638,512 research outputs found

    Game Theoretical Analysis of a Multi-MNO MVNO Business Model in 5G Networks

    Full text link
    This work has been supported by the Spanish Ministry of Science, Innovation and Universities (MCIU/AEI) and the European Union (FEDER/UE) through Grant PGC2018-094151-B-I00 and partially supported by Politecnica Salesiana University (Salesian Polytechnic University) in Ecuador through a Ph.D. scholarship granted to the first author.Sacoto Cabrera, EJ.; Guijarro, L.; Maillé, P. (2020). Game Theoretical Analysis of a Multi-MNO MVNO Business Model in 5G Networks. Electronics. 9(6):1-26. https://doi.org/10.3390/electronics9060933S12696Gruber, H. (2001). Competition and innovation. Information Economics and Policy, 13(1), 19-34. doi:10.1016/s0167-6245(00)00028-7Berne, M., Vialle, P., & Whalley, J. (2019). An analysis of the disruptive impact of the entry of Free Mobile into the French mobile telecommunications market. Telecommunications Policy, 43(3), 262-277. doi:10.1016/j.telpol.2018.07.007Nakao, A., Du, P., Kiriha, Y., Granelli, F., Gebremariam, A. A., Taleb, T., & Bagaa, M. (2017). End-to-end Network Slicing for 5G Mobile Networks. Journal of Information Processing, 25(0), 153-163. doi:10.2197/ipsjjip.25.153Son, P. H., Son, L. H., Jha, S., Kumar, R., & Chatterjee, J. M. (2019). Governing mobile Virtual Network Operators in developing countries. Utilities Policy, 56, 169-180. doi:10.1016/j.jup.2019.01.003Archivo Situacionista HispanoHttp://Www.Statista.Com/Statistics/671623/Global-Mvno-Market-Size/Lingjie Duan, Lin Gao, & Jianwei Huang. (2014). Cooperative Spectrum Sharing: A Contract-Based Approach. IEEE Transactions on Mobile Computing, 13(1), 174-187. doi:10.1109/tmc.2012.231Sacoto-Cabrera, E. J., Sanchis-Cano, A., Guijarro, L., Vidal, J. R., & Pla, V. (2018). Strategic Interaction between Operators in the Context of Spectrum Sharing for 5G Networks. Wireless Communications and Mobile Computing, 2018, 1-10. doi:10.1155/2018/4308913Samdanis, K., Costa-Perez, X., & Sciancalepore, V. (2016). From network sharing to multi-tenancy: The 5G network slice broker. IEEE Communications Magazine, 54(7), 32-39. doi:10.1109/mcom.2016.7514161Rost, P., Banchs, A., Berberana, I., Breitbach, M., Doll, M., Droste, H., … Sayadi, B. (2016). Mobile network architecture evolution toward 5G. IEEE Communications Magazine, 54(5), 84-91. doi:10.1109/mcom.2016.7470940Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., & Flinck, H. (2018). Network Slicing and Softwarization: A Survey on Principles, Enabling Technologies, and Solutions. IEEE Communications Surveys & Tutorials, 20(3), 2429-2453. doi:10.1109/comst.2018.2815638Barakabitze, A. A., Ahmad, A., Mijumbi, R., & Hines, A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 106984. doi:10.1016/j.comnet.2019.106984Khan, L. U., Yaqoob, I., Tran, N. H., Han, Z., & Hong, C. S. (2020). Network Slicing: Recent Advances, Taxonomy, Requirements, and Open Research Challenges. IEEE Access, 8, 36009-36028. doi:10.1109/access.2020.2975072Kim, D., & Kim, S. (2018). Network slicing as enablers for 5G services: state of the art and challenges for mobile industry. Telecommunication Systems, 71(3), 517-527. doi:10.1007/s11235-018-0525-2Foukas, X., Patounas, G., Elmokashfi, A., & Marina, M. K. (2017). Network Slicing in 5G: Survey and Challenges. IEEE Communications Magazine, 55(5), 94-100. doi:10.1109/mcom.2017.1600951Cricelli, L., Grimaldi, M., & Levialdi Ghiron, N. (2012). The impact of regulating mobile termination rates and MNO–MVNO relationships on retail prices. Telecommunications Policy, 36(1), 1-12. doi:10.1016/j.telpol.2011.11.013Shakkottai, S., & Srikant, R. (2007). Network Optimization and Control. Foundations and Trends® in Networking, 2(3), 271-379. doi:10.1561/1300000007Habib, M. A., & Moh, S. (2019). Game theory-based Routing for Wireless Sensor Networks: A Comparative Survey. Applied Sciences, 9(14), 2896. doi:10.3390/app9142896Su, R., Zhang, D., Venkatesan, R., Gong, Z., Li, C., Ding, F., … Zhu, Z. (2019). Resource Allocation for Network Slicing in 5G Telecommunication Networks: A Survey of Principles and Models. IEEE Network, 33(6), 172-179. doi:10.1109/mnet.2019.1900024Guijarro, L., Pla, V., Vidal, J. R., & Naldi, M. (2019). Competition in data-based service provision: Nash equilibrium characterization. Future Generation Computer Systems, 96, 35-50. doi:10.1016/j.future.2019.01.044Banerjee, A., & Dippon, C. M. (2009). Voluntary relationships among mobile network operators and mobile virtual network operators: An economic explanation. Information Economics and Policy, 21(1), 72-84. doi:10.1016/j.infoecopol.2008.10.003Caballero, P., Banchs, A., De Veciana, G., & Costa-Perez, X. (2019). Network Slicing Games: Enabling Customization in Multi-Tenant Mobile Networks. IEEE/ACM Transactions on Networking, 27(2), 662-675. doi:10.1109/tnet.2019.2895378Fantacci, R., & Picano, B. (2020). When Network Slicing Meets Prospect Theory: A Service Provider Revenue Maximization Framework. IEEE Transactions on Vehicular Technology, 69(3), 3179-3189. doi:10.1109/tvt.2019.2963462Fossati, F., Moretti, S., Perny, P., & Secci, S. (2020). Multi-Resource Allocation for Network Slicing. IEEE/ACM Transactions on Networking, 28(3), 1311-1324. doi:10.1109/tnet.2020.2979667Cooperation among Competitors: Network sharing can increase Consumer Welfarehttp://dx.doi.org/10.2139/ssrn.3571354Mendelson, H. (1985). Pricing computer services: queueing effects. Communications of the ACM, 28(3), 312-321. doi:10.1145/3166.3171Liu, C., Li, K., Xu, C., & Li, K. (2016). Strategy Configurations of Multiple Users Competition for Cloud Service Reservation. IEEE Transactions on Parallel and Distributed Systems, 27(2), 508-520. doi:10.1109/tpds.2015.2398435Liu, C., Li, K., Li, K., & Buyya, R. (2017). A New Cloud Service Mechanism for Profit Optimizations of a Cloud Provider and Its Users. IEEE Transactions on Cloud Computing, 1-1. doi:10.1109/tcc.2017.2701793Niyato, D., & Hossain, E. (2008). Competitive Pricing for Spectrum Sharing in Cognitive Radio Networks: Dynamic Game, Inefficiency of Nash Equilibrium, and Collusion. IEEE Journal on Selected Areas in Communications, 26(1), 192-202. doi:10.1109/jsac.2008.080117Guijarro, L., Vidal, J., & Pla, V. (2018). Competition in Service Provision between Slice Operators in 5G Networks. Electronics, 7(11), 315. doi:10.3390/electronics7110315Sacoto-Cabrera, E. J., Guijarro, L., Vidal, J. R., & Pla, V. (2020). Economic feasibility of virtual operators in 5G via network slicing. Future Generation Computer Systems, 109, 172-187. doi:10.1016/j.future.2020.03.044Mandjes, M. (2003). Pricing strategies under heterogeneous service requirements. Computer Networks, 42(2), 231-249. doi:10.1016/s1389-1286(03)00191-9Reynolds, S. S. (1987). Capacity Investment, Preemption and Commitment in an Infinite Horizon Model. International Economic Review, 28(1), 69. doi:10.2307/252686

