1,220 research outputs found

    Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data

    Get PDF
    Knowledge on the determinants and patterns of water demand for different consumers supports the design of customized demand management strategies. Smart meters coupled with big data analytics tools create a unique opportunity to support such strategies. Yet, at present, the information content of smart meter data is not fully mined and usually needs to be complemented with water fixture inventory and survey data to achieve detailed customer segmentation based on end use water usage. In this paper, we developed a data‐driven approach that extracts information on heterogeneous water end use routines, main end use components, and temporal characteristics, only via data mining existing smart meter readings at the scale of individual households. We tested our approach on data from 327 households in Australia, each monitored with smart meters logging water use readings every 5 s. As part of the approach, we first disaggregated the household‐level water use time series into different end uses via Autoflow. We then adapted a customer segmentation based on eigenbehavior analysis to discriminate among heterogeneous water end use routines and identify clusters of consumers presenting similar routines. Results revealed three main water end use profile clusters, each characterized by a primary end use: shower, clothes washing, and irrigation. Time‐of‐use and intensity‐of‐use differences exist within each class, as well as different characteristics of regularity and periodicity over time. Our customer segmentation analysis approach provides utilities with a concise snapshot of recurrent water use routines from smart meter data and can be used to support customized demand management strategies.TU Berlin, Open-Access-Mittel - 201

    Learning to Predict with Highly Granular Temporal Data: Estimating individual behavioral profiles with smart meter data

    Get PDF
    Big spatio-temporal datasets, available through both open and administrative data sources, offer significant potential for social science research. The magnitude of the data allows for increased resolution and analysis at individual level. While there are recent advances in forecasting techniques for highly granular temporal data, little attention is given to segmenting the time series and finding homogeneous patterns. In this paper, it is proposed to estimate behavioral profiles of individuals' activities over time using Gaussian Process-based models. In particular, the aim is to investigate how individuals or groups may be clustered according to the model parameters. Such a Bayesian non-parametric method is then tested by looking at the predictability of the segments using a combination of models to fit different parts of the temporal profiles. Model validity is then tested on a set of holdout data. The dataset consists of half hourly energy consumption records from smart meters from more than 100,000 households in the UK and covers the period from 2015 to 2016. The methodological approach developed in the paper may be easily applied to datasets of similar structure and granularity, for example social media data, and may lead to improved accuracy in the prediction of social dynamics and behavior

    Smart homes : energy efficiency based on demand side management and game theoretic algorithm

    Get PDF
    Abstract: The smart home is an integral part of future energy management and control. The reduction of domestic energy consumption and improved energy efficiency of households will require intelligent systems that constantly monitor the household electricity usage and provides real-time updates to the user. This will lead to a bill reduction for households and energy efficiency. In this paper we investigate two concepts, namely; (i) the effect of a demand side management system, where a smart meter prototype was provided to each household depicting detailed and real-time information to the user, and (ii) a Game theoretic algorithm to manage and minimize the daily electricity expenditure and improve the energy efficiency of the domestic household. Computational results and data are provided and discussed that determine which system would work the best

    NATural Language Energy for Promoting CONSUMER Sustainable Behaviour

    Get PDF
    Poster presenting NATCONSUMERS H2020 reserach project at Porto (Portugal), Conference: 7'th International Conference on Cloud Computing and Service Scienc

    Enhancing household-level load forecasts using daily load profile clustering

    Get PDF
    Forecasting the electricity demand for individual households is important for both consumers and utilities due to the increasing decentralized nature of the electricity system. Particularly, utilities often have very little information about their consumers except for aggregate building level loads, without knowledge of interior details about the household appliance sets or occupants. In this paper, we explore the possibility of enhancing the day-ahead load forecasts for hundreds of individual households by clustering their daily load profile history to obtain each consumer's specific typical consumption patterns. The clustering method is based on load profile shape using the Earth Mover's Distance metric to calculate similarity between load profiles. The forecasting methods then predict the next day shape from the empirical probability of previous cluster transitions in the consumer's load history and estimate the magnitude either by using historical load relationships with temperature and forecast temperatures or previous day consumption levels. The generated forecasts are compared to a benchmark Multiple Linear Regression (MLR) day-ahead forecast and persistence forecasts for all individuals. While at the aggregate level the MLR method represents a significant improvement over persistence forecasts, on an individual level we find that the best forecasting model is specific to the individual. In particular, we find that the MLR model produces lower errors when consumers have a consistent daily temperature response and the cluster model with previous day magnitude produces lower errors for consumers whose consumption changes abruptly in magnitude for several days at a time. Our work adds to the state of knowledge surrounding individual household load forecasting and demonstrates the potential for cluster-based methodologies to enhance short term load forecasts
    • 

    corecore