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a b s t r a c t 

In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of 

organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive 

generative model for whole-brain segmentation with a new spatial regularization model of tumor shape 

using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is 

able to adapt to image acquisitions that differ substantially from any available training data, ensuring its 

applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the 

current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy 

planning purposes. The proposed method may be a valuable step towards automating the delineation of 

brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy. 

© 2019 Published by Elsevier B.V. 
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1. Introduction 

Glioblastomas, which are the most common type of malig-

nant tumors originating within the brain ( Preusser et al., 2011 ),

are commonly treated with a combination of surgical resection,

chemo-therapy and radiation therapy. During radiation therapy,

the patient is subjected to radiation beams, typically from differ-

ent directions and with different intensity profiles, with the aim

of maximizing the delivered radiation dose to the targeted tumor

while minimizing the dose to sensitive healthy structures, so-called

organs-at-risk (OARs) ( Shaffer et al., 2010 ). For the purpose of plan-

ning a radiation therapy session, these structures need to be delin-

eated on computed tomography (CT) or magnetic resonance (MR)

scans of the patient’s head ( Munck af Rosenschöld et al., 2011 ). 

In current clinical practice, delineation is performed manually

with limited assistance from automatic procedures, which is time
∗ Corresponding author. 
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1361-8415/© 2019 Published by Elsevier B.V. 
onsuming for the human expert and typically suffers from high

nter-rater variability ( Deeley et al., 2011; Dolz et al., 2015b; Menze

t al., 2015 ). These limitations are amplified in emerging tech-

iques for image-guided radiation therapy, which introduce a de-

and for continuous delineation during treatment ( Lagendijk et al.,

014 ). Consequently, there is an increasing need for fast automated

egmentation methods that can robustly segment both brain tu-

ors and OARs from clinically acquired head scans. 

Recent years have seen an influx of discriminative methods for

rain tumor segmentation, with good – although not very robust

performance reported in the annual MICCAI Brain Tumor Seg-

entation (BRATS) challenges ( Menze et al., 2015 ). Discriminative

ethods directly exploit the intensity information of annotated

raining data to discern between tumorous and other tissue in new

mages. Traditionally, they rely on user-engineered image features

hat are then fed into classifiers, such as random forests ( Zikic

t al., 2012; Islam et al., 2013; Tustison et al., 2015; Maier et al.,

016 ) or support vector machines ( Bauer et al., 2011 ). Lately, how-

ver, convolutional neural networks (CNNs), which learn suitable

mage features simultaneously with their classifiers, have become

https://doi.org/10.1016/j.media.2019.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.03.005&domain=pdf
mailto:miag@dtu.dk
https://doi.org/10.1016/j.media.2019.03.005
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Table 1 

Labels associated with normal head structures, with brain structures in B . 

l ∈ B {white matter (WM), grey matter (GM), cerebrospinal fluid 

(CSF), brainstem, unspecified brain tissue, and left and right 

hippocampus} 

l �∈ B {background, eye socket fat, eye socket muscles, optic chiasm; 

and left and right optic nerve, eye tissue and eye fluid} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P  

t  

t  

e  

t  

t  

a

2

 

i  

a  

v  

s  

T  

b  

z  

e  

y  

s  

u  

y  

t  

o  

θ  

z  

p  

t  

e  

H H  

1 We work with log-transformed intensities to model the MR bias field effect as 

an additive (rather than multiplicative) process, see Section 2.2 . 
ore prominent ( Pereira et al., 2016; Kamnitsas et al., 2017; Havaei

t al., 2017 ). 

Although discriminative methods have demonstrated state-of-

he-art tumor segmentation performance, they suffer from several

rawbacks that limit their practical applicability in radiation ther-

py planning settings. In particular, what is needed in radiation

herapy is an accurate segmentation not just of the tumor, but also

f a multitude of OARs. Although CNNs segmenting dozens of brain

ubstructures have recently been demonstrated ( Roy et al., 2017;

ajchl et al., 2018 ), using such methods in the context of radia-

ion therapy planning is complicated by their need for large anno-

ated training datasets, as scans with high-quality segmentations of

oth tumors and OARs in hundreds of patients are not easily avail-

ble. Further exacerbating this issue is that both the type and the

umber of acquired images often differ substantially among treat-

ent centers, not only as a result of differences in imaging pro-

ocols and scanner platforms, but also because of the continuous

evelopment of novel MR pulse sequences for brain tumor imag-

ng ( Mabray et al., 2015; Sauwen et al., 2016 ). Although an active

esearch area in the field ( Havaei et al., 2016; Ghafoorian et al.,

017; Valindria et al., 2018 ), effectively dealing with the ensuing

xplosion of possible contrasts and contrast combinations remains

n open problem for discriminative segmentation methods. 

In order to sidestep these difficulties with discriminative ap-

roaches, we present a method in this paper for simultaneously

egmenting brain tumors and OARs using a generative approach, in

hich prior knowledge of anatomy and the imaging process are in-

orporated using Bayesian statistics. Specifically, our method com-

ines an existing contrast-adaptive method for whole-brain seg-

entation ( Puonti et al., 2016 ) with a new spatial regularization

odel of tumor shape using generative neural networks. The OARs

e consider in this paper are eyes, optic chiasm, optic nerves,

rainstem, and hippocampi, but more structures can easily be

dded. Compared to existing work, the proposed method presents

everal novel contributions: 

1. To the best of our knowledge, this is the first method that

addresses the segmentation of both brain tumors and OARs

within the same modeling framework. While existing gen-

erative methods for tumor segmentation typically also per-

form classification into white matter, gray matter and cere-

brospinal fluid ( Moon et al., 2002; Prastawa et al., 2003;

Menze et al., 2010; Gooya et al., 2012; Kwon et al., 2014;

Bakas et al., 2016 ), they do not further subdivide these tis-

sue types into OARs, nor do they segment OARs outside the

brain. Conversely, with the exception of the optic system

( Bekes et al., 2008; Noble and Dawant, 2011; Dolz et al.,

2015a ), most automated segmentation methods for OARs in

radiation therapy applications have been concentrated on la-

bel transfer using non-linear registration of manually anno-

tated template data ( Dawant et al., 1999; Cuadra et al., 2004;

Isambert et al., 2008; Bauer et al., 2013; Bondiau et al.,

2005 ), which does not address the problem of tumor seg-

mentation itself. 

2. By adopting a generative approach, the proposed method 

makes judicious use of readily available training data. In

particular, the approach allows merging of disparate mod-

els of normal head structures, learned from manually anno-

tated scans of normal subjects, with models of tumor shape

derived from brain tumor patients, without requiring that

segmentations of these two set of structures are available

within the same set of subjects. Importantly, once trained

the same method can be readily applied to data from differ-

ent sites without retraining. As we will demonstrate, this is

the case even when data acquisitions are fundamentally dif-
ferent from the data used to train the method, such as CT

scans or experimental MR contrasts. 

3. In contrast to discriminative methods for brain lesion seg-

mentation, in which large spatial contexts are exploited to

achieve state-of-the-art segmentation accuracy ( Corso et al.,

2008; Geremia et al., 2011; Karimaghaloo et al., 2016; Brosch

et al., 2016; Kamnitsas et al., 2017 ), spatial regularization

of lesions in generative methods has so far been limited to

local properties, such as local lesion probability in lesion-

seeded probabilistic atlases ( Moon et al., 2002; Prastawa

et al., 2003; Gooya et al., 2012; Kwon et al., 2014; Bakas

et al., 2016 ) or first-order Markov random fields (MRFs) in

which only pairwise interactions between neighboring vox-

els are taken into account ( Van Leemput et al., 2001; Menze

et al., 2010 ). In this paper, we explore the potential of convo-

lutional restricted Boltzmann machines (cRBMs) ( Lee et al.,

2011 ) to provide long-range spatial regularization through

MRFs with high-order clique potentials that are automati-

cally learned from manual segmentations of brain tumors.

We empirically demonstrate that these higher-order shape

models yield an advantage in segmentation accuracy com-

pared to first-order MRFs. 

reliminary versions of this work appeared in two conference con-

ributions ( Agn et al., 2016a; 2016b ). Here we extend the method

o handle more OARs, in particular optic nerves, optic chiasm, and

yes; describe the model and the statistical inference in more de-

ail; and provide an in-depth validation on a large number of pa-

ients, evaluating the method’s adaptability to varying input data

nd suitability for radiation therapy planning. 

. Modeling framework 

Let D = (d 1 , . . . , d I ) denote the data of N co-registered med-

cal images of a patient’s head, where I is the number of im-

ge voxels and d i contains the log-transformed 

1 intensities at

oxel i . Each voxel i has a normal label l i ∈ { 1 , . . . , K} that is as-

ociated with one of K = 17 normal head structures, detailed in

able 1 , where B denotes a set of structures located inside the

rain. A voxel i can be tumor-affected, indicated by z i = 1 , where

 i ∈ {0, 1}. Within tumor-affected tissue, a voxel i can be either

dema or core , indicated by y i = 0 and y i = 1 , respectively, where

 i ∈ {0, 1}. Edema corresponds to the visible peritumoral edema

urrounding the core, which corresponds to the gross tumor vol-

me (GTV) used in radiation therapy. To model the labels l i , z i and

 i across all voxels, we build a generative model that describes

he image formation process, seen in Fig. 1 . The model consists

f two parts. The first part is a likelihood function p ( D | l, z, y,

) that links the labels to image intensities, where l = (l 1 , . . . , l I ) ,

 = (z 1 , . . . , z I ) , and y = (y 1 , . . . , y I ) . This likelihood function de-

ends on a set of parameters θ, governed by a prior distribu-

ion p ( θ), that allows the model to adapt to images with differ-

nt contrast properties. The second part is a segmentation prior

p(l , z , y | η) = 

∑ 

z 

∑ 

y p(l , z , y , H 

z , H 

y | η) , where η, with prior p ( η),
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Fig. 1. Graphical representation of the model. The atlas-based prior on l is defined 

by parameters η governing the deformation of the atlas. The tumor-affected map z 

and the tumor core map y are connected to auxiliary variables H 

z and H 

y , respec- 

tively. The variables l, z and y jointly predict the data D according to the likelihood 

parameters θ. Shading indicates observed variables. 
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Fig. 2. A small 1D example of a cRBM with v = (v 1 , . . . , v 7 ) and H 

v = { h v m } 3 m =1 . 

