535 research outputs found

    Gray Image extraction using Fuzzy Logic

    Full text link
    Fuzzy systems concern fundamental methodology to represent and process uncertainty and imprecision in the linguistic information. The fuzzy systems that use fuzzy rules to represent the domain knowledge of the problem are known as Fuzzy Rule Base Systems (FRBS). On the other hand image segmentation and subsequent extraction from a noise-affected background, with the help of various soft computing methods, are relatively new and quite popular due to various reasons. These methods include various Artificial Neural Network (ANN) models (primarily supervised in nature), Genetic Algorithm (GA) based techniques, intensity histogram based methods etc. providing an extraction solution working in unsupervised mode happens to be even more interesting problem. Literature suggests that effort in this respect appears to be quite rudimentary. In the present article, we propose a fuzzy rule guided novel technique that is functional devoid of any external intervention during execution. Experimental results suggest that this approach is an efficient one in comparison to different other techniques extensively addressed in literature. In order to justify the supremacy of performance of our proposed technique in respect of its competitors, we take recourse to effective metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR).Comment: 8 pages, 5 figures, Fuzzy Rule Base, Image Extraction, Fuzzy Inference System (FIS), Membership Functions, Membership values,Image coding and Processing, Soft Computing, Computer Vision Accepted and published in IEEE. arXiv admin note: text overlap with arXiv:1206.363

    Color image segmentation using multispectral random field texture model & color content features

    Get PDF
    This paper describes a color texture-based image segmentation system. The color texture information is obtained via modeling with the Multispectral Simultaneous Auto Regressive (MSAR) random field model. The general color content characterized by ratios of sample color means is also used. The image is segmented into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of MSAR and color features. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectivelyFacultad de Informátic

    Color image segmentation using multispectral random field texture model & color content features

    Get PDF
    This paper describes a color texture-based image segmentation system. The color texture information is obtained via modeling with the Multispectral Simultaneous Auto Regressive (MSAR) random field model. The general color content characterized by ratios of sample color means is also used. The image is segmented into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of MSAR and color features. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectivelyFacultad de Informátic

    Multispectral texture synthesis

    Get PDF
    Synthesizing texture involves the ordering of pixels in a 2D arrangement so as to display certain known spatial correlations, generally as described by a sample texture. In an abstract sense, these pixels could be gray-scale values, RGB color values, or entire spectral curves. The focus of this work is to develop a practical synthesis framework that maintains this abstract view while synthesizing texture with high spectral dimension, effectively achieving spectral invariance. The principle idea is to use a single monochrome texture synthesis step to capture the spatial information in a multispectral texture. The first step is to use a global color space transform to condense the spatial information in a sample texture into a principle luminance channel. Then, a monochrome texture synthesis step generates the corresponding principle band in the synthetic texture. This spatial information is then used to condition the generation of spectral information. A number of variants of this general approach are introduced. The first uses a multiresolution transform to decompose the spatial information in the principle band into an equivalent scale/space representation. This information is encapsulated into a set of low order statistical constraints that are used to iteratively coerce white noise into the desired texture. The residual spectral information is then generated using a non-parametric Markov Ran dom field model (MRF). The remaining variants use a non-parametric MRF to generate the spatial and spectral components simultaneously. In this ap proach, multispectral texture is grown from a seed region by sampling from the set of nearest neighbors in the sample texture as identified by a template matching procedure in the principle band. The effectiveness of both algorithms is demonstrated on a number of texture examples ranging from greyscale to RGB textures, as well as 16, 22, 32 and 63 band spectral images. In addition to the standard visual test that predominates the literature, effort is made to quantify the accuracy of the synthesis using informative and effective metrics. These include first and second order statistical comparisons as well as statistical divergence tests

    Classification of color textures with random field models and neural networks

    Get PDF
    A number of texture classification approaches have been developed in the past but most of these studies target graylevel textures. In this work, novel results are presented on Neural Network based classification of color textures in a very large heterogeneous database. Several different Multispectral Random Field models are used to characterize the textures. The classifying features are based on the estimated parameters of these model and functions defined on them. The approach is tested on a database of 73 different color textures classes. The advantage of utilizing color information is demonstrated by converting color textures to gray-level ones and classifying them using Grey Level Co-Occurrence Matrix (GLCM) based features.Facultad de Informátic

    Methods and advanced tools for the analysis of film colors in digital humanities

    Full text link

    Quantifying the Influence of Surface Texture and Shape on Structure from Motion 3D Reconstructions

