dimensional. Basically, these operations consist
of applying a given filter on the different portions of an input.
This is known as ‘‘translation’’. Both filters and portions must
feature the same size. The translation of the filter over the
input is performed in 2 dimensions (X and Y dimensions
in Figure 1), where the distance in between each translation
position is defined by the ‘‘stride’’ parameter. In each position
of the result, a 3D tile (portion) of the input, with the same size
as the filter, is point-wise multiplied with the filter elements.
Then, the results of all multiplications are added to obtain
a single output element (the grayed elements in Figure 1 are

those involved in one of the translation positions of the filter).
The input and filter size in the Z dimension must be equal
in order to feature matched pairs in the point-wise multipli-
cation. This process may also be understood as performing
regular 2D convolutions in between X-Y planes on the input
with the corresponding X-Y plane of the filter, and adding the
resulting matrices to obtain an X-Y plane of the output.

There are two more convolution parameters, called
‘‘padding’’ and ‘‘dilation’’. Padding defines the number of
elements added to the edges of the X and Y dimensions
of the input, usually with value 0. It effectively increases
the size of the input, which in turn increases the number of
positions where the filter is applied during the translation.
Padding is used to increase the X and Y dimensions of
the output, because a convolution without padding (as that
illustrated in Figure 1) produces an output smaller than the
input. Dilation also defines a sort of padding; in this case, it is
the number of elements inserted in between the filter elements
in the X and Y dimensions. This internal padding enlarges the
filter’s X-Y plane without increasing the computational cost
because the operations with the padding zeros are not actually
performed. Dilation is used in the opposite case of padding,
when a larger reduction of the output size is desired, while
avoiding the additional cost of employing larger filters.

Besides the introduction of a new layer type, CNNs do
not differ further from conventional DNNs. The filters in
convolutional layers are updated iteratively during the net-
work optimization process (training stage), like the rest of
the network’s weights. Similarly, once the CNN is deployed,
the trained filters are used in the convolutions involved in
computing the network’s output (inference stage).

The main advantage of convolutional layers is their low
storage and computational cost, compared to fully connected
layers with the same input and output sizes. For example,
for an input and output image of 50 × 50 pixels, a fully
connected layer would feature 504 = 6, 250, 000 weights
and 502 = 2, 500 biases, totaling 6,252,500 parameters.
In contrast, the number of parameters of a convolutional
layer does not depend on the X-Y size of input and output;
it depends on the filter size and the number of filters. The
filter size is a hyperparameter chosen by the designer of the
CNN, while the number of filters depends on the desired
output depth. Following with the previous example, where
depth = 1, the total number of parameters of a convolutional
layer with a filter of 10× 10 would be 102+2, 500 = 2, 600.

Such a reduction in the number of weights is obtained by
their reuse in the computation of all the output elements,
since the filter is translated over the input by the convolution
operation. Moreover, in a convolutional layer, each output
element only depends on a small subset of the input elements
instead of being a function of all, as in fully connected layers.
These input elements, sometimes called the ‘‘receptive field’’
of an output element, are those involved in the scalar product
with the filter (e.g. grayed elements in Figure 1).
Larger filters increase the size of the receptive field, which

may help in learning more complex patterns, but at the
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TABLE 1. Summary of features of the convolution operations (with stride 1) present in the five well-known CNNs we selected for our evaluation.

expense of increasing the computation cost and number of
parameters. It is worth noting that reusing the filters in sev-
eral positions of the input renders the learned parameters
translation-invariant: if a filter learns to detect a pattern in the
images, it will detect it no matter where this pattern appears
within the image. To prevent different filters from learning
to detect the same patterns, these are usually initialized with
random values [9], [18], [24].

The training of the filters may be seen as a form of
automatic definition of feature extractors. This provides a
great advantage over other classification/detection methods,
where the feature extractors have to be manually designed
by an expert. Moreover, the design of feature extractors is
often application-specific, which renders the automatic fea-
ture extraction of CNNs even more appealing.