Visible units (image voxels) are connected to hidden units in a hidden group h v m 

through a convolutional filter w 

v 
m of size 3. All locations in v share the same filter 

weights. The connections are exemplified by the three central visible units which 

are connected to the central hidden unit in each group. 
are parameters governing the deformation of a probabilistic atlas,

and H 

z and H 

y are auxiliary variables that help encode high-order

shape models of z and y . 

We use this model to obtain a fully automated segmentation

algorithm by evaluating the posterior of the labels given the data:

p ( l , z , y | D ) ∝ p ( D | l , z , y ) p ( l , z , y ) , (1)

where p(l , z , y ) = 

∫ 
η p(l , z , y | η) p( η)d η and p(D | l , z , y ) =∫ 

θ p( D | l , z , y , θ) p (θ )d θ will be detailed in Sections 2.1 and

2.2 , respectively, and computationally evaluating Eq. (1) will be

addressed in Section 2.3 . 

2.1. Segmentation prior 

We obtain the segmentation prior p ( l, z, y | η) by defining 

p ( l , z , y , H 

y , H 

z | η) ∝ exp [ −E ( l , z , y , H 

y , H 

z | η) ] 

with an energy 

E ( l , z , y , H 

y , H 

z | η) = E z ( z , H 

z ) + E y ( y , H 

y ) 

− log q ( l | η) + 

∑ 

i 

f ( l i , z i , y i ) , (2)

where E z ( z, H 

z ) and E y ( y, H 

y ) are the energy terms of two cRBMs

that model tumor shape in z and y , respectively, and q ( l | η) is a de-

formable atlas that models the spatial configuration of the normal

labels in l . Additionally, we use a restriction function defined as 

f (l, z, y ) = 

{ ∞ if z = 0 and y = 1 

∞ if z = 1 and l / ∈ B 

0 otherwise 
. (3)

This function encodes that a core voxel can never appear outside

the tumor-affected region z , and that a tumor-affected voxel can

never appear outside the brain. Note that it is only this restric-

tion function that ties the labels l, z , and y to each other. Without

it, the segmentation prior would simply devolve into p(l , z , y | η) =
p(l | η) p(z ) p(y ) . 

We will now present the two types of models that are in-

cluded in this prior: the cRBMs on tumor shape in Section 2.1.1 ,

and the atlas on the spatial configuration of normal head struc-

tures in Section 2.1.2 . 

2.1.1. Prior on tumor shape using cRBMs 

In order to model the spatial configuration of tumor tis-

sue, we use cRBMs – neural networks that can be interpreted

as MRFs encoding high-order interactions among voxels (“visi-

ble units”) through local connections to latent variables (“hidden

units”) ( Fischer and Igel, 2014 ). In contrast to a standard restricted

Boltzmann machine ( Smolensky, 1986; Freund and Haussler, 1992;

Hinton, 2002 ), where arbitrary weights can be assigned between

the visible and the hidden units, the weights of the connections in

a cRBM are in the form of filters that are much smaller than the

image size and that are shared among all locations in the image
 Lee et al., 2011 ). This allows us to infer over large images without

 predefined size. We now present the model in only 1D for the

ole purpose of avoiding cluttered equations, but it directly gener-

lizes to 3D images. 

The distribution over visible units v in a cRBM is defined as 

p(v ) = 

∑ 

H v 

exp 

[
−E v 

(
v , H 

v 
)]

(4)

ith the energy term ( Lee et al., 2011 ) 

 

v 
(
v , H 

v 
)

= −
M ∑ 

m =1 

h 

v 
m 

•
(
w 

v 
m 

∗ v 
)

−
M ∑ 

m =1 

b v m 

J ∑ 

j=1 

h 

v 
m j − a v 

I ∑ 

i =1 

v i , 

here H 

v = { h 

v 
m 

} M 

m =1 
contains M hidden groups, • denotes

lement-wise product followed by summation, and 

∗ denotes spa-

ial convolution. Each hidden group h 

v 
m 

is connected to the visi-

le units in v with a convolutional filter w 

v 
m 

of size r , and con-

ains J = I − r + 1 hidden units. The filter w 

v 
m 

models interactions

etween the hidden and visible units, effectively detecting specific

eatures in v . Furthermore, each hidden group has a bias b v m 

and

isible units have a bias a v . These bias terms encourage units to be

nabled or disabled when set to non-zero values. A small example

f a cRBM can be seen in Fig. 2 . 

The computational appeal of this model is that no direct con-

ections exist between two visible units or two hidden units, so

hat the visible units are independent of each other given the state

f the hidden ones, and vice versa: 

p 
(
v | H 

v 
)

= 

∏ 

i 

p 
(
v i | H 

v 
)

and p 
(
H 

v | v ) = 

∏ 

m 

∏ 

j 

p 
(
h 

v 
m j | v 

)
(5)

ith p 
(
v i | H 

v 
)

∝ exp 

[
v i 

(∑ 

m 

(
˜ w 

v 
m 

∗ h 

v 
m 

)
i 
+ a v 

)]

nd p 
(
h 

v 
m j | v 

)
∝ exp 

[ 
h 

v 
m j 

((
w 

v 
m 

∗ v 
)

j 
+ b v m 

)] 
, 

here ˜ w denotes a mirror-reversed version of the filter w . Al-

hough no direct connections exist among visible units, high-order

onnections are still obtained among them through the connec-

ions to the hidden units. This can be seen clearly by summing

ut the hidden units in Eq. (4) analytically ( Fischer and Igel, 2014 ),

hich gives us p(v ) ∝ exp [ −E v (v )] with 

 

v (v ) = 

I−r+1 ∑ 

i =1 

g ( v i : i + r−1 ) − a v 
I ∑ 

i =1 

v i , (6)

here i : i ′ denotes elements from i to i ′ , and

(v i : i + r−1 ) = −∑ 

m 

log [ 1 + exp (w 

v 
m 

· v i : i + r−1 + b v m 

) ] is a high-

rder MRF clique potential defined over groups of visible units as
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arge as the filter size r . This can be contrasted to traditionally

sed MRF models for brain lesion shape, e.g., ( Van Leemput

t al., 1999a; Menze et al., 2010 ), where a v is set to zero and the

lique potentials are only between pairs of voxels in v , i.e., r = 2 ,

efined as g(v i : i +1 ) = βv | v i − v i +1 | , where βv is a user-tunable

yperparameter. 

In this paper, we use two separate binary cRBMs: one that

odels shape in the tumor-affected map z and one that models

hape in the core map y , with energies E z ( z, H 

z ) and E y ( y, H 

y ), de-

ned exactly as for v . We learn suitable values for the filters and

iases of these cRBMs by stochastic gradient descent on the log-

ikelihood using expert segmentations obtained from training data,

s detailed in Section 3.2 . 

.1.2. Atlas-based prior on normal head structures 

To model the spatial configuration of normal head struc-

ures q ( l | η), we use the type of probabilistic atlas intro-

uced in Van Leemput (2009) and further validated in

uonti et al. (2016) . It is based on a deformable tetrahedral

esh, where the parameters η are the spatial positions of the

esh nodes and p ( η) is a topology-preserving deformation prior

 Ashburner et al., 20 0 0 ). Each mesh node in the atlas is associated

ith a probability vector containing the probabilities of the K

ormal head structures to occur at that node; for a given mesh

eformation, these vectors are interpolated using barycentric

nterpolation to yield probabilities π i ( k | η) for each structure k in

ll voxels i . Assuming that structure labels at different voxels are

onditionally independent given the node positions, this finally

ields 

 (l | η) = 

I ∏ 

i =1 

πi (l i | η) . 

As described in Van Leemput (2009) , the atlas can be trained by

 non-linear, group-wise registration of expert segmentations ob-

ained from training data. The node positions in atlas space with

ssociated label probabilities are optimized during this training

rocess, as well as the topology of the mesh, where the mesh res-

lution adapts to be sparse in large uniform regions and dense at

abel borders. Fig. 3 shows the atlas that we built for the current

aper; more details will be given in Section 3.1 . 
ig. 3. The built atlas in axial, sagittal, and coronal view; shown in atlas space. 

odes and connections between nodes are shown in light green and probabilities 

f normal labels, interpolated between the nodes, are shown in varying colors (yel- 

ow = eye fluid, orange = eye tissue, red = optic nerves, green = brainstem, lilac 

 hippocampi, shades of blue = other normal labels). (For interpretation of the ref- 

rences to colour in this figure legend, the reader is referred to the web version of 

his article.) 

w  

C  

v  

G  

t  
.2. Likelihood 

To link the labels l, z and y to image intensities, we use X =
2 Gaussian mixture models (GMMs) in the likelihood function

 ( D | l, z, y, θ), where each GMM models the intensity distribu-

ion of certain label combinations. Some GMMs are connected to

everal label combinations, e.g., left and right hippocampus are

odeled by the same GMM as both hippocampi have the same

ntensity properties, and any voxel i that belongs to edema (i.e.,

 i = 1 , y i = 0 and l i ∈ B ) is modeled by a single GMM. In order

o map a voxel i with l i , z i and y i to a specific GMM, we there-

ore introduce a mapping function x ( l i , z i , y i ), which is detailed in

able 2 . Additionally, we model so-called bias fields that typically

orrupt MR scans as additive effects by linear combinations of spa-

ially smooth basis functions. A bias field is a multiplicative low-

requency imaging artifact, so to model it as an additive effect we

ork with log-transformed intensities throughout this paper, as in

ells et al. (1996) ; Van Leemput et al. (1999b) . 