    Get PDF
    In general, optical methods for geometrical measurements are influenced by the surface properties of the examined object. In Structure from Motion (SfM), local variations in surface color or topography are necessary for detecting feature points for point-cloud triangulation. Thus, the level of contrast or texture is important for an accurate reconstruction. However, quantitative studies of the influence of surface texture on geometrical reconstruction are largely missing. This study tries to remedy that by investigating the influence of object texture levels on reconstruction accuracy using a set of reference artifacts. The artifacts are designed with well-defined surface geometries, and quantitative metrics are introduced to evaluate the lateral resolution, vertical geometric variation, and spatial–frequency information of the reconstructions. The influence of texture level is compared to variations in capturing range. For the SfM measurements, the ContextCapture software solution and a 50 Mpx DSLR camera are used. The findings are compared to results using calibrated optical microscopes. The results show that the proposed pipeline can be used for investigating the influence of texture on SfM reconstructions. The introduced metrics allow for a quantitative comparison of the reconstructions at varying texture levels and ranges. Both range and texture level are seen to affect the reconstructed geometries although in different ways. While an increase in range at a fixed focal length reduces the spatial resolution, an insufficient texture level causes an increased noise level and may introduce errors in the reconstruction. The artifacts are designed to be easily replicable, and by providing a step-by-step procedure of our testing and comparison methodology, we hope that other researchers will make use of the proposed testing pipeline

    Classification of color textures with random field models and neural networks

    Get PDF
    A number of texture classification approaches have been developed in the past but most of these studies target graylevel textures. In this work, novel results are presented on Neural Network based classification of color textures in a very large heterogeneous database. Several different Multispectral Random Field models are used to characterize the textures. The classifying features are based on the estimated parameters of these model and functions defined on them. The approach is tested on a database of 73 different color textures classes. The advantage of utilizing color information is demonstrated by converting color textures to gray-level ones and classifying them using Grey Level Co-Occurrence Matrix (GLCM) based features.Facultad de Informátic

    Unsupervised maritime target detection

    Get PDF
    The unsupervised detection of maritime targets in grey scale video is a difficult problem in maritime video surveillance. Most approaches assume that the camera is static and employ pixel-wise background modelling techniques for foreground detection; other methods rely on colour or thermal information to detect targets. These methods fail in real-world situations when the static camera assumption is violated, and colour or thermal data is unavailable. In defence and security applications, prior information and training samples of targets may be unavailable for training a classifier; the learning of a one class classifier for the background may be impossible as well. Thus, an unsupervised online approach that attempts to learn from the scene data is highly desirable. In this thesis, the characteristics of the maritime scene and the ocean texture are exploited for foreground detection. Two fast and effective methods are investigated for target detection. Firstly, online regionbased background texture models are explored for describing the appearance of the ocean. This approach avoids the need for frame registration because the model is built spatially rather than temporally. The texture appearance of the ocean is described using Local Binary Pattern (LBP) descriptors. Two models are proposed: one model is a Gaussian Mixture (GMM) and the other, referred to as a Sparse Texture Model (STM), is a set of histogram texture distributions. The foreground detections are optimized using a Graph Cut (GC) that enforces spatial coherence. Secondly, feature tracking is investigated as a means of detecting stable features in an image frame that typically correspond to maritime targets; unstable features are background regions. This approach is a Track-Before-Detect (TBD) concept and it is implemented using a hierarchical scheme for motion estimation, and matching of Scale- Invariant Feature Transform (SIFT) appearance features. The experimental results show that these approaches are feasible for foreground detection in maritime video when the camera is either static or moving. Receiver Operating Characteristic (ROC) curves were generated for five test sequences and the Area Under the ROC Curve (AUC) was analyzed for the performance of the proposed methods. The texture models, without GC optimization, achieved an AUC of 0.85 or greater on four out of the five test videos. At 50% True Positive Rate (TPR), these four test scenarios had a False Positive Rate (FPR) of less than 2%. With the GC optimization, an AUC of greater than 0.8 was achieved for all the test cases and the FPR was reduced in all cases when compared to the results without the GC. In comparison to the state of the art in background modelling for maritime scenes, our texture model methods achieved the best performance or comparable performance. The two texture models executed at a reasonable processing frame rate. The experimental results for TBD show that one may detect target features using a simple track score based on the track length. At 50% TPR a FPR of less than 4% is achieved for four out of the five test scenarios. These results are very promising for maritime target detection
    • …
    corecore