1) CONVOLUTION PARAMETERS IN CNNs
Most convolutional neural networks are shaped similarly,
which defines some common features of this type of net-
works. As an example, in Table 1 we include information
from the five well-known CNNs we use in our evaluation,
AlexNet [17], VGG19 [28], GoogleNet [29], Resnet50 [13],
and SqueezeNet [15]. To simplify the design, most CNNs
use square inputs, filters, and outputs, even though different
X and Y sizes could be possibly used. The inputs of the
network (e.g. images) are scaled to match the shape and
resolution expected by the network (around 200 × 200 is
a common input resolution). The initial depth is usually
small; for example, in the case of images, the 3 RGB color
channels are stacked in the Z dimension to obtain an initial
depth of 3. As the inputs progress through the network, their
size and depth follow an inverse trend. The depth increases
progressively, attaining sizes from several hundreds to a few
thousands of elements, as in the case of Resnet50, where
depth is up to 1,024 (see input size to last convolutional layer
in Table 1). Contrarily, the input X-Y size is reduced as we
progress deeper, being around 10 × 10 in the latest layers.
This reduction is usually implemented with pooling layers
inserted at certain points of the neural network. Most CNNs
use convolutions with a padding of Wf−1

2 elements in the X
dimension and Hf−1

2 elements in the Y dimension (and stride
= 1) to obtain outputs with the same X and Y dimensions
as the inputs. Each pooling layer halves the input X and Y
sizes by reducing tiles of 2 × 2 elements to a single ele-
ment (using maximum or arithmetic average as the reduction
function). All these features are seen in the most popular
and widely used CNNs, such as AlexNet [17], VGG19 [28],
GoogleNet [29], Resnet50 [13], and SqueezeNet [15].

On the other hand, the convolution filters tend to be small
during the process. Some initial convolutional layers may
feature filters of around 10 × 10, but the most common
sizes are 1 × 1, 3 × 3, and 5 × 5, as observed in Table 1.
1 × 1 filters are a special case because each convolution
output will only depend on data over the Z dimension of a
given X and Y position, instead of being influenced by a
central point and the neighboring elements. In CNNs, these
are placed before 3× 3 or 5× 5 filter convolutions, as a way
to limit their computational cost by reducing the depth of an
incoming input batch.

The convolutional layer configurations used in training and
inference are the same. In the inference stage, once the CNN
is deployed, the trained filters are used to process the input
and perform the task at hand.

2) DATA TYPE REPRESENTATION IN CNNs
The most common data type to represent values in CNNs is
32-bit floating point; however, there are several efforts to use
data representations with lower precision like 16-bit floating-
point or even 8-bit integers. Even hardware vendors started
including native support for reduced-precision arithmetic in
their latest products (e.g., NVIDIA Tensor Cores included in
Volta GPUs [21]). Some studies focus on benefiting from the
reduced bandwidth and storage requirements of using smaller
data types to accelerate the training [3], [5], [11], [12], [23].
However, using data types with less precision poses difficult
challenges to the iterative weight-optimization process per-
formed during the training stage in terms of stability (i.e.,
no convergence) and the final obtained accuracy. Others leave
the training stage as usual and apply a quantization process
to the trained weights to reduce the computational cost of the
inference stage [16], allowing CNN deployment in embedded
systems and mobile phones. Due to this growing interest
in lower precision data types, we perform our experimental
evaluation using both 32 and 16-bit floating-point values.

C. CONVOLUTION ALGORITHMS
Several algorithms may be used to compute a convolution,
besides the direct application of the convolution formula.
A GEMM-based algorithm transforms the inputs and fil-
ters to be able to exploit high-performance matrix–matrix
multiply operations. There are two other relevant convolu-
tion algorithms, both based on arithmetic strength reduc-
tion (i.e., reducing the number of multiplications while
increasing the number of additions). One of these is based
on FFT operations, computing the convolution in the fre-
quency domain [30]. The other relies onWinograd’s minimal
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FIGURE 2. Data transformation performed for the GEMM convolution
approach [4].

filtering algorithms [19], known in the context of signal pro-
cessing to apply finite impulse response (FIR) filters.

1) GEMM
One of the most widely used algorithms for convolution
is based on the BLAS GEMM operation [4]. It consists of
transforming the input into a large matrix, where each column
contains the input elements involved in each filter position
during the convolution. Another matrix is generated with the
elements of each filter (Fm in Figure 2). Finally, the result
of the convolution is provided by the matrix multiplica-
tion (GEMM) of both matrices, as shown in Figure 2. The
elements of the transformed input matrix are placed in such a
way that when the GEMM performs the scalar product of one
row and one column, it matches the scalar product that would
be performed by the convolution. Since the matrix multipli-
cation performs the scalar product of all columns from the
transformed input with all rows of the transformed filters,
the result of the GEMM operation represents the outputs of
the convolution for all filters over all the filter translation
positions over the input. The function used to obtain the
transformed input matrix is often called ‘‘im2col’’, according
to its Matlab implementation.

This approach benefits from the highly efficient imple-
mentations for matrix–matrix multiplication onGPUs and the
nature of GPU architectures, strongly suited for performing
these operations [7]. However, this approach requires a sig-
nificant amount of memory to store the transformed matrices,
especially the transformed input matrix, which is larger than
the original input because it has to store duplicated elements
due to the overlap of the filter positions in the convolution.