Specifically, we define the likelihood function as 

p 
(
D | l , z , y , θ) = 

∏ 

i 

p i 
(
d i | x (l i , z i , y i ) , θ

)

ith p i 
(
d i | x, θ

)
= 

G x ∑ 

g=1 

γxg N 

(
d i | μxg + C φi , �xg 

)
, 

here N (d | μ, �) denotes a multivariate normal distribution with

ean μ and covariance �; G x is the number of components in the

 th GMM; and γ xg , μxg and �xg are the weight, mean and covari-

nce matrix of component g . The weights satisfy the constraints

xg ≥ 0 and 

∑ G x 
g=1 

γxg = 1 . Furthermore, the bias fields corrupting

R scans are modeled by φi and C . The column vector φi ∈ R 

P 

valuates P spatially smooth basis functions at voxel i and C =
(c 1 , . . . , c N ) 

T denotes the parameters of the bias field model, where

 n ∈ R 

P are the parameters for image contrast n . Finally, all likeli-

ood parameters are jointly collected in θ = {{ γxg , μxg , �xg }∀ xg, C } .
We use a restricted conjugate prior p ( θ) on the likelihood pa-

ameters: 

p( θ) ∝ 

⎧ ⎨ 

⎩ 

∏ 

x 

[
Dir ( γx | α0 ) 

∏ G x 
g=1 IW 

(
�xg | υ0 

x , S 
0 
x 

)]
if constraints on { μxg } are satisfied 

0 otherwise , 

(7) 

here we have used uniform priors on the bias field parameters

 and the mean vectors { μxg }, and conjugate priors on the co-

ariance matrix of each component and mixture weights of each

MM following the definitions in Murphy (2012) . To avoid ex-

reme numerical values in Gaussian components representing only
Table 2 

Mapping function x ( l, z, y ) that maps combinations of l, z and y to 12 distinct 

GMMs in the model. Note that combinations { z = 1 , ∀ y, l / ∈ B } and { z = 0 , y = 

1 , ∀ l} will never occur due to the restriction function in Eq. (3) . The right col- 

umn shows the number of components G x in each GMM – these values are 

based on pilot experiments detailed in Section 3.3 . 

Combinations of l, z , and y x ( l, z, y ) G x 

z = 1 , y = 1 , and l ∈ B core 3 

z = 1 , y = 0 , and l ∈ B edema 1 

z = 0 , y = 0 , and l ∈ 
{GM, L/R hippocampus} global gray matter (GGM) 1 

{WM, brainstem} global white matter (GWM) 1 

{L/R optic nerve, L/R eye tissue} global nerves/eye tissue (GNE) 2 

{L/R eye fluid} global eye fluid 1 

CSF CSF 2 

background background 3 

unspecified brain tissue unspecified brain tissue 1 

optic chiasm optic chiasm 1 

eye socket fat eye socket fat 2 

eye socket muscles eye socket muscles 3 
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a handful of voxels, we regularize the covariance matrices using

inverse-Wishart distributions IW ( �| υ0 
x , S 

0 
x ) , where S 0 x is a prior

scatter matrix with strength υ0 
x . Furthermore, to discourage nu-

merical removal of components, we use symmetric Dirichlet dis-

tributions Dir( γ | α0 ) where α0 > 1, since these have their mode at

γxg = 1 /G x , ∀ x, g. Finally, we add certain linear constraints on { μxg }

to encode prior knowledge about overall tumor appearance rela-

tive to normal brain tissue in typical MR sequences for brain tu-

mor imaging. These constraints allow for a wide variability of tu-

mor appearance across subjects, while imposing plausible limits on

how similar to normal tissue tumors can look. Tuning of the like-

lihood function and its parameter prior is detailed in Section 3.3 . 

2.3. Inference 

Exact inference of the posterior p ( l, y, z | D ) in Eq. (1) is compu-

tationally intractable because it marginalizes over all of the uncer-

tainty in the model parameters and the hidden units of the cRBM

models. We therefore resort to Markov chain Monte Carlo (MCMC)

techniques to sample from all unknown variables (except the at-

las node positions η, as detailed below), followed by voxel-wise

majority voting on the segmentation samples to obtain the final

segmentation. This procedure is detailed in Section 2.3.1 . 

Although it is possible to also sample from η, as shown

in Iglesias et al. (2013) , this is considerably more computation-

ally expensive and was not implemented in this paper. Instead, we

ignore the uncertainty on deformations and use a suitable point

estimate of the atlas node positions ˆ η obtained with a simplified

model, which we describe in Section 2.3.2 . We also obtain an ini-

tial state of the sampler from this simplified model. 

2.3.1. MCMC sampler 

Given a point estimate of the atlas node positions ˆ η, we gen-

erate samples of the labels l, z and y from p(l , z , y | D , ̂  η) by sam-

pling from p(l , z , y , H 

z , H 

y , θ| D , ̂  η) using a blocked Gibbs sampler,

and discarding the samples of H 

y , H 

z and θ. The sampler, which

is illustrated in Algorithm 1 , iteratively draws each set of variables

Algorithm 1 MCMC sampler to obtain ̂

 l , ̂  z , ̂  y . 

Input: l (0) , z (0) , y (0) , ̂  η

Output final estimates of labels ̂  l , ̂  z , ̂  y 

for s = 1 to (S burn-in + S) 

Sample θ from p( θ| D , l (s −1) , z (s −1) , y (s −1) ) , 

detailed in Appendix A 

Sample H 

z from p( H 

z | z (s −1) ) , see Eq. 5 

Sample H 

y from p( H 

y | y (s −1) ) , see Eq. 5 

Sample l (s ) , z (s ) , y (s ) from 

p(l , z , y | D , H 

z , H 

y , θ, ̂  η) in Eq. 8 

end for 

Final ̂  l , ̂  z , ̂  y obtained by voxel-wise majority voting 

of samples in { l (s ) , z (s ) , y (s ) } S burn-in + S 
s = S burn-in +1 

from its conditional distribution given the other variables; with the

exception of θ this is straightforward to implement as each condi-

tional distribution factorizes over its components. The hidden units

H 

z and H 

y are sampled as in Eq. (5) , and the labels are sampled

from 

p 
(
l , z , y | D , H 

z , H 

y , θ, ̂  η
)

= 

∏ 

i 

p i 
(
l i , z i , y i | d i , H 

z , H 

y , θ, ̂  η
)

(8)
ith 

p i 
(
l i , z i , y i | d i , H 

z , H 

y , θ, ̂  η
)

∝ 

p i 
(
d i | l i , z i , y i , θ

)
πi (l i ) exp 

[
z i 
(∑ 

m 

( ̃  w 

z 
m 

∗ h 

z 
m 

) i + a z 
)]

exp 

[
y i 
(∑ 

m 

(
˜ w 

y 
m 

∗ h 

y 
m 

)
i 
+ a y 

)]
exp [ − f ( l i , z i , y i ) ] . 

ampling from the conditional distribution p ( θ| D, l, z, y ) is more

ifficult due to interdependencies among the various components

f θ (including those imposed by the linear constraints on the

aussian means { μxg }), and is detailed in Appendix A . 

We obtain the final estimate of the labels ˆ l , ̂  z , and 

ˆ y by voxel-

ise majority voting, separately on each variable, over S collected

amples after an initial burn-in period of S burn-in samples. 

.3.2. Simplified model to obtain atlas node position estimates and 

nitial state of sampler 

For the purpose of estimating appropriate atlas node positions

ˆ and to obtain an initial state { l (0) , z (0) , y (0) } for the MCMC sam-

ler, we use a simplified model in which the non-local depen-

encies among the voxels introduced by the cRMB shape models

re removed. In particular, we set the filter weights { w 

z 
m 

} M 

m =1 
and

 w 

y 
m 

} M 

m =1 to zero values, effectively removing the hidden units from

he model, and set the visual bias values so that a fraction w = 0 . 1

f normal voxels is expected to be tumorous, and within these vox-

ls a fraction u = 0 . 5 is expected to be tumor core. We achieve this

y setting the visual biases a y = log ( u 
1 −u ) and a z = log ( w −wu 

1 −w 

) . This

educes the model to the same form as in Puonti et al. (2016) ,

nd we can therefore use the same approach for optimization,

.e., by alternating between optimizing the likelihood parameters

with a generalized expectation-maximization (GEM) algorithm

 Dempster et al., 1977 ) and optimizing the atlas node positions η
ith a general-purpose gradient-based optimizer. 

lgorithm 2 Initial algorithm to obtain l (0) , z (0) , y (0) , ̂  η. 

nput: D , initial affine transformation of atlas ˆ η
utput: l (0) , z (0) , y (0) , ̂  η
hange tumor prior to a simplified version 

nitialize ˆ θ
ntil convergence 

Optimize ˆ θ = arg max θ p( θ| D , ̂  η) 

Optimize ˆ η = arg max η p( η| D , ̂  θ) 

nd until 

ecord 

ˆ η
ompute maximum a posteriori segmentation 

 l (0) , z (0) , y (0) } = arg max l , z , y p(l , z , y | D , ̂  θ, ̂  η) 

Algorithm 2 illustrates this approach, which is implemented as

n Puonti et al. (2016) with a few exceptions. In particular, for the

tlas node positions a more efficient optimizer is used (limited-

emory BFGS ( Liu and Nocedal, 1989 )). Furthermore, the linear

onstraints in the prior p ( θ) ( Eq. (7 )) alter the relevant update

quations in the GEM algorithm to involve a so-called quadratic

rogramming problem, as detailed in Appendix B . Finally, as in

uonti et al. (2016) , all Gaussian component parameters in θ are

nitialized based on the atlas prior after affine registration, except

he mean values for the tumor GMMs. These are instead initial-

zed based on prior knowledge about overall tumor appearance

n typical MR sequences for brain tumor imaging, as detailed in

ection 3.3 . 

After convergence of the parameter optimization with this sim-

lified model, we record 

ˆ η and compute the maximum a posteriori

egmentation 
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l (0) , z (0) , y (0) 
}

= arg max 
l , z , y 

p 

(
l , y , z | D , ̂  θ, ̂  η

)
= arg max 

{ l i ,z i ,y i } 
∏ 

i 

p 

(
l i , z i , y i | d i , ̂

 θ, ̂  η
)
, 

hich is used as the initial state for the MCMC sampler. 

. Training and tuning of the model 

In this section, we describe how we trained the deformable at-

as q ( l | η) (in Section 3.1 ) and the two cRBMs modeling z and y (in

ection 3.2 ), which together make up the segmentation prior in

ur model. Furthermore, we describe overall tuning of the method

n Section 3.3 . 

To train the deformable atlas, we used the same training

ataset as in Puonti et al. (2016) , which is also the training data

f the publicly available software package FreeSurfer ( Fischl, 2012 ).

his dataset consists of 39 subjects (without any tumors) with

ozens of neuroanatomical structures within the brain segmented

y experts, following a validated semi-automated protocol devel-

ped at the Center for Morphometric Analysis (CMA), MGH, Boston

 Caviness et al., 1989; 1996; Kennedy et al., 1989 ). We call this

ataset the atlas training dataset . 