    Boston University Bulletin. School of Management; Graduate Programs, 1980-1981

    Full text link
    Each year Boston University publishes a bulletin for all undergraduate programs and separate bulletins for each School and College, Summer Term, and Overseas Programs. Requests for the undergraduat e bulle tin should be addressed to the Admissions Office and those for other bulletins to the individual School or College. This bulletin contains current information regarding the calendar, admissions, degree requirements, fees, regulations, and course offerings. The policy of the University is to give advance notice of change, when ever possible, to permit adjustment. The University reserves the right in its sole judgment to make changes of any nature in its program, calendar, or academic schedule whenever it is deemed necessary or desirable, including changes in course content, the rescheduling of classes with or without extending the academic term, canceling of scheduled classes and other academic activities, and requiring or affording alternatives for schedul ed classes or other academic activities, in any such case giving such notice thereof as is reasonably practicable under the circumstances. Boston University Bulletins (USPS 061-540) are published twenty times a year: one in January, one in March, four in May, four in June, six in July, one in August, and three in September

    User involvement in healthcare technology development and assessment: Structured literature review

    Get PDF
    Purpose – Medical device users are one of the principal stakeholders of medical device technologies. User involvement in medical device technology development and assessment is central to meet their needs. Design/methodology/approach – A structured review of literature, published from 1980 to 2005 in peer-reviewed journals, was carried out from social science perspective to investigate the practice of user involvement in the development and assessment of medical device technologies. This was followed by qualitative thematic analysis. Findings – It is found that users of medical devices include clinicians, patients, carers and others. Different kinds of medical devices are developed and assessed by user involvement. The user involvement occurs at different stages of the medical device technology lifecycle and the degree of user involvement is in the order of design stage > testing and trials stage > deployment stage > concept stage. Methods most commonly used for capturing users’ perspectives are usability tests, interviews and questionnaire surveys. Research limitations/implications – We did not review the relevant literature published in engineering, medical and nursing fields, which might have been useful. Practical implications – Consideration of the users’ characteristics and the context of medical device use is critical for developing and assessing medical device technologies from users’ perspectives. Originality/value – This study shows that users of medical device technologies are not homogeneous but heterogeneous, in several aspects, and their needs, skills and working environments vary. This is important consideration for incorporating users’ perspectives in medical device technologies. Paper type: Literature review

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    Special Libraries, December 1964

    Get PDF
    Volume 55, Issue 10https://scholarworks.sjsu.edu/sla_sl_1964/1009/thumbnail.jp
    • …
    corecore