2) FFT
FFT-based convolution implementations are a well known
technique [22], [30]. According to the Convolution Theorem,
the Fourier transform of the convolution of two inputs is equal
to the product of the Fourier transforms of the same inputs.

Thus, convolution in the time domain is equal to element-wise
multiplication in the frequency domain. Since multiplication
is less expensive to compute than convolution, the benefit of
computing a convolution in the frequency domain depends on
the cost of computing the FFT of the two inputs, and the cost
of computing the inverse FFT of the result of the multiplica-
tion, in order to transform the result back to the time domain.
While these transformations are too costly to be worth for
a single convolution, they may provide an improvement if
their cost is amortized by several convolutions. This is the
case in convolutional layers where we have to compute the
convolution of a batch of inputs with a set of filters, and
the FFT of each input and each filter may be reused for all
the convolutions where these participate. Thus, the potential
improvement of frequency domain transformation increases
with the number of inputs and filters.

3) WINOGRAD
Another convolution implementation is based on Winograd’s
minimal filtering algorithms [19]. It applies the transforma-
tions described in [31] for the computation of FIR filter
outputs, using the minimum number of multiplications. The
reduction of multiplications is obtained by an increase in the
number of required additions, which are usually less costly
to compute. Since the number of additions increases quadrat-
ically with the size of the input, the Winograd transforms are
better suited for small inputs, because as the size increases,
the quadratic factor overcomes the advantage obtained by
reducing the number of multiplications. To compute the 3 ×
3 convolution of larger inputs, the input is divided in several
tiles of 4 × 4 elements, which have to overlap by 2 elements
(other filter sizes require different tile sizes). After computing
the minimal convolution of each tile, the partial results are
summed to obtain the final output.

III. PERFORMANCE ANALYSIS
In this section we describe the performance analysis we
conducted in order to evaluate the presented algorithms on a
representative set of convolutional layer configurations. Our
main motivation is to detect which features/algorithms are
more profitable in terms of computing time and memory
occupancy, depending on the parameters of the convolutions.

To analyze the performance of the convolution algorithms
we extract the convolutional layer configurations present
in five well-known CNNS: AlexNet [17], VGG19 [28],
GoogleNet [29], Resnet50 [13], and SqueezeNet [15]. From
these configurations we extract the input size, filter size,
number of filters, and the input and filter depth. For the batch
size we explore several common values (1, 8, 16, 32, 64,
128, 256), since this is usually tuned by the end user of the
CNN. The final set includes 602 configurations with the most
widely used filter sizes: 1× 1, 3× 3, and 5× 5.We have also
leveraged the most common input sizes and number of filters.
The former range from 7× 7 to 224× 224, while the number
of filters ranges from 16 to 2,048. The depth of both filters
and inputs is similar to the number of filters, using 1,024 as a
maximum.
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All the convolution configurations are evaluated with
single-precision (32-bit) and half-precision (16-bit) floating
point values. For the latter type, we also include results
enabling the Tensor Cores (TCs) of our NVIDIA V100 GPU,
which are arithmetic units specialized for half-precision
matrix multiplication and are available in NVIDIA GPUs
since the Volta generation. Note that only some convolution
algorithm variants from cuDNN support half-precision and
only a subset of these may use the TCs.

We evaluate the implementations available in the NVIDIA
CUDA Deep Neural Network library (cuDNN), the refer-
ence library for DNN operations on NVIDIA GPUs.1 In this
library, there are several variants of each of the most popular
algorithms above described (GEMM, FFT, and Winograd).
For instance, we find 3 different variants of the GEMM
algorithm: the basic GEMM, where the transformed inputs
are stored in a temporary matrix, and 2 other variants,
GEMM-impl and GEMM-impl-precomp, where the transfor-
mation is performed on the fly by the kernel that computes
the GEMM. The difference among these two variants is that
GEMM-impl-precomp precomputes some indices needed
during the implicit transformation of the inputs. For FFT and
Winograd, cuDNN provides the basic implementations plus
one variant for each of these: a tiled version of FFT, where
the inputs are split into smaller tiles, and a fused version
for Winograd, where the transformations of inputs, filters,
and outputs are included in the kernel that computes the
multiplication.

The convolution algorithms in general and also in cuDNN
feature some parameter limitations (different for each algo-
rithm), which render them unavailable for certain convolu-
tion configurations. These also require an additional buffer
in GPU memory to store intermediate results, with varying
size depending on the algorithm and the convolution param-
eters. We limit the temporary allocation size to 1 GB. This
only affects a small number of algorithm/configuration cases
(< 4%), most of which are irrelevant because of attaining
poor performance compared to other algorithms for the same
convolution configuration, even if more space is available.