For all other parts of the model, we used the training dataset of

he brain tumor segmentation (BRATS) challenge that was held in

onjunction with the BrainLes workshop at the 2015 MICCAI con-

erence. This dataset consists of 220 high-grade gliomas and 54

ow-grade gliomas of varying types, with publicly available ground

ruth segmentations of tumor, which include annotations of four

umor regions: edema and three regions inside tumor core. 30

ubjects were manually segmented (20 high-grade, 10 low-grade),

hile the rest have fused segmentations from highly ranked al-

orithms from previous editions of the BRATS challenge. The in-

luded MR sequences are T2-weighted FLAIR (2D acquisition), T2-

eighted (2D acquisition), T1-weighted (2D acquisition), and T1-

eighted with contrast enhancement (T1c, 3D acquisition). The

cans have been acquired at different centers, with varying mag-

etic field strength and resolution. All data were resampled to

 mm isotropic resolution by the challenge organizers. We call this

ataset the BRATS 2015 training dataset . 

.1. Training the deformable atlas 

We automatically trained the tetrahedral mesh atlas, shown in

ig. 3 and described in Section 2.1.2 , from expert segmentations

rom the atlas training dataset. We emphasize that only the man-

al segmentations are needed for this purpose, and that the inten-

ity information of the original MR scans from which these were

erived was not used. 

As we are specifically interested in structures applicable to radi-

tion therapy, we merged some of the manually segmented struc-

ures into larger labels before building the atlas. Specifically, we

ept the segmentations for the OARs brainstem, optic chiasm and

eft and right hippocampus ; as well as the background label. We

erged all other structures into the following catch-all labels:

erebrospinal fluid (CSF), and remaining white matter (WM) and

ray matter (GM). Two important OARs were not included in the

vailable expert segmentations, as they are located outside of the

rain – namely optic nerves and eyes . We therefore performed addi-

ional manual delineations for the left and right structures of these

wo extra OARs. To provide some context around these structures,

e also delineated the muscles and fat in the eye sockets into two

eparate labels. We further separated the left and right eye into

wo labels each: eye fluid describing the fluid and gel inside an eye

nd eye tissue describing the lens and the solid outer layer of an

ye. 
To build the atlas, we chose the resulting segmentations of a

epresentative subset of 10 subjects. We selected 10 subjects as

anual delineations are time consuming and we have previously

hown that adding more subjects does not substantially increase

he average segmentation performance ( Puonti et al., 2016 ). After

uilding the atlas, we added an unspecified brain tissue label de-

igned to capture normal structures that are not specified in the

tlas, such as blood vessels. Towards this end, we added a con-

tant prior probability of 0.01 for this label in each mesh node’s

robability vector and re-normalized the probability vector to en-

ure that the values sum to one. Overall, we use K = 17 normal

ead structure labels, listed in Table 1 . 

.2. Training the cRBMs 

To learn suitable values for the filters and biases of the cRBMs

odeling z and y , described in Section 2.1.1 , we used the 30 man-

al tumor segmentations from the BRATS 2015 training dataset,

gain without using any associated intensity information. As the

umber of segmentations is small, we augmented the dataset by

ipping the segmentations in eight different directions, yielding

 dataset of 240 tumor segmentations. To form binary segmenta-

ions corresponding to z and y , we merged tumor regions in the

anual segmentations: all four regions for z and the three tumor

ore regions for y . We learned the filters and bias terms through

tochastic gradient ascent on the log-probability of the tumor seg-

entations under the cRBM model. To efficiently approximate the

radients, we used the contrastive divergence (CD) approximation

ith one block-Gibbs sampling step ( Hinton, 2002 ) together with

he so-called enhanced gradient which has been shown to improve

earning ( Cho et al., 2013; Melchior et al., 2013 ). Each cRBM was

rained with 9600 gradient steps of size 0.1. A subset of 10 ran-

omly selected segmentations (a so-called mini-batch) was used

o approximate the gradient at each step. 

We used the same settings for both cRBMs. The filter size and

umber of filters were set by pilot experiments on a separate sub-

et of the BRATS 2015 training dataset. Choosing a larger filter size

ould increase the number of parameters which may result in

verfitting, while a smaller filter size might not capture long-range

eatures. Empirically, we found that by tying neighboring parame-

ers in a filter we can reduce the number of parameters while still

apturing long-range features. Specifically, we tied filter parame-

ers in (2 × 2 × 2) blocks of voxels, effectively treating each block

s one parameter. We used M = 40 filters of size (14 × 14 × 14) (i.e.,

 × 7 × 7 blocks) corresponding to 40 hidden groups. In our pilot

xperiments, this configuration performed better than other com-

inations of 20, 30 and 40 filters of sizes between 10 and 18. 

.3. Tuning 

The tuning of the model described in this section is based on

nitial experiments on the full BRATS 2015 training dataset. We use

 = 50 samples from the MCMC sampler, after an initial burn-in

eriod of S burn-in = 200 (cf. Algorithm 1 ). In the likelihood function

 ( D | l, z, y, θ), described in Section 2.2 , we associate three Gaussian

omponents (i.e., G x = 3 ) with the GMMs of core, eye socket mus-

le , and background ; two components with the GMMs of eye socket

at, CSF, and GNE (global optic nerves/eye tissue); and one compo-

ent with all other GMMs (cf. Table 2 ). Additionally, we use the 64

owest frequencies of the 3D DCT as bias field basis functions, i.e.,

 = 64 . 

In the likelihood parameter prior p ( θ) defined in Eq. (7 ), the lin-

ar constraints on the Gaussian means { μxg } were set by building

tatistics of their values in the BRATS 2015 training data. Specifi-

ally, we estimated the average Gaussian mean values using auto-

atic segmentations produced by our method, but with the tumor
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labels fixed to the ground truth. Based on the resulting statistics,

we set constraints for the Gaussian mean values relating to edema

and enhanced core in the MR sequences FLAIR and T1c. Enhanced

core, which is the core region that is enhanced in T1c, is specif-

ically targeted by setting constraints on only one of the Gaussian

components associated with core. Additionally, we set constraints

on the mean values relating to the unspecified brain tissue and op-

tic chiasm as to ascertain that these labels will not interfere with

the tumor segmentation. All constraints are in relation to the mean

values of global WM (GWM) and global GM (GGM), and are shown

in Table 3 . Note that the image intensities are log-transformed, so

an added logarithm of a value is equivalent to that value being

multiplied by the original intensities. 

For the inverse Wishart distribution in Eq. (7) , we set the

scatter matrix S 0 x = υ0 
x X 

−2 diag 
[∑ 

i (d i − d̄ )(d i − d̄ ) T /I 
]
, with d̄ =∑ 

i d i /I and strength υ0 
x = N + 10 −1 I x /G x , where I x is the expected

number of voxels for each GMM, obtained from the atlas for nor-

mal structures and from the BRATS 2015 training data for tumor.

Because the unspecified brain tissue label should catch any un-

specified brain tissue, we use a wider scatter matrix for the GMM

of this label, with X replaced by 1. Finally, we set α0 = 1 + 10 −4 I in

the Dirichlet prior of Eq. (7) for each GMM. 

Initialization of the simplified model of Algorithm 2 . As described

in Section 2.3.2 , all Gaussian component parameters are initial-

ized based on the atlas prior, except the mean values associated

with tumor. If the flat tumor prior in the simplified model of

Algorithm 2 would be used, these mean values would be initial-

ized as the average intensities within the brain, which are far away

from typical tumor intensities. Therefore, we instead initialize each

of these mean values a certain distance (measured in standard de-

viations) away from the average data intensity in the correspond-

ing image. Based on initial pilot experiments on the BRATS 2015

training data, we set the distances as in Table 4 , e.g., the T2 mean

value for edema is initialized 0.7 standard deviations above the av-

erage T2 data intensity. 

Specific settings for tumor core. The GMM connected to tumor core

needs special care due to the flat tumor prior used in the simpli-

fied model of Algorithm 2 . Tumor core regions can vary widely in

their intensity distribution and can also have a similar intensity

distribution to edema and normal tissue. This fact creates chal-
Table 3 

Constraints on mean values of Gaussian components. 

Edema (TE) 

μFLAIR 
TE ≥ max 

(
μFLAIR 

GWM , μ
FLAIR 
GGM 

)
+ log 1 . 15 

Core, Gaussian component relating to enhanced core (denoted TC1) 

μFLAIR 
TC1 ≥ max 

(
μFLAIR 

GWM , μ
FLAIR 
GGM 

)
μT1c 

TC1 
≥ max 

(
μT1c 

GWM 
, μT1c 

GGM 

)
+ log 1 . 10 

Unspecified brain tissue (US) 

μFLAIR 
US ≤ min 

(
μFLAIR 

GWM , μ
FLAIR 
GGM 

)
− log 1 . 05 

μT1c 
US 

≤ min 
(
μT1c 

GWM 
, μT1c 

GGM 

)
− log 1 . 05 

Chiasm (CH) 

μFLAIR 
CH ≤ min 

(
μFLAIR 

GWM , μ
FLAIR 
GGM 

)

Table 4 

Distances used to initialize tumor GMMs, in standard deviations away 

from the average image intensity. 

x FLAIR T2 T1 T1c 

Core 1 0.7 0.2 1.5 

Edema 1 0.7 0.2 0.2 
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s  

t  
enges when estimating the parameters of the core GMM during

nference in Algorithm 2 , as the flat tumor prior has no notion of

umor shape. The easiest region to recognize only by intensity is

he region that is enhanced in T1c. Thus, we temporarily restrict

ll three Gaussian components associated with core to have iden-

ical mixture parameters while using the simplified model, and

pecifically target the enhanced region. We then release the re-

triction before starting the sampler ( Algorithm 1 ). Additionally, to

elp the full cRBM-based model to capture other core regions in

he vicinity of the enhanced region, we randomly change a fifth of

he edema voxels ( z (0) 
i 

= 1 and y (0) 
i 

= 0 ) in the initial state to core

oxels ( z (0) 
i 

= 1 and y (0) 
i 

= 1 ). 

