2,157 research outputs found

    PSACNN: Pulse Sequence Adaptive Fast Whole Brain Segmentation

    Full text link
    With the advent of convolutional neural networks~(CNN), supervised learning methods are increasingly being used for whole brain segmentation. However, a large, manually annotated training dataset of labeled brain images required to train such supervised methods is frequently difficult to obtain or create. In addition, existing training datasets are generally acquired with a homogeneous magnetic resonance imaging~(MRI) acquisition protocol. CNNs trained on such datasets are unable to generalize on test data with different acquisition protocols. Modern neuroimaging studies and clinical trials are necessarily multi-center initiatives with a wide variety of acquisition protocols. Despite stringent protocol harmonization practices, it is very difficult to standardize the gamut of MRI imaging parameters across scanners, field strengths, receive coils etc., that affect image contrast. In this paper we propose a CNN-based segmentation algorithm that, in addition to being highly accurate and fast, is also resilient to variation in the input acquisition. Our approach relies on building approximate forward models of pulse sequences that produce a typical test image. For a given pulse sequence, we use its forward model to generate plausible, synthetic training examples that appear as if they were acquired in a scanner with that pulse sequence. Sampling over a wide variety of pulse sequences results in a wide variety of augmented training examples that help build an image contrast invariant model. Our method trains a single CNN that can segment input MRI images with acquisition parameters as disparate as T1T_1-weighted and T2T_2-weighted contrasts with only T1T_1-weighted training data. The segmentations generated are highly accurate with state-of-the-art results~(overall Dice overlap=0.94=0.94), with a fast run time~(≈\approx 45 seconds), and consistent across a wide range of acquisition protocols.Comment: Typo in author name corrected. Greves -> Grev

    Domain adaptive segmentation in volume electron microscopy imaging

    Get PDF
    In the last years, automated segmentation has become a necessary tool for volume electron microscopy (EM) imaging. So far, the best performing techniques have been largely based on fully supervised encoder-decoder CNNs, requiring a substantial amount of annotated images. Domain Adaptation (DA) aims to alleviate the annotation burden by 'adapting' the networks trained on existing groundtruth data (source domain) to work on a different (target) domain with as little additional annotation as possible. Most DA research is focused on the classification task, whereas volume EM segmentation remains rather unexplored. In this work, we extend recently proposed classification DA techniques to an encoder-decoder layout and propose a novel method that adds a reconstruction decoder to the classical encoder-decoder segmentation in order to align source and target encoder features. The method has been validated on the task of segmenting mitochondria in EM volumes. We have performed DA from brain EM images to HeLa cells and from isotropic FIB/SEM volumes to anisotropic TEM volumes. In all cases, the proposed method has outperformed the extended classification DA techniques and the finetuning baseline. An implementation of our work can be found on https://github.com/JorisRoels/domain-adaptive-segmentation

    Simultaneous lesion and neuroanatomy segmentation in Multiple Sclerosis using deep neural networks

    Get PDF
    Segmentation of both white matter lesions and deep grey matter structures is an important task in the quantification of magnetic resonance imaging in multiple sclerosis. Typically these tasks are performed separately: in this paper we present a single segmentation solution based on convolutional neural networks (CNNs) for providing fast, reliable segmentations of multimodal magnetic resonance images into lesion classes and normal-appearing grey- and white-matter structures. We show substantial, statistically significant improvements in both Dice coefficient and in lesion-wise specificity and sensitivity, compared to previous approaches, and agreement with individual human raters in the range of human inter-rater variability. The method is trained on data gathered from a single centre: nonetheless, it performs well on data from centres, scanners and field-strengths not represented in the training dataset. A retrospective study found that the classifier successfully identified lesions missed by the human raters. Lesion labels were provided by human raters, while weak labels for other brain structures (including CSF, cortical grey matter, cortical white matter, cerebellum, amygdala, hippocampus, subcortical GM structures and choroid plexus) were provided by Freesurfer 5.3. The segmentations of these structures compared well, not only with Freesurfer 5.3, but also with FSL-First and Freesurfer 6.0

    Bridging generative models and Convolutional Neural Networks for domain-agnostic segmentation of brain MRI

    Get PDF
    Segmentation of brain MRI scans is paramount in neuroimaging, as it is a prerequisite for many subsequent analyses. Although manual segmentation is considered the gold standard, it suffers from severe reproducibility issues, and is extremely tedious, which limits its application to large datasets. Therefore, there is a clear need for automated tools that enable fast and accurate segmentation of brain MRI scans. Recent methods rely on convolutional neural networks (CNNs). While CNNs obtain accurate results on their training domain, they are highly sensitive to changes in resolution and MRI contrast. Although data augmentation and domain adaptation techniques can increase the generalisability of CNNs, these methods still need to be retrained for every new domain, which requires costly labelling of images. Here, we present a learning strategy to make CNNs agnostic to MRI contrast, resolution, and numerous artefacts. Specifically, we train a network with synthetic data sampled from a generative model conditioned on segmentations. Crucially, we adopt a domain randomisation approach where all generation parameters are drawn for each example from uniform priors. As a result, the network is forced to learn domain-agnostic features, and can segment real test scans without retraining. The proposed method almost achieves the accuracy of supervised CNNs on their training domain, and substantially outperforms state-of-the-art domain adaptation methods. Finally, based on this learning strategy, we present a segmentation suite for robust analysis of heterogeneous clinical scans. Overall, our approach unlocks the development of morphometry on millions of clinical scans, which ultimately has the potential to improve the diagnosis and characterisation of neurological disorders

    A Modality-Adaptive Method for Segmenting Brain Tumors and Organs-at-Risk in Radiation Therapy Planning

    Get PDF
    In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy.Comment: corrected one referenc
    • …
    corecore