The test platform used for this work is an IBM
POWER9 server running Red Hat Enterprise Linux Server
7.4, equipped with a NVIDIA Tesla V100-SXM2 GPU. The
GPU software stack is CUDA 9.1 and cuDNN 7.1.

The plots in this section show the execution time of the
configurations normalized to the fastest algorithm for each
configuration. Thus, the fastest algorithm is found in the
horizontal line y= 1, while the rest of lines show normalized
time with respect to the fastest algorithm (e.g. a point at y = 2
means that the algorithm corresponding to that point runs in
twice the time of the fastest algorithm).

The execution time reported for each experiment (i.e.
a combination of a given convolution configuration and a
given algorithm) is the mean of several repeated executions.
For experiments with 32-bit FP values, we use a sample

1cuDNN, https://developer.nvidia.com/cudnn

of 10 executions for each experiment. For the experiments
with 16-bit FP values, including the variants that use Tensor
Cores, we use a sample of 15 executions for each experiment
because their execution time is shorter, which makes them
more sensitive to execution time variations introduced by
the system (e.g. operating system background tasks, etc.).
Comparing the relative standard deviation (RSD) of both
types of experiments, for 32-bit FP values, the mean RSD
is 1.7%, while the mean RSD for the 16-bit FP experiments
is 4.5%. Both percentages are quite small, showing that our
execution time measurements have a low dispersion. The
repeated executions were performed as batches with all the
experiments. This way, repetitions of a given experiment
are separated in time instead of being consecutive, which
avoids temporary system interferences from affecting all the
measures of a given experiment. In the plots, the dispersion of
the execution times measured for each experiment is shown
as a shaded area around each line. The bounds of these areas
are the sample mean± the sample standard deviation of each
experiment.

A. PERFORMANCE ANALYSIS WITH 32-BIT FP VALUES
We have analyzed a total of 602 convolution configurations
(86 different configurations extracted from the referenced
CNNs, each explored with 7 different common batch sizes),
tested with all convolution algorithms available in cuDNN.

After collecting the results from all the tests, the first
conclusion is that the parameter which influences the most
on performance is the filter size. While for 1 × 1 filters
the GEMM-based algorithms present high performance, the
Winograd variants are faster when dealing with 3 × 3 filters.
AlthoughWinograd is still a fast algorithm when 5× 5 filters
are used, there are other algorithms which are able to outper-
form it when the batch size is sufficiently large.

In the rest of this section we analyze deeper those algo-
rithms presenting high performance regarding the filter size.
We deepen further on relevant configurations by means of
the CUDA profiling tools [25], comparing those algorithms
which present the highest performance, in order to identify
the features of algorithms and configurations which are more
influential on performance. In the rest of the paper we use the
following format to represent the set of configurations tested:
[inputs X&Y size]-[batch size]-[filters X&Y size]-[number
of filters]-[depth]. For example, 7-256-1-48-832 refers to a
configuration with 256 7 × 7 inputs and 48 1 × 1 filters, all
featuring a depth of 832.

1) CONFIGURATIONS WITH 1 × 1 FILTERS
Figure 3 shows the execution time of the configurations with
1 × 1 filters. For the 315 configurations with 1 × 1 filters,
the two implicit variants of GEMM prove to be the fastest
algorithms, especially GEMM-impl-precomp, which is the
fastest 72.4% of the cases. The explicit variant of GEMM is
close to the fastest in very few cases (< 5) and is usually over
20% slower than the fastest algorithm.

Starting from the left in Figure 3, we observe that the
best algorithm for most of the configurations with batch size
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FIGURE 3. Normalized execution time relative to the fastest algorithm for configurations with 1 × 1 filters. X axis intervals indicate the batch size; labels
indicate [input X&Y size]-[number of filters]-[depth]. Shaded areas show the ± sample standard deviation range for each data point.

TABLE 2. Execution time (microseconds) of each relevant algorithm for
the selected representative configurations with 1 × 1 filters.

equal to 1 is the GEMM-impl variant. When leveraging batch
sizes of 8 and 16, it is difficult to identify a clear winner.
For larger batch sizes the fastest algorithm is in most cases
the GEMM-impl-precomp variant. The only exceptions are
a few configurations with large depth and small number of
filters, such as 14-64-1-32-528 and 7-256-1-48-832, where
GEMM-impl is faster than GEMM-impl-precomp.