. Experiments and results 

To evaluate our method, we conduct experiments on three dif-

erent datasets from different imaging centers with varying input

ata, including CT images and several MR sequences. The vary-

ng input data enables us to assess our method’s ability to han-

le images from different modalities, MR sequences and scanner

latforms. In Section 4.1 , we test our method on a dataset of

0 glioblastoma patients that have undergone radiation therapy

reatment at Rigshospitalet in Copenhagen, Denmark. We call this

ataset the Copenhagen dataset . It includes all data needed for a

adiation therapy session, which enables us to test our method’s

erformance on both tumor and OAR segmentation, as well as to

onduct a dosimetric evaluation. In this dataset, we will also vary

he input data to the method from the available images to test the

ffect this has on the segmentation performance. Furthermore, we

ill compare our cRBM-based method to that of the same method

ut instead using first-order MRFs. In Section 4.2 , we compare

ur method’s performance on segmenting tumors to that of top-

erforming methods in the 2015 BRATS challenge, using the chal-

enge’s test dataset of 53 patients from varying centers, which we

all the BRATS 2015 test dataset . Lastly, in Section 4.3 , we further

est our method’s ability to adapt to varying input data by using

 dataset of seven patients with a different set of acquired im-

ges, including an MR sequence not present in the other datasets,

canned at the National Hospital for Neurology and Neurosurgery,

CLH NHS Foundation Trust, London, UK. We call this dataset the

ondon dataset . 

Throughout this section, we employ two widely used metrics –

ice score and Hausdorff distance – to compare our method’s seg-

entations to the manual segmentations in the datasets. A Dice

core measures overlap between two segmentations, where a score

f zero means no overlap and a score of one means a perfect over-

ap. In contrast, a Hausdorff distance evaluates the distance be-

ween the surfaces of two segmentations. As in the BRATS chal-

enges, we use a robust version of this metric. A further descrip-

ion of these two metrics can be found in the BRATS reference pa-

er ( Menze et al., 2015 ). 

The entire algorithm was implemented in MATLAB 2015b, ex-

ept for the atlas mesh deformation which was implemented in

 ++ . Segmenting one subject takes around 40 minutes on a Core

7-5930K CPU with 32 GB of memory, with roughly equal time

pent on Algorithms 1 and 2 described in Section 2.3 . 

.1. Results for Copenhagen dataset 

To evaluate our method’s performance on segmenting both

ARs and tumors, we use the Copenhagen dataset, which consists

f 70 glioblastoma patients that have undergone radiation therapy

reatment at Rigshospitalet in Copenhagen, Denmark, in 2016 (GTV

ize range: 5–205 cm 

3 ). As part of their radiation therapy workup,

hese patients have been scanned with a CT scanner and a Siemens
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agnetom Espree 1.5T MRI scanner. The dataset includes three

R sequences: T2-weighted FLAIR (transversal 2D-acquisition), T2-

eighted (T2, transversal 2D-acquisition) and T1-weighted with

ontrast enhancement (T1c, 3D-acquisition); with a voxel size of

1 × 1 × 3), (1 × 1 × 3) and (0.5 × 0.5 × 1) mm 

3 respectively. The CT

cans have a voxel size of (0.5 × 0.5 × 1) mm 

3 . As part of the treat-

ent planning, the GTV (corresponding to tumor core) and several

ARs (including hippocampi, brainstem, eyes, optic nerves and chi-

sm) have been manually delineated in CT-space, with the MR se-

uences transformed to this space. As the only pre-processing step

or our method, we co-register the MR and CT scans and resample

hem to 1 mm isotropic resolution. 

.1.1. Evaluation of results on three data combinations 

To test the ability of our method to adapt to varying input data,

e evaluate the segmentation results obtained with three differ-

nt data combinations. In the first combination, we use all avail-

ble data, i.e., {T1c, FLAIR, T2, CT}. We include CT scans as they

re used in manual delineation of the optic system. CT scans do

ot exhibit bias field artefacts, so we clamp the bias field param-

ters in our model to zero for this image type. Additionally, as CT

cans have a low contrast within the brain, we can initialize the

umor-associated mean values in the same way as for normal la-

els. In the second combination, we only use the MR sequences,

.e., {T1c, FLAIR, T2}. In the last combination, we use T1c and a

ew combinatory sequence named FLAIR 

2 that is designed to im-

rove lesion detection ( Wiggermann et al., 2016 ). This image is

omputed by multiplying FLAIR with T2. For this image, we use

he same settings in our model as for FLAIR. We emphasize that

ome of the modalities under consideration – in particular CT and

LAIR 

2 – were not included in any training data available to the

roposed segmentation algorithm. We start with an overall visual

nspection of the segmentations and then analyze the performance

cores, followed by a more in-depth visual inspection of some of

he segmentations. 

Fig. 4 shows slices of the segmentations using the three data

ombinations for four representative subjects. We can see that the

ethod in general seems to work well and consistently across all

hree data combinations. The atlas deforms well to fit subjects

ith varying shapes, and the method is capable of segmenting tu-

or cores of varying size, shape and intensity profile; although

t underestimates the tumor size in some cases. Eyes, hippocampi

nd brainstem seem to be consistently well-captured, while optic

erves and chiasm are less well-captured, but better for the data

ombination including CT, which is because the difference in in-

ensity between the optic nerves and surrounding tissue is larger

n CT than MR. Finally, as can be noticed in the last subject, many

ubjects show some ambiguity in the intensity profile of the optic

erves. 

Fig. 5 shows box plots of the Dice scores and Hausdorff dis-

ances for the three data combinations, with the following struc-

ures: tumor core (TC), brainstem (BS), hippocampi (HC), eyes (EB),

ptic nerves (ON), and chiasm (CH). The left and right structures

re included as separate scores in the plots for hippocampi, eyes,

nd optic nerves. As can be seen, the method readily adapts to

he various included and excluded images in the three data com-

inations without the need for adjustment. The scores are consis-

ent across the three data combinations for all regions except op-

ic nerve and chiasm. The average Dice scores for tumor core are

air, but the range of scores is large. However, this is consistent

ith the state of the art in brain tumor segmentation, as will be

hown in Section 4.2 . Furthermore, this dataset includes a number

f difficult subjects with large resections, small and thin contrast-

nhanced tumor regions in T1c and small bright tumor regions in

LAIR. 
The Dice scores for brainstem are high and consistent across

he subjects and comparable to the ones obtained with the healthy

hole-brain segmentation method that our method is based on

uonti et al. (2016) . Furthermore, the Hausdorff distances are low

nd consistent as well. For eyes, the Dice scores are generally high,

xcept for a few outliers that were affected by a very thin outer

ye wall, and the Hausdorff distances are generally low, indicat-

ng a good performance. Hippocampi, on the other hand, have a

ange of generally lower Dice scores than in Puonti et al. (2016) .

heir Hausdorff distances are also fairly large. In the majority of

he outliers, the method has segmented the hippocampus near to

he tumor border while the manual segmentations either lack that

ippocampus or have undersegmented it. Finally, the Dice scores

or optic nerves and chiasm are generally low and with a large

ange. These structures are very small and thin, which significantly

ffects this metric. The Hausdorff distances for these structures are

easonably low however, which indicates that the manual and au-

omatic segmentations are in fact fairly close. The Dice scores for

he data combination including CT are higher, due to the better

ontrast in CT between the optic nerve and surrounding structures.

Fig. 6 shows sagittal slices of two representative segmentations

f hippocampi, together with surface plots of the manual and au-

omatic segmentation (for {T1c, CT, FLAIR, T2}). In both cases, the

utomatic segmentations are larger and seem to capture the hip-

ocampi somewhat better than the manual segmentations. As can

e seen in the surface plots, the manual segmentations are not

ery consistent with each other. The head and subiculum of the

ippocampi are also excluded, due to a difference in segmentation

rotocol compared to the healthy segmentations used to build the

ethod’s atlas. To a large extent, this explains the fairly low and

nconsistent Dice scores. Another reason for the lower Dice scores

ompared to Puonti et al. (2016) could be the large slice thickness

n FLAIR and T2, which introduces large partial volume effects. 

Fig. 7 shows slices of two representative segmentations of the

ptic system (including eyes, optic nerves and chiasm), together

ith surface plots of the manual and automatic segmentation (for

T1c, CT, FLAIR, T2}). The method captures the eyes well, although

n some cases the wall of the eye is slightly oversegmented. By

isual inspection, we found that the method has some difficulties

hen a subject has the eye lids open, as the solid wall between

ye and air becomes very thin. Furthermore, when guided by CT,

he method captures the optic nerve (the thin nerve going from an

ye in one end to the chiasm in the other end) reasonably well.

owever, the method has problems in the region where the nerve

oes through the skull, as the nerve is especially thin in this re-

ion. Because the nerve is thin, the method is also sensitive to in-

ensity ambiguities in the data, such as artifacts or movement of

he optic nerve between image acquisitions. In general, the method

nds the location of chiasm, but because this structure is so small,

he segmentation is to an even larger extent affected by partial vol-

me effects and intensity ambiguities. Finally, the manual segmen-

ations are quite variable in where the borders are placed between

he optic nerves and chiasm, as well as between chiasm and the

ptic tracts (the continuation of the optic system into the brain). 

Fig. 8 shows slices of two problematic tumor core segmenta-

ions (for data combination {T1c, FLAIR, T2}) that are representa-

ive of cases when the method struggles. The first case includes a

ery large resection at the border of the brain, which the method

as difficulty to adapt to for three main reasons: (1) resectioned

umor regions close to the border of the brain can be interpreted

s CSF by the method; (2) the method relies on the contrast-

nhanced tumor region, which in this case is thin and with weak

ontrast-enhancement; (3) the method also relies on a bright tu-

or region in FLAIR, which in this case is small and only slightly

righter than surrounding tissue. In the second case, the method

truggles to fill in the inner part of the tumor core. This is an is-



228 M. Agn, P. Munck af Rosenschöld and O. Puonti et al. / Medical Image Analysis 54 (2019) 220–237 

Fig. 4. Segmentations of four representative subjects in the Copenhagen dataset. For each subject, the top row shows slices of the data (from left to right: T1c, CT, FLAIR, 

FLAIR 2 and T2), whereas the bottom row shows, from left to right, the manual segmentation and automatic segmentations for data combinations {T1c, FLAIR, T2, CT}, {T1c, 

FLAIR, T2} and {T1c, FLAIR 2 }. Label colors: white = TC, lilac = edema, green = BS, dark orange = HC, yellow/light orange = EB, red = ON/CH, shades of blue = other normal 

labels. For TC in order of appearance: Dice score: {0.68, 0.67, 0.62}, {0.93, 0.93, 0.91}, {0.86, 0.85, 0.85}, {0.61, 0.72, 0.73}, Hausdorff distance: {10, 10, 10}, {2, 3, 5}, {7, 7, 6}, 

{42, 25, 8}. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Boxplots of Dice scores (left) and Hausdorff distances (right) for structures 

in the Copenhagen dataset, for three data combinations in blue, red and green, re- 

spectively. 70 subjects in total. On each box, the central line is the median, the 

circle is the mean and the edges of the box are the 25th and 75th percentiles. Out- 

liers are shown as dots. Black dots at the bottom of the Hausdorff distance boxplot 

indicate structures for which scores could not be calculated due to missing ground 

truth. Note that scores for the left and right structures are included separately in 

the box plots for HC, EB and ON. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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ue in a few cases where the intensity profile of the inner part of

he core is similar to that of edema or healthy tissues. 

