1,416 research outputs found

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    Brain Tumor Segmentation with Deep Neural Networks

    Full text link
    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test dataset reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster

    A Hybrid Approach of Using Particle Swarm Optimization and Volumetric Active Contour without Edge for Segmenting Brain Tumors in MRI Scan

    Get PDF
    Segmentation of brain tumors in magnetic resonance imaging is a one of the most complex processes in medical image analysis because it requires a combination of data knowledge with domain knowledge to achieve highly results. Such that, the data knowledge refers to homogeneity, continuity, and anatomical texture. While the domain knowledge refers to shapes, location, and size of the tumor to be delineated. Due to recent advances in medical imaging technologies which produce a massive number of cross-sectional slices, this makes a manual segmentation process is a very intensive, time-consuming and prone to inconsistences. In this study, an automated method for recognizing and segmenting the pathological area in MRI scans has been developed. First the dataset has been pre-processed and prepared by implementing a set of algorithms to standardize all collected samples. A particle swarm optimization is utilized to find the core of pathological area within each MRI slice. Finally, an active contour without edge method is utilized to extract the pathological area in MRI scan. Results reported on the collected dataset includes 50 MRI scans of pathological patients that was provided by Iraqi Center for Research and Magnetic Resonance of Al Imamain Al-Kadhimain Medical City in Iraq. The achieved accuracy of the proposed method was 92% compared with manual delineation

    MRI image segmentation using machine learning networks and level set approaches

    Get PDF
    The segmented brain tissues from magnetic resonance images (MRI) always pose substantive challenges to the clinical researcher community, especially while making precise estimation of such tissues. In the recent years, advancements in deep learning techniques, more specifically in fully convolution neural networks (FCN) have yielded path breaking results in segmenting brain tumour tissues with pin-point accuracy and precision, much to the relief of clinical physicians and researchers alike. A new hybrid deep learning architecture combining SegNet and U-Net techniques to segment brain tissue is proposed here. Here, a skip connection of the concerned U-Net network was suitably explored. The results indicated optimal multi-scale information generated from the SegNet, which was further exploited to obtain precise tissue boundaries from the brain images. Further, in order to ensure that the segmentation method performed better in conjunction with precisely delineated contours, the output is incorporated as the level set layer in the deep learning network. The proposed method primarily focused on analysing brain tumor segmentation (BraTS) 2017 and BraTS 2018, dedicated datasets dealing with MRI brain tumour. The results clearly indicate better performance in segmenting brain tumours than existing ones

    Training and Comparison of nnU-Net and DeepMedic Methods for Autosegmentation of Pediatric Brain Tumors

    Full text link
    Brain tumors are the most common solid tumors and the leading cause of cancer-related death among children. Tumor segmentation is essential in surgical and treatment planning, and response assessment and monitoring. However, manual segmentation is time-consuming and has high inter-operator variability, underscoring the need for more efficient methods. We compared two deep learning-based 3D segmentation models, DeepMedic and nnU-Net, after training with pediatric-specific multi-institutional brain tumor data using based on multi-parametric MRI scans.Multi-parametric preoperative MRI scans of 339 pediatric patients (n=293 internal and n=46 external cohorts) with a variety of tumor subtypes, were preprocessed and manually segmented into four tumor subregions, i.e., enhancing tumor (ET), non-enhancing tumor (NET), cystic components (CC), and peritumoral edema (ED). After training, performance of the two models on internal and external test sets was evaluated using Dice scores, sensitivity, and Hausdorff distance with reference to ground truth manual segmentations. Dice score for nnU-Net internal test sets was (mean +/- SD (median)) 0.9+/-0.07 (0.94) for WT, 0.77+/-0.29 for ET, 0.66+/-0.32 for NET, 0.71+/-0.33 for CC, and 0.71+/-0.40 for ED, respectively. For DeepMedic the Dice scores were 0.82+/-0.16 for WT, 0.66+/-0.32 for ET, 0.48+/-0.27, for NET, 0.48+/-0.36 for CC, and 0.19+/-0.33 for ED, respectively. Dice scores were significantly higher for nnU-Net (p<=0.01). External validation of the trained nnU-Net model on the multi-institutional BraTS-PEDs 2023 dataset revealed high generalization capability in segmentation of whole tumor and tumor core with Dice scores of 0.87+/-0.13 (0.91) and 0.83+/-0.18 (0.89), respectively. Pediatric-specific data trained nnU-Net model is superior to DeepMedic for whole tumor and subregion segmentation of pediatric brain tumors
    • …
    corecore