The profiling results of the two implicit GEMM vari-
ants for three representative configurations are presented
in Table 2. cuDNN implements GEMM-impl with a single
CUDA kernel and GEMM-impl-precomp with two kernels:
one for the precomputation of the indices and the other for
the implicit convolution. For configuration A (see Table 2),
an example configuration with batch size of 1, GEMM-impl
is the fastest variant. Due to the small batch and input size,
this configuration features a low computation load. Since
the second kernel in GEMM-impl-precomp has to load the
precomputed indices from the GPU memory, the overhead of
the memory accesses is too high, rendering the optimization
of using precomputed indices slower than the basic implicit
variant. A similar issue happens with configuration B (batch
size of 64 and 14 × 14 inputs), which is one of the rare
configurations where GEMM-impl is faster than GEMM-
impl-precomp for large batch sizes. Last, configuration C
represents the common case of GEMM-impl-precomp being
the highest performing algorithm. An input size of 27 × 27,
added to the batch size of 64, increases the computation
load to a point where the optimization implemented by

GEMM-impl-precomp is beneficial to reduce the total exe-
cution time to almost 50% of the time spent by GEMM-impl
(216.23µs vs. 426.18µs).

In terms of memory usage, GEMM-impl does not need
any additional storage, while GEMM-impl-precomp requires
a few KBs (up to 18) to store the precomputed indices.
This amount is insignificant on current NVIDIA discrete
GPUs and may only affect the algorithm selection in very
constrained embedded systems.

The two FFT variants are not competitive in this case,
since the computational load of convolutions using such small
filters is too low to obtain any advantage from performing the
convolution in the frequency domain (i.e. the cost of FFT and
inverse FFT overcome the speedup from the multiplication).

2) CONFIGURATIONS WITH 3 × 3 FILTERS
The normalized execution time of configurations involving 3
× 3 filters is shown in Figure 4. TheWinograd variants are the
fastest algorithms in 74.6% of the configurations, especially
Winograd non-fused, which is the fastest algorithm in 58.9%
of these. GEMM-impl-precomp is still competitive in some
configurations, while FFT is the fastest algorithm in some
configurations with large batch sizes. The general trend is
similar to the 1 × 1 filters, but in this case with the two
Winograd variants instead of the implicit GEMMs. For batch
size 1 Winograd is the dominating algorithm, followed by
Winograd non-fused and GEMM-impl-precomp, which are
about 10%- 50% slower in most cases. There is no clear best
option for batch size 8, where the previous 3 variants are
each the fastest in several cases, and the second and third
fastest options are usually less than 20% slower. For larger
batch sizes, Winograd non-fused is clearly the fastest in most
cases, where the rest of algorithms are about 50% slower.
Only in some configurations which make use of a large
input size, the GEMM-impl-precomp is faster thanWinograd
non-fused.

To extract more details we profiled three characteristic
configurations: configuration A, with batch size of 1, where
Winograd is the fastest algorithm; configuration B, with
batch size of 16, where Winograd non-fused presents the
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FIGURE 4. Normalized execution time relative to the fastest algorithm for configurations with 3 × 3 filters. X axis intervals indicate the batch size; labels
indicate [input X&Y size]-[number of filters]-[depth]. Shaded areas show the ± sample standard deviation range for each data point.

TABLE 3. Execution time (microseconds) of each relevant algorithm for
the selected representative configurations with 3 × 3 filters.

best performance; and configuration C, where GEMM-impl-
precomp outperforms both Winograd variants. Table 3 con-
tains the execution time of these configurations along with
a breakdown of the execution time of each CUDA kernel
involved in the three algorithms.

The implementation of both Winograd variants is com-
posed of several kernels. The fused Winograd features an
initial kernel that precomputes the input tiles and a second
kernel that implements the transformations and the multipli-
cation. In Winograd non-fused, all steps of the algorithm are
performed by a separate kernel call; the initial two kernels
are used to transform the inputs and filters, and after this
is performed, the convolutions compute first the multipli-
cation and second the transformations to finally obtain the
outputs. The profiler reveals a noticeable delay before the
multiplication kernel is executed, caused by the overhead
of preparing the kernel arguments and launching the kernel
in the GPU. This delay is significant for configuration A
(batch size 1), where it increases the total execution time
by more than 50%, and partly explains why the Winograd
variant is faster than the Winograd non-fused for small batch
sizes. The other reason is that the specialized multiplication

kernel is not fast enough to overcome the cost of the separate
transformations. However, in configuration C (batch size
of 128), the multiply kernel is much faster than the fused
Winograd (233.93µs compared to 863.22µs), which ren-
ders this variant more than 2 times faster. Configuration B
represents one of the configurations where GEMM-impl-
precomp is proven to be the fastest. A large input size
of 224 × 224 changes the multiplication kernel of Wino-
grad non-fused to a version able to handle larger products,
which is much less efficient than the GEMM-impl-precomp
kernel. It also increases the output size, which poses a high
impact in the execution time of the output transformation
kernel.