.1.2. Dosimetric evaluation 

To estimate whether the use of automatic, rather than manual,

egmentations introduces any differences in metrics typically re-

iewed when planning a radiation therapy session, we conduct an

dditional dosimetric evaluation of our results. 

During radiation therapy planning, the segmentations of tumor

ore (clinically defined as GTV) and OARs are used to optimize

 radiation dose distribution that will be used during treatment.

ig. 9 shows an example of such a radiation dose plan. Note that, to

orm the target to be irradiated, a margin is added around the tu-

or core to cover likely subclinical spread of tumor cells, which is

efined as the clinical target volume (CTV). Finally, a margin stem-
ig. 6. Hippocampi on two representative subjects in the Copenhagen dataset. Automatic 

lice of segmentation overlaid on the T1-weighted scan and 3D surface plot of full structu

istance: {13, 10}, {8, 7}. (For interpretation of the references to color in this figure legen
ing from any geometrical uncertainties adhering to the treatment

lanning and radiation delivery is added, and this volume is de-

ned as the planning target volume (PTV). During the treatment

lanning process, each OAR and target structure (usually only the

TV) is given a dose-volume objective and a priority that varies

ith the clinical relevance. A more detailed explanation of the dose

lan optimization is given in Munck af Rosenschöld et al. (2011) . 

To assess the delivered dose to different structures, cumula-

ive dose-volume histograms (DVHs) are often used. Each bin in

 DVH represents a certain dose and shows the volume percent-

ge of a structure that receives at least that dose. Fig. 10 shows

he DVHs of all relevant structures for the example in Fig. 9 , i.e.,

umor core (GTV), brainstem (BS), hippocampi (HC), eyes (EB), op-

ic nerves (ON), and chiasm (CH). We show DVHs for both the

anual and the automatic segmentations for the data combination

T1c, CT, FLAIR, T2}. Although ideally the DVHs for the automatic

egmentations would be obtained by recalculating the dose dis-

ributions based on these automatic segmentations and then su-

erimposing the manual segmentations on the resulting distribu-

ions ( Kieselmann et al., 2018 ), for the current study we simply su-

erimposed the automatic segmentations on the original dose plan

nstead. The wide margin added around the tumor core means that

he hippocampus in the same hemisphere is frequently located al-

ost completely inside the tumor target. This is the case for the

xample we show, which is why almost half of the hippocampi

olume is irradiated as much as the tumor core, as can be seen in

ig. 10 . The maximum accepted dose to the optic chiasm and op-

ic nerves during the treatment planning phase is generally 54 Gy,

hough small volumes may exceed that dose occasionally. Using

he automatic segmentation of the optic chiasm, the radiation dose

aximum is somewhat above 54 Gy, suggesting some clinically rel-

vant disagreement between the manual and automatic chiasm

egmentations. 

To ease the comparison of the DVH results of the automatic

nd manual segmentations for all subjects, we summarize them as

n Conson et al. (2014) by using three points in the histograms.

o cover a large part of the cumulative histograms, we use the

ose at 5% of volume (D5), 50% of volume (D50), and 95% of vol-

me (D95). Fig. 11 shows the summarized results for all structures,

ith values for the manual segmentations plotted against values

or the automatic segmentations. In the plots, the closer a point is

o the diagonal line, the closer the results of the manual and au-
segmentations (for {T1c, CT, FLAIR, T2}) in red and manual segmentations in green. 

re. For left and right hippocampus: Dice score: {0.54, 0.58}, {0.63, 0.67}; Hausdorff

d, the reader is referred to the web version of this article.) 
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Fig. 7. Optic system on two representative subjects in the Copenhagen dataset. Automatic segmentations (for {T1c, CT, FLAIR, T2}) in red and manual segmentations in green. 

Slice of segmentation overlaid on the CT scan and 3D surface plot of full structure. For right and left eye; right and left optic nerve; and chiasm: Dice score: {0.91, 0.89}, 

{0.91, 0.87}, {0.67, 0.67}, {0.48, 0.55} and {0.49, 0.44}; Hausdorff distance: {2, 2}, {2, 2}, {4, 4}, {4, 6} and {4, 6} (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 8. Two problematic tumor core segmentations in the Copenhagen dataset. Data slices shown together with automatic segmentation (for {T1c, FLAIR, T2}) and manual 

segmentation. For tumor core: Dice score: {0.04, 0.45}, Hausdorff distance: {41, 28}. 
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tomatic segmentations are. For tumor core, most points are very

close to the line, which is unsurprising considering the wide mar-

gin added around tumor. The four D95 outliers belong to subjects

where small regions in the brain were erroneously segmented as

tumor core by our method, for some cases because of co-occurring

pathologies. The results for the organs-at-risk largely confirm the

findings using Dice scores and Hausdorff distances. Brainstem and

eyes are delineated in close agreement, and the issue with over-

segmentation when the outer eye wall is very thin does not af-

fect the dosimetric measure, because that region will always be far

away from tumor. The results for hippocampi are varying for sub-

jects where a hippocampus is on the border of the tumor target,

mainly due to the difference in protocol between the manual and

automatic segmentations. Furthermore, the results for optic nerves

vary widely for a few subjects. However, at the maximum dose

target of 54 Gy the results of the manual and automatic segmen-

tations match fairly well. For the optic chiasm, on the other hand,

some results for the automatic segmentations are significantly be-

yond its dose objective of maximum 54 Gy. This suggests that sig-

nificant differences to treatments could be expected if the auto-

matic segmentation of this structure would be used instead of the

manual segmentation when optimizing the radiation dose plan. 
.1.3. Comparing our tumor prior to first-order MRFs 

To demonstrate the benefits of modeling high-order interactions

ith the cRBM-based tumor prior, we will contrast it to a tumor

rior based on more traditional first-order MRFs. As mentioned be-

ore, first-order MRFs only have pairwise clique potentials, com-

ared to the potentials in cRBMs that are defined over groups of

oxels as large as the size of the convolutional filters. The inference

f the model is kept exactly the same except for the tumor prior

n Algorithm 1 : there are no hidden units to sample and therefore

he labels in a voxel i are sampled from 

p i 
(
l i , z i , y i | d i , θ, ̂  η

)
∝ p i 

(
d i | l i , z i , y i , θ

)
πi (l i ) exp 

[
−βz 

∑ 

j∈ N i 
| z i − z j | 

]
exp 

[
−βy 

∑ 

j∈ N i 
| y i − y j | 

]
exp [ − f ( l i , z i , y i ) ] , 

here N i is the set of 26 voxels that form neighboring pairs with

oxel i . 

To find suitable values for the user-tunable hyperparameters

z and βy , we performed a grid search with steps of 0.5 using

he same 30 manually segmented BRATS training subjects that

e used for training the cRBMs (see Section 2.1.1 ). For each hy-

erparameter combination, we segmented the subjects using the
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Fig. 9. A radiation dose plan overlaid on a T1c image slice for a representative sub- 

ject. The dose is measured in Gy. 
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Fig. 10. Dose volume histogram (DVH) of several structures for the representative 

subject in Fig. 9 , i.e., tumor core (GTV), brainstem (BS), hippocampi (HC), eyes (EB), 

optic nerves (ON), and chiasm (CH). Solid lines and broken lines correspond to au- 

tomatic and manual segmentations, respectively. Note that all DVHs were computed 

using the original treatment dose plan, which was based on the manual segmenta- 

tions. . 
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ethod with first-order MRFs. By comparing the average perfor-

ance (using Dice scores and Hausdorff distances) we found the

ombination { βz = 4 , βy = 1 } to have the best overall performance.

ith these optimized hyperparameter values, we compare the tu-

or core segmentation performance on the data combination {T1c,

LAIR, T2} when using the two different priors. The average and

edian Dice score for the cRBM-based method is 0.67 and 0.74 re-

pectively, compared to 0.58 and 0.57 when using the first-order
ig. 11. Summary statistics of DVH results for all subjects and structures, showing 5% vol

egmentations. Note that left and right hippocampus, eye and optic nerve are included as
RFs described here. Furthermore, the average and median Haus-

orff distance for the cRBM-based method is 14 mm and 10 mm re- 

pectively, compared to 23 mm and 17 mm when using first-order

RFs. This demonstrates the benefit of modeling high-order inter-

ctions among voxels. 

.2. Results for 2015 BRATS test dataset 

To further evaluate our method’s performance on segmenting

umors and compare it to that of other methods, we use the test

ataset of the 2015 BRATS challenge – at the time of writing the
ume (D5), 50% volume (D50), and 95% volume (D95), for manual versus automatic 

 separate points in their respective plots. 
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Fig. 12. Three representative segmentations in the BRATS test dataset. Slices of T1c, 

FLAIR, T2, T1, and automatic segmentation. Label colors: white = TC, lilac = edema, 

green = BS, dark orange = HC, shades of blue = other brain tissues. Note that the 

images are skull-stripped by the BRATS challenge organizers. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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latest edition with datasets available to us. 2 We participated in this

challenge and were among the top-performing methods out of a

total of 12 methods. This dataset includes non-enhanced T1 scans,

which the dataset in Section 4.1 lacks, and data with varying mag-

netic field strength and resolution from several imaging centers.

The dataset is skull-stripped, so we merge all non-brain labels used

in our method into the background label. We stress that we did not

need to change anything else in our method. 

