877 research outputs found

    A Hybrid Approach of Using Particle Swarm Optimization and Volumetric Active Contour without Edge for Segmenting Brain Tumors in MRI Scan

    Get PDF
    Segmentation of brain tumors in magnetic resonance imaging is a one of the most complex processes in medical image analysis because it requires a combination of data knowledge with domain knowledge to achieve highly results. Such that, the data knowledge refers to homogeneity, continuity, and anatomical texture. While the domain knowledge refers to shapes, location, and size of the tumor to be delineated. Due to recent advances in medical imaging technologies which produce a massive number of cross-sectional slices, this makes a manual segmentation process is a very intensive, time-consuming and prone to inconsistences. In this study, an automated method for recognizing and segmenting the pathological area in MRI scans has been developed. First the dataset has been pre-processed and prepared by implementing a set of algorithms to standardize all collected samples. A particle swarm optimization is utilized to find the core of pathological area within each MRI slice. Finally, an active contour without edge method is utilized to extract the pathological area in MRI scan. Results reported on the collected dataset includes 50 MRI scans of pathological patients that was provided by Iraqi Center for Research and Magnetic Resonance of Al Imamain Al-Kadhimain Medical City in Iraq. The achieved accuracy of the proposed method was 92% compared with manual delineation

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    Brain Tumor Segmentation with Deep Neural Networks

    Full text link
    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test dataset reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster
    • …
    corecore