There is a significant difference in the amount of memory
needed by the three fastest algorithms. Winograd non-fused
requires an average of 214MB in these configurations, a con-
siderable amount even on current NVIDIA discrete GPUs.
Winograd needs an average of 3.7 MB and GEMM-impl-
precomp requires 27.6 KB. This difference places us in the
typical trade-off of speed versus memory size commonly
found in computing. If speed is a must, a smarter memory
management will be needed to share temporary storage across
layers and reduce its impact in the overall memory con-
sumption; otherwise, leveraging the second or third highest
performing algorithms instead of the fastest would save a
significant amount of memory and reduce the memory man-
agement complexity.

3) CONFIGURATIONS WITH 5 × 5 FILTERS
The dominance of Winograd non-fused continues for
5 × 5 filter configurations and batch sizes smaller than 64
(Figure 5). It is the fastest algorithm in 57.1% of the 63 con-
figurations. For batch sizes of 64 and larger, GEMM (explicit
variant) and GEMM-impl are able to improve the perfor-
mance of the Winograd variants only on a few configurations
with small input size (7 × 7), although for most of these
the FFT variants are those showing highest performance.
These results match the expectation of FFT variants for large
convolutions (i.e. larger filters, large inputs, and large batch
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FIGURE 5. Normalized execution time relative to the fastest algorithm for configurations with 5 × 5 filters. X axis intervals indicate the batch size; labels
indicate [input X&Y size]-[number of filters]-[depth]. Shaded areas show the ± sample standard deviation range for each data point.

TABLE 4. Execution time (microseconds) of each relevant algorithm for
the selected representative configurations with 5 × 5 filters.

size), but given that the configurations which use 5× 5 filters
only correspond to 10.5% of all the tested configurations,
the impact of FFT is low.

We profiled three representative configurations with
5 × 5 filters, shown in Table 4. As Winograd, the FFT vari-
ants are composed of several CUDA kernels. Both variants
implement the algorithm steps (transformations and multi-
plication) in separate kernels. FFT features two auxiliary
kernels, flip_filter and compute_gemm_pointers. It is worth
noting the significant launch overhead for short kernels such
as compute_gemm_pointers, where the delay is an order of
magnitude higher than kernel execution time.

Configuration A represents the common case for small
batch sizes, where Winograd non-fused attains the highest
performance. Comparing it to FFT, we see that both multipli-
cation kernels exhibit a similar execution time, while the two
auxiliary kernels and their associated setup delays increase
FFT’s total time, rendering it around 1.6 times slower. FFT
tiled and GEMM are in need of costly transformations and
multiplications with respect to the other two variants. In B,
a configuration with small input size and large batch size,
the GEMM algorithm is the fastest. The large batch size and
the 128 filters pose a high impact on the execution time for the
output transformations implemented in Winograd non-fused,
which last more than twice the time spent in the multipli-
cation kernel, being only a fraction of it in configuration A.
A large batch size and a relatively high number of filters also
affects the execution time of the multiplication and inverse
FFT kernels in both FFT variants. The multiplication kernel
in GEMM, however, exposes only a 50% increase in time
(being the input transform only a 10.6%). All this and the
fact that there is no need to transform the outputs, results
in GEMM being the most competitive algorithm for this
configuration.

The last configuration shown in Table 4 represents a
case where FFT is the fastest alternative. The input size of
14 × 14 harms the performance of the GEMM multiply
kernel considerably. Compared to B, by halving the number
of filters to 64, it improves the time of the multiplication and
output transforms of the Winograd non-fused and FFT vari-
ants. Compared to configuration A, where the only change is
found in an increase of batch size from 16 to 128, the mul-
tiplication and output transform kernels of FFT only spend
twice the time, while for Winograd non-fused and FFT tiled,
the time is increased 3× or even more. This better scalability
with respect to the increased batch size explains why FFT
overcomes the rest of algorithms for batches of 64 inputs and
larger, as shown in Figure 5.

The temporary storage requirement of FFT variants is
usually the highest among the 3 algorithms. For the 5 ×
5 configurations, FFT needs an average of 82 MB and FFT
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FIGURE 6. Normalized execution time relative to the fastest algorithm for configurations with 1 × 1 filters and half-precision data type. X axis intervals
indicate the batch size; labels indicate [input X&Y size]-[number of filters]-[depth]. Shaded areas show the ± sample standard deviation range for each
data point.

TABLE 5. Kernel execution time (microseconds) for the selected
representative configurations with 1 × 1 filters and half-precision values.

tiled an average of 79.3 MB, while Winograd non-fused
requires only 27.3 MB.