The dataset is publicly available at the virtual skeleton online

platform ( Kistler et al., 2013 ). It consists of 53 patients with vary-

ing high- and low-grade gliomas, and a mix of pre-operative and

post-operative scans. The included MR contrasts are T2-weighted

FLAIR (2D acquisition), T2-weighted (2D acquisition), T1-weighted

(2D acquisition) and T1-weighted with contrast enhancement (T1c,

3D-acquisition). All data were resampled to 1 mm isotropic resolu-

tion, aligned to the same anatomical template and skull-stripped

by the challenge organizers. The dataset includes manual annota-

tions of four tumor regions, which are not publicly available. In-

stead, the performance of a method can be evaluated by uploading

segmentations to the online platform. On the online platform and

during the challenge, scores are reported on enhanced core, core

(which includes enhanced core and other core regions), and whole

tumor (which includes core and edema). 

Fig. 12 shows slices of three representative segmentations with:

T1c, FLAIR, T2 and T1, and the segmentation by our method as

presented in this paper. Note that the manual segmentations com-

pared against are not publicly available. We can see that the at-

las deforms well to the subjects, and brainstem and hippocampi

are well-captured. Furthermore, our method can segment brain tu-

mors with large variations in size, location and appearance. Also

note the low resolution and image quality in some of the images. 

For the purpose of comparing against the manual segmenta-

tions, we focus on the core region, as this corresponds to the GTV

used in radiation therapy. We compare the performance of our

method to that of three other top-performing tumor segmentation

methods that also participated in the 2015 BRATS challenge. 

(1) GLISTRboost ( Bakas et al., 2016 ): This semi-automated

method is based on a modified version of the generative atlas-

based method GLISTR ( Kwon et al., 2014; Gooya et al., 2012 ), which

uses a tumor growth model. The method requires manual input

of a seed-point for each tumor center and a radius of the ex-

tent of the tumor. To increase the segmentation performance, the

method is extended with a discriminative post-processing step us-

ing a gradient boosting multi-label classification scheme followed

by a patient-wise refinement step. 

(2) Grade-specific CNNs ( Pereira et al., 2016 ): This semi-

automated method uses a discriminative 2D Convolutional Neural

Network (CNN) approach. The method takes advantage of the fact

that high- and low-grade tumors exhibit differences in intensity

and spatial distribution. To do this, it uses two CNNs: one trained

on high-grade tumors and one trained on low-grade tumors. The

CNN to use for a specific subject is then chosen manually based on

visual assessment, which is the only manual step in the method. 

(3) Two-way CNN ( Havaei et al., 2017 ): This fully automated

method uses a similar discriminative 2D CNN approach to the pre-

vious method. The method forms a cascaded architecture with two

parts, where the voxel-wise label predictions from the first part are

added as additional input to the second part. Each part has two

pathways, where intensity features are automatically learned: one

learning local details of tumor appearance and one learning larger
contexts. 

2 We note that the more recent BRATS 2017 and 2018 editions have since re- 

leased new training and benchmark datasets; in Section 5 we will briefly discuss 

the results we report here in the context of these more recent challenges. 

r  

w  

e  

p  

s  

T  
Fig. 13 shows box plots of the Dice scores and Hausdorff dis-

ances for tumor core. We show scores for our method and the

hree benchmark methods as reported at the challenge. The scores

or our method are for the version we participated with in the

hallenge, as presented in Agn et al. (2016b) . The main difference,

ompared to the current version, is the use of an affinely registered

tlas, instead of the mesh-based deformable atlas presented in this

aper to enable a detailed segmentation of normal head structures.

his, however, does not significantly affect the tumor segmenta-

ion; we also segmented the dataset with our current version and

btained similar Dice scores from the online platform, with just a

% increase in the average Dice score. As seen in the figure, the

ange of Dice scores is similar to our results in Section 4.1 ( Fig. 5 ),

hich shows that our method readily adapts to the included non-

nhanced T1 scans and data from different imaging centers. Com-

aring to the other benchmark methods, our method performs

ignificantly better on tumor core when considering Dice scores.

he range of values are large for all methods, illustrating the
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Fig. 13. Box plots of Dice scores and Hausdorff distances for tumor core on the 

BRATS 2015 test dataset. 53 subjects in total. Scores are as reported in the challenge. 

On each box, the central line is the median, the circle is the mean and the edges of 

the box are the 25th and 75th percentiles. Outliers are shown as dots. 
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Fig. 14. Three representative segmentations in the London dataset. Slices of DIR, T2 

and automatic segmentation. 
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ifficulty of segmenting tumors. This dataset includes a number of

ubjects with large resections and a wide variety of tumors, e.g.,

ow-grade tumors that have been shown to be difficult to segment

n Menze et al. (2015) . The Hausdorff distances for our method are

omewhat worse than for the other methods, which could be ex-

lained by a better capability of their methods to remove small

rroneous tumor clusters, e.g., because of the deep architecture in

 CNN. The Hausdorff distances for our method are also worse for

his dataset than for the dataset in Section 4.1 (cf. Fig. 5 ), which is

xplained by the generally lower resolution and image quality. 

.3. Results for London dataset 

As a final experiment, we investigate the ability of our method

o adapt to yet a different set of acquired images using the Lon-

on dataset. In contrast to the other datasets, this one completely

acks T1-weighted images and includes a new MR sequence: dou-

le inversion recovery (DIR). The data set consists of seven patients

ith varying low- and high-grade gliomas, which were scanned

ith a Siemens Trio 3T scanner at the National Hospital for Neu-

ology and Neurosurgery, UCLH NHS Foundation Trust, London, as

art of a registered clinical audit. The following MR images were

cquired with 1 mm isotropic resolution: T2-weighted (3D acqui-

ition) and T2-weighted DIR (3D-acquisition). We use exactly the

ame settings in our method for the DIR images as we would for

LAIR, without any changes. As no manual segmentation has been

erformed on this dataset, we only perform a qualitative analysis

f the results. 

Fig. 14 shows slices for three representative subjects with DIR,

2 and the method’s segmentation. As seen in the Figure, our

ethod can easily segment datasets that lack T1-weighted images

nd include a DIR image instead of FLAIR without any changes to

he method. Visual inspection of all seven segmentations revealed

o significant deviations from other results presented in this paper.

. Discussion and conclusion 

In this paper, we have presented a generative method for si-

ultaneous segmentation of brain tumors and an extensive set of

rgans-at-risk (OARs) applicable to radiation therapy planning for

lioblastomas. To the best of our knowledge, this is the first time a

egmentation method has been presented that encompasses both

rain tumors and OARs within the same modeling framework. The
ethod combines a previously validated atlas-based model for de-

ailed segmentation of normal brain structures with a model for

rain tumor segmentation based on convolutional restricted Boltz-

ann machines (cRBMs). In contrast to generative lesion shape

odels proposed in the past, cRBMs are capable of modeling long-

ange spatial interactions among tumor voxels. Furthermore, by

ompletely separating the modeling of anatomy from the modeling

f image intensities, the method is able to adapt to heterogeneous

ata that differs substantially from any available training data, in-

luding unseen (e.g., CT or FLAIR 

2 ) or missing (e.g., T1) contrasts. 

Although the method we propose is demonstrated to be appli-

able across data with various image contrast properties without

etraining, it does rely on contrast-specific settings to constrain

nd to initialize tumor-specific appearance parameters, especially

n the MR-sequences FLAIR and T1c (see Tables 3 and 4 , respec-

ively). We found that this was necessary to guide the model to

he correct intensities for tumor in these sequences, which are typ-

cally acquired for brain tumor imaging. Ideally, such hand-crafted

ules would be replaced by a prior on model parameters that can

e learned automaticaly from example cases; however, because tu-

or appearance can vary widely across subjects, robustly estab-

ishing such a prior may be challenging. With the current set-

p, our results demonstrate that the same settings work robustly

cross FLAIR and T1c images acquired with a variety of scanners

nd imaging protocols, and even when FLAIR is replaced with

LAIR 

2 or DIR. In data where FLAIR and/or T1c is entirely miss-

ng, however, the method may need to be adjusted by modifying

he corresponding lines in Tables 3 and 4 . 

Our experiments show that the method’s performance in seg-

enting tumors is comparable to that of some of the best meth-

ds benchmarked by the BRATS 2015 challenge. We note that, since

he time of writing, the more recent BRATS 2017 and 2018 edi-

ions have released new training and benchmark datasets, and that

op-performing methods in these challenges obtain significantly
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better Dice and Hausdorff scores than the ones reported here.

However, some care is needed when comparing the results of the

various BRATS challenges. Unlike the 2015 edition, which contained

a mix of pre- and post-operative scans including several cases with

large resections, the more recent editions only involve pristine,

pre-operative cases which are arguably more uniform and some-

what easier to segment. This difference is especially important in

the given context of radiation therapy planning of glioblastoma pa-

tients, where the vast majority of patients has undergone resective

surgery ( Davis, 2016; Munck af Rosenschöld et al., 2014 ) so that

segmentation performance on pre-operative scans only (as bench-

marked by BRATS 2017 and 2018) is less relevant. A second differ-

ence between older and newer BRATS challenges is that the num-

ber of manually annotated subjects available for training models

differs by almost an order of magnitude (285 in 2017–2018, vs. the

30 from 2015 we used for the current paper), making the obtained

numerical scores difficult to compare directly. While the cRBM tu-

mor shape model proposed in the current paper is still fairly lo-

cal, a ten-fold increase in manually annotated training data should

allow one to use generative shape models with a deeper struc-

ture, such as variational autoencoders ( Kingma and Welling, 2013 ),

which could potentially eliminate the occasional false-positive tu-

mor detections that remain for the current method. Nevertheless,

within the given application area of radiation therapy planning, it

is worth remembering that further increases in segmentation over-

lap scores may not necessarily translate into meaningful improve-

ments in radiation therapy delivery, given the wide margins that

are added around the tumor to obtain final radiation target vol-

umes. Indeed, the results shown in Figs. 10 and 11 (top left) indi-

cate that, with the exception of a few outliers, tumor segmentation

performance of the current method may already be quite adequate

for this specific purpose. 

In addition to delineating tumors, the proposed method is also

capable of segmenting the OARs hippocampi, brainstem, eyes, optic

nerves and optic chiasm. We quantitatively evaluated out method’s

OAR segmentation performance in 70 patients with manual seg-

mentations used when planning a radiation therapy session. The

evaluation showed a generally good performance in segmenting

hippocampi (HC), brainstem (BS) and eyes (EB); but lower perfor-

mance in segmenting the very small structures optic nerves (ON)

and chiasm (CH). The overall performance of our method (average

Dice scores for BS: 0.86, EB: 0.86, ON: 0.56, CH: 0.39 when us-

ing the image combination {CT, T1c, FLAIR,T2}) is comparable to

the human inter-rater variability reported in Deeley et al. (2011) ,

where eight experts segmented OARs in 20 high-grade glioma pa-

tients, with average Dice scores BS: 0.83, EB: 0.84, ON: 0.50, CH:

0.39. It is clear that the Dice scores for optic nerves and chiasm

can be low even for experts. Nevertheless, the dosimetric evalua-

tion and visual inspection of our automated segmentation of these

structures point to the need for further research to obtain better

results. An improvement could possibly be achieved by incorporat-

ing dedicated geometrical information in the prior, e.g., about the

tubular structure of the optic system which was successfully used

in Noble and Dawant (2011) . 

Using manual segmentations from radiation therapy planning

as ground truth complicates our findings, as these segmentations

themselves might be suboptimal with large inter-rater variability.

Different clinics might also use differing delineation protocols. In

our experiments, the Dice score for hippocampi was significantly

affected by differing delineation protocols between the experts at

the clinic and the expert segmentations used to train the atlas

in our method. The manual segmentations at the clinic were also

found to be of variable quality in regions where the segmented

structures have a similar intensity profile to neighboring struc-

tures – such as the chiasm and brainstem compared to neighbor-

ing white matter structures. Additionally, structures far away from
 tumor are sometimes not carefully delineated because they will

ot significantly affect the radiation therapy plan anyway. 

The segmentation method we proposed in this paper can be

urther extended in a number of ways. First, the original segmenta-

ions we used to train our atlas for normal brain structures include

ozens of segmented structures. The method could directly handle

ny of these structures by simply retraining the atlas on segmen-

ations in which these structures have not been merged into global

atch-all labels as we did in the current paper. This may be help-

ul if additional OARs need to be segmented or for automating CTV

ecisions based on anatomical context ( Unkelbach et al., 2014 ). A

etailed whole-brain segmentation can also be useful for training

utcome prediction models, e.g., to study the effect of the radiation

eceived by various structures on cognition ( Conson et al., 2014 ).

 second aspect that we did not explore in the current work is

he method’s innate ability to quantify uncertainty in the produced

egmentations, by analyzing the variation across the MCMC seg-

entation samples instead of simply retaining the mode in each

oxel. As shown in Lê et al. (2016, 2017) , uncertainty in segmenta-

ion boundaries of tumors and OARs can be propagated onto un-

ertainty in radiation dose distributions, which has interesting po-

ential applications in the optimization and the personalization of

adiation therapy planning. In such applications, however, it will

ikely be imperative to also take into account the uncertainty on

tlas deformations instead of using a point estimate for the atlas

ode positions η, as we did in the current work, for instance by

sing the Hamiltonian Monte Carlo ( Duane et al., 1987 ) technique

e used for this purpose in Iglesias et al. (2013) . 

Segmenting one subject with the proposed method currently

akes around 40 min. Although a manual delineation procedure is

ypically faster, the method can still be a useful aid in the clini-

al work flow, as no manual input is needed before or during the

egmentation procedure. A further speed-up would be necessary

o use the method for continuous segmentation during an image-

uided radiation therapy session ( Lagendijk et al., 2014 ). Since the

mplementation used in this paper has mainly been focused on

emonstrating the feasibility of the method rather than optimizing

peed, a further speed-up would be expected with a more efficient

mplementation, especially with one that utilizes GPUs. 
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ppendix A. Sampling from p ( θ|l, z, y, D) 

Here we describe how we sample from p ( θ| l, z, y, D ) in the

locked Gibbs sampler used in Section 2.3 . 

Table 3 specifies a number of linear constraints on the Gaussian

eans { μxg } in the prior p ( θ), encoding prior knowledge about tu-

or appearance relative to normal brain tissue. Stacking all Gaus-

ian means into a single vector μ = ( . . . , μT 
xg , . . . ) 

T 
allows us to ex-

ress these constraints in the form 

 μ ≤ b , 

https://doi.org/10.13039/100000097
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here the values in each row of A and b are chosen to match the

orresponding line in Table 3 . 

Introducing the “one-hot” auxiliary variable t i = { t xg 
i 

} to in-

icate which individual Gaussian component the i th voxel is

ssociated with ( t 
xg 
i 

has value one when the voxel belongs

o the g th component of the x th GMM, and zero otherwise)

he target distribution is obtained as a marginal distribution of

 ( θ, { t i }| l, z, y, D ): p( θ| l , z , y , D ) = 

∑ 

{ t i } p( θ, { t i }| l , z , y , D ) . There-

ore, samples of p( θ| l, zy, D ) can be obtained with a blocked Gibbs

ampler of p( θ, { t i }| l, z, y, D ) cyclically sampling from the follow-

ng conditional distributions and subsequently discarding the sam-

les of { t i }: 

p 
({ t i }| θ, l , z , y , D 

)
= 

∏ 

i 

p 
(
t i | θ, x ( l i , z i , y i ) , d i 

)
(A.1) 

ith p 
(
t i | θ, x, d i 

)
= 

∑ G x 
g=1 t 

xg 
i 

γxg N 

(
d i | μxg + C φi , �xg 

)
∑ G x 

g=1 γxg N 

(
d i | μxg + C φi , �xg 

) , 

p 
({ γx }| θ\{ γx } , t , l , z , y , D 

)
= 

∏ 

x 

Dir 
(
γx |{ αxg } G x g=1 

)
, (A.2) 

p 
({ μxg }| θ\{ μxg } , t , l , z , y , D 

)
∝ 

{
N 

(
μ| m μ, S μ

)
if A μ ≤ b 

0 otherwise , 
(A.3) 

p 
({ �xg }| θ\{ �xg } , t , l , z , y , D 

)
= 

∏ 

x 

∏ 

g 

IW ( �xg | S xg , υxg ) , (A.4) 

nd finally 

p 
(
C | θ\ C , t , l , z , y , D 

)
= N ( c | m c , S c ) with c = 

⎛ 

⎝ 

c 1 
. . . 

c N 

⎞ 

⎠ . (A.5) 

ere we have defined the following variables: 

xg = α0 + N xg with N xg = 

∑ 

i 

t xg 
i 

 μ = 

⎛ 

⎜ ⎝ 

. . . 

N 

−1 
xg �xg 

. . . 

⎞ 

⎟ ⎠ 

 μ = 

⎛ 

⎜ ⎝ 

. . . 
m xg 

. . . 

⎞ 

⎟ ⎠ 

with m xg = 

∑ 

i t 
xg 
i 

(
d i − C φi 

)
N xg 

 xg = S 0 x + 

∑ 

i 

t xg 
i 

(
d i − C φi − μxg 

)(
d i − C φi − μxg 

)T 

xg = υ0 
x + N xg 

 c = 

⎛ 

⎜ ⎝ 

�T 
W 

11 � · · · �T 
W 

1 N �
. . . 

. . . 
. . . 

�T 
W 

N1 � · · · �T 
W 

NN �

⎞ 

⎟ ⎠ 

−1 

nd m c = S c 

⎛ 

⎜ ⎝ 

�T 
(∑ N 

n =1 W 

1 n r 1 n 
)

. . . 

�T 
(∑ N 

n =1 W 

Nn r Nn 
)
⎞ 

⎟ ⎠ 

, 

here � = 

⎛ 

⎝ 

φ1 
1 · · · φ1 

P 
. . . 

. . . 
. . . 

φI 
1 · · · φI 

P 

⎞ 

⎠ and W 

mn = diag 
(
w 

mn 
i 

)

ith w 

mn 
i = 

∑ 

x 

G x ∑ 

g=1 

w 

mn 
ixg , w 

mn 
ixg = t xg 

i 

(
�−1 

xg 

)
mn 

, 

r mn = ( r mn 
1 , . . . , r mn 

I ) 
T 
, r mn 

i = d n i −
∑ 

x 

∑ G x 
g=1 w 

mn 
ixg 

(
μxg 

)
n 

w 

mn 
i 

. 

In order to sample from the truncated multivariate Gaus-

ian distribution in Eq. (A.3) , we use the Gibbs sampling ap-

roach proposed in Kotecha and Djuric (1999) and Rodriguez-

am et al. (2004) , which cycles through the conditional distribu-

ions of each component of μ and samples from the corresponding

runcated univariate normal distributions using inverse transform

ampling. 

In our implementation, rather than repeating the Gibbs sam-

ler steps described in Eqs. (A .1)–(A .5) until the Markov chain

eaches equilibrium and an independent sample of θ is obtained,

e only make a single sweep before obtaining new samples of H 

y ,

 

z , and { l, z, y } in the main loop described in Algorithm 1 , ef-

ectively implementing a so-called partially collapsed Gibbs sam-

ler ( Van Dyk and Park, 2008 ). 

ppendix B. Optimizing likelihood parameters in GEM 

lgorithm 

Here we describe how we optimize the likelihood parameters

for a given value of the atlas node positions η in the simplified

odel of the label prior described in Section 2.3.2 . 

We use a generalized expectation-maximization (GEM) algo-

ithm ( Dempster et al., 1977 ) that is very similar to the ones pro-

osed in Van Leemput et al. (1999b) and Puonti et al. (2016) . In

hort, the algorithm iteratively updates the various components of

to the mode of the conditional distributions given by Eqs. (A.1)–

A.5) : 

xg ← 

αxg − 1 ∑ G x 
g ′ =1 

(
αxg ′ − 1 

) , ∀ x, g 

← arg max 
μ

[ (
μ − m μ

)T 
S −1 
μ

(
μ − m μ

)] 
s . t . A μ ≤ b (B.1) 

xg ← 

S xg 

νxg + N + 1 

, ∀ x, g 

 ← m c 

here the “one-hot” auxiliary variables { t i } are replaced by their

xpected values: 

 

xg 
i 

= 

γxg N 

(
d i | μxg − C φi , �xg 

)
p i ( x | η) ∑ X 

x ′ =1 p i 
(
d i | x ′ , θ

)
p i ( x ′ | η) 

, ∀ x, g, i. (B.2) 

olving Eq. (B.1) is a so-called quadratic programming problem, for

hich an implementation is directly available in MATLAB. 
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