B. PERFORMANCE ANALYSIS WITH 16-BIT FP VALUES
The convolution variants in cuDNN that support 16-bit FP
representations are just a subset of the available algorithms
in 32-bit FP. Only GEMM-impl, GEMM-impl-precomp, and
Winograd non-fused may be used with half-precision data,
and only GEMM-impl-precomp and Winograd non-fused
may use the TC units. Since the values computed by the TCs
may be different due to the change in precision, its use must
be explicitly enabled by calling the ‘‘cudnnSetConvolution-
MathType’’ function.

At a first glance, the performance advantage of the two
algorithmswith the TCs enabled is clear.Winograd non-fused
with TCs is the highest performing variant for most of
the configurations with 3 × 3 filters, while GEMM-impl-
precomp with TCs is the fastest for most of the remaining
configurations.

For 1 × 1 filters and batch sizes of 32 or larger,
GEMM-impl-precomp-TC is always the fastest variant, with
an average speedup of 1.2 × over the following vari-
ant (see Figure 6). For smaller batch sizes, there are a
few configurations where the two GEMM variants that do
not use the TCs are faster than GEMM-impl-precomp-TC.
All of these configurations feature a small depth (64 or
smaller). Table 5 contains the kernel execution times for
two similar configurations with the aforementioned behavior.

TABLE 6. Kernel execution time (microseconds) for the selected
representative configurations with 3 × 3 filters and half-precision values.

Only GEMM-impl-precomp-TC is implemented with mul-
tiple kernels. We see that the main kernel needs inputs
in NHWC2 layout instead of NCHW2, requiring two
additional kernels to perform the layout transformation
before and after the convolution. GEMM-impl and GEMM-
impl-precomp launch the same kernel, suggesting that
the indices precomputation is done within the kernel.
Comparing the two configurations, we observe that the
main kernel of GEMM-impl-precomp-TC scales better than
implicit_convolve_hhgemm with the 8.25 × increase in the
depth of configuration B: the former is 2.3 × slower, while
the latter attains 4.5 ×. The auxiliary kernels of GEMM-
impl-precomp-TC experience similar execution times in both
configurations.

As shown in Figure 7, for 3× 3 filters Winograd-TC is the
highest performing variant in most of the evaluated config-
urations. However, for configurations with large input size
(27 or more), GEMM-impl-precomp-TC performs higher
than Winograd-TC in some of the cases. To understand
which parameters influence this behavior, we analyzed the
kernel execution times of two similar configurations where
each of the two variants experience a clear performance
advantage over their counterpart (Table 6). These config-
urations differ in the number of filters and depth (both
larger in configuration B), and after seeing the per-kernel
execution times, we observe that both parameters pose a

2N: batch; C: depth; H: height; W: width.
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FIGURE 7. Normalized execution time relative to the fastest algorithm for configurations with 3 × 3 filters and half-precision data type. X axis intervals
indicate the batch size; labels indicate [input X&Y size]-[number of filters]-[depth]. Shaded areas show the ± sample standard deviation range for each
data point.

FIGURE 8. Normalized execution time relative to the fastest algorithm for configurations with 5 × 5 filters and half-precision data type. X axis intervals
indicate the batch size; labels indicate [input X&Y size]-[number of filters]-[depth]. Shaded areas show the ± sample standard deviation range for each
data point.

relevant impact, whereas on different kernels. The order of
magnitude increase in the execution time of winogradFor-
wardData4x4 and nchwToNhwcKernel is only related to the
increase of the depth from 16 to 256, because the transfor-
mations performed by these two kernels do not depend on
the number of filters. The inverse happens for winograd-
ForwardOutput4x4 and nhwcToNchwKernel, since the depth
of the output tensor is actually the number of filters, thus
being this parameter the sole responsible of the execution
time increase of these two kernels in configuration B. For
the main kernels, volta_h884gemm_128x256_ldg8_nn and
volta_h884cudnn_*_exp_interior_nhwc_tn_v1, the relative
impact of the increase of the number of filters and depth is
not as clear, because the computation performed depends on
both parameters. We profiled the execution of two additional
configurations, changing only one of the two parameters in
each, and we observed that the parameter which poses more
impact in the execution time is the depth. Only changing
the number of filters from 64 to 256 increased the execu-
tion time 1.2 × for volta_h884gemm_128x256_ldg8_nn and
3.3 × for volta_h884cudnn_*_exp_interior_nhwc_tn_v1.
Only changing the depth had a larger impact, 2.9 ×
for volta_h884gemm_128x256_ldg8_nn and 6.2 × for
volta_h884cudnn_*_exp_interior_nhwc_tn_v1. Moreover,
the combined effect on the main kernels execution time
is what explains the change in the fastest algorithm: for
configuration A, GEMM-impl-precomp-TC is faster than

Winograd-TC; however, the 20 × slowdown in the main ker-
nel caused by the larger parameters of configurationB renders
it less competitive thanWinograd-TC for configurations with
more computational load.

For 5 × 5 filters (Figure 8), GEMM-impl-precomp-TC is
over 30% faster than the rest of variants, with the exception
of eight configurations of depth 16, where GEMM-impl-
precomp is the fastest, showing a pattern similar to the con-
figurations with 1 × 1 filters.

C. PERFORMANCE COMPARISON BETWEEN 32-BIT AND
16-BIT FP VALUES
Comparing the execution time of the best algorithm for
16-bit values versus the best algorithm for 32-bit values
for each of the studied configurations, we observe that the
execution time for 16-bit FP is faster in 76% of the cases.
The speedup of 16-bit FP ranges from 10.5 × in the best
case to 0.62 × in the worst case. The filter size is a key
parameter again: for configurations with 5 × 5 filters the
16-bit FP version is only faster than 32-bit FP in 46% of
the cases. Contrarily, for 3 × 3 filters, it is better in 92% of
the tested configurations. For the rest (1 × 1 filters), 16-bit
FP obtains higher performance in 70% of the cases, experi-
encing lower performance than 32-bit FP in configurations
with small batch and large input sizes (27 and larger). Since
there are few configurations with 5 × 5 filters, overall the
performance of 16-bit FP is higher than that of 32-bit FP,
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as expected given the use of specialized hardware (TCs) in
some of the algorithms.

We note that other well-known artifacts derived from
numerical representation precision in CNNs besides raw
performance—such as memory space or convergence
properties—are out of the scope of this study.

IV. GUIDELINES
To summarize the results of the previous section we provide
a collection of recommendations to guide users and pro-
grammers in the selection among the different convolution
algorithms found in the cuDNN library, depending on the
parameters of the convolution.

If 32-bit floating point values are to be used, our recom-
mendations are:
• 1 × 1 filters: GEMM-impl is proven to be efficient for
batch size of 1 input, and configurations with large batch
sizes, large depth, and a small number of filters. On the
other side, GEMM-impl-precomp performs better for a
batch size greater than 1. This dependency on the batch
size makes GEMM-impl better suited for the inference
stage, once the network is deployed, where inputs are
processed one by one or in small batches. However,
GEMM-impl-precomp is more suited for the training
stage, where batches are larger to reduce the training
time.

• 3 × 3 filters: In this case, Winograd is able to attain
high performance for batch size 1 and Winograd non-
fused otherwise, except for configurations with large
input sizes, where GEMM-impl-precomp is able to out-
perform bothWinograd variants. As in the previous case
(1 × 1 filters), Winograd may be used in the inference
stage, and the other two during the network training
stage (i.e. larger input batches).

• 5 × 5 filters: Winograd non-fused attains high perfor-
mance for batch sizes up to 32. Then, GEMM shows as
the best candidate to deal with small inputs (e.g. 7× 7),
FFT for mid-sized inputs (e.g. 14 × 14), and FFT tiled
for larger input sizes (e.g. 28 × 28 and above).

On the other hand, if the application is able to use reduced
precision like 16-bit FP, the options are less, specially given
the clear advantage of the two algorithms that exploit the TC
arithmetic units. With the exception of some configurations
of 3 × 3 filters where GEMM-impl-precomp-TC is faster
than Winograd-TC (see analysis in Section III-B), selecting
GEMM-impl-precomp-TC for configurations with 1 × 1
and 5 × 5 filters, and Winograd-TC for configurations with
3 × 3 filters is the option yielding highest performance.

V. CONCLUSIONS
We have presented the main features of the convolution
operation in the context of CNNs, reviewing in detail all
convolution algorithms available in the NVIDIA cuDNN
library, the reference implementation of DNN operations
for NVIDIA GPUs and state–of–the art in production runs.
We have evaluated these algorithms, in terms of performance

and memory occupancy, on one of the latest NVIDIA GPUs,
the Volta V100, using 602 different convolution configura-
tions extracted from five well-known CNNs. As part of these
evaluations, we have analyzed the performance of each of
the algorithms on the aforementioned configurations, with a
total of more than 7,000 different test cases. The advantages
of each algorithm depending on the parameters of the con-
volution, including filter size, batch size, and FP precision,
were not only identified but also discussed and analyzed in
detail. From our findings, we provided a set of guidelines for
users and programmers on recommending the algorithm to
use depending of the convolution configuration and memory
occupancy requirements.
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