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ABSTRACT 
A number of texture classification approaches have been 
developed in the past but most of these studies target gray-
level textures. In this work, novel results are presented on 
Neural Network based classification of color textures in a 
very large heterogeneous database. Several different 
Multispectral Random Field models are used to 
characterize the textures. The classifying features are 
based on the estimated parameters of these model and 
functions defined on them. The approach is tested on a 
database of 73 different color textures classes. The 
advantage of utilizing color information is demonstrated 
by converting color textures to gray-level ones and 
classifying them using Grey Level Co-Occurrence Matrix 
(GLCM) based features. 
Keywords: Color Texture, Color Texture Features, 
Mutispectral Random Field Models, Texture Classification 
 

1. INTRODUCTION 
Classification of textures has become a significant topic of 
research. There are many different approaches that have 
been studied due to the usage of different models for 
extracting features from texture images. From past 
research, it has been observed that classification of color 
textures improves the accuracy of classification over gray-
level. In the experiments preformed in this work, both 
color and gray-level models were used to determine the 
features of the images. The features extracted were then 
used with a neural network for the classification of the 
texture images, and new results are presented for this 
combination of features, classification methodology, size 
of database, and number of classes. 
The color texture models used for feature extraction are 
Multispectral Simultaneous Autoregressive (MSAR), 
Multispectral Markov Random Field (MMRF), and the 
Pseudo-Markov Random Field (PMRF) model. For each 
of the color texture models, a half and full neighborhood 
set is used. The features obtained are used by a neural 
network to distinguish the 73 different texture classes 
present in a very large heterogeneous database with 
minimum training of the neural network, and these results 
are the main novel contribution of this work. 
The advantage of considering color in texture 
classification is also demonstrated in this work. An 
equivalent gray-level database is created for the color 
database used in this study. The gray-level textures are 
then classified using features derived from the GLCM 
with distances of one and two pixels, and the classification 
performance of the neural network is compared to that 
obtained for color textures. There is considerable gain in 
classification accuracy indicating that color information 
does provide substantial advantage to the recognition task 
for a very large heterogeneous database with minimum 
training of the neural network. The overall approach is 
depicted in Fig. 1. 
 
Some Recent and Related Studies 

Some recent examples of color texture classification or the 
involvement of Neural Networks in such task are the 
works presented in [1], [2], [3], and [4]. These papers 
focus on using the pure color vectors as the feature set, 
while they diverge on the classification methodology 
employed (histogram, transform, filtering, co-occurrence, 
neural network), as well as the level of comparison of the 
results with those for grey-level imagery. Also in another 
study [5], specific techniques have been developed 
recently to exploit the large amount of spectral and spatial 
information present in color textures to optimize filters 
aimed at the execution of illumination-invariant color 
texture discrimination. Other recent approaches to color 
texture classification also include the taking of perceptual 
information models into account [6], as well as the usage 
of random environment models [7]. 
The texture segmentation algorithm in [8] considers 
features extracted with a 2-D moving average (MA) 
approach. The 2-D MA model represents a texture as an 
output of a 2-D finite impulse response (FIR) filter with 
simple input process. The 2-D MA model is used for 
modeling both isotropic and anisotropic textures. The 
maximum likelihood (ML) estimator of the 2-D MA 
model is used as texture features. Supervised and 
unsupervised texture segmentation are considered. The 
texture features extracted by the 2-D MA modeling 
approach from sliding windows are classified with a 
neural network for supervised segmentation, and are 
clustered by a fuzzy clustering algorithm for unsupervised 
texture segmentation. 
Oja and Valkealahti [9] have worked with texture feature 
sets based on second-order co-occurrences of gray levels 
of pixel pairs. An extension of the co-occurrences to 
higher orders is prevented by the large size of the 
multidimensional arrays, so the higher-order co-
occurrences are quantized by the Self-Organizing Map, 
called the Co-occurrence Map. This allows a flexible two-
dimensional representation of co-occurrence histogram of 
any order. Experiments with natural grey level and color 
textures showed that the method is effective in texture 
classification and segmentation. 
 

2. IMAGE DATABASE CONSTRUCTION 
For our study, the VisTex database was used [10]. These 
are prepackaged images and considered as one of the 
standard image databases for color texture processing. It is 
comprised of many reference textures and real-world 
textures. A real-world texture is an image where various 
textures appear. A reference natural texture is basically 
homogeneous, and this is what this study employs. This 
distinction is made in Fig. 2. 
From the VisTex database, a maximum of 73 texture 
classes were able to be extracted. Database images with a 
size of 512 x 512 pixels were decimated into 64 x 64 
pixels sub-images to populate the final database. Therefore, 
each larger texture image was fragmented into 64 square 
sub-images as shown in Fig. 3. 
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So each 512 x 512 image supplies 64 texture samples. 
There are a total number of 120 images that can be used 
from the VisTex database, which yielded a database of 
7,680 texture images with 73 texture classes. With this 
approach, not all texture classes have the same number of 
texture image members, but the average number of 
samples or members per texture class is 105. 
After the color database has been generated, there must be 
a grey scale counterpart to it for GLCM. A second 
database of gray-level textures is generated from this color 
database by converting all of the 7,680 color images into 
gray-level ones. This process is carried out using the 
following linear RGB to CIE luminance conversion [11]. 
 

⎣ ⎦5.0B0721.0G7154.0R2125.0YCIE +++=  (1) 
 
The database is then separated into a “training” set and a 
“test” set. The training set has about a randomly chosen 
1/3 of all the images available, while the test set has the 
rest of the images in the database as shown in Fig. 4. The 
training set is used to train the neural network, and once 
the neural network’s weights have been set, results are 
obtained from the test set. 
 
3. MULTISPECTRAL RANDOM FIELD MODELS 
Multispectral Random Field Models are the generalization 
of the gray-level random field models. They were initially 
developed in [12], [13]. These models are capable of 
characterizing color textures and are able to synthesize a 
color texture from the estimated parameters of the model 
fitted to it [13], [12]. In this work, we utilize three such 
models for the classification task. 
 
Multispectral Simultaneous Autoregressive (MSAR) 
Model 
The Multispectral Simultaneous Autoregressive (MSAR) 
model is the first considered model. A pixel location 
within a two-dimensional M x M lattice is denoted by s = 
(i, j), with i, j being integers from the set J = {0, 1, …, M-
1}. The set of all lattice locations is defined as Ω = {s = (i, 
j) : i, j ∈ J}. The MSAR model relates each lattice position 
to its neighboring pixels, both within and between image 
planes, according to the following model equation: 
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with, 
yi(s) = Pixel value at location s of the ith plane 
s and r = two dimensional lattices 
P = number of image planes (for color images, P = 3, 
representing: Red, Green, and Blue planes) 
Nij = neighbor set relating pixels in plane i to neighbors in 
plane j (only interplane neighbor sets, i.e. Nij, i ≠ j, may 
include the (0,0) neighbor) 
θij = coefficients which define the dependence of yi(s) on 
the pixels in its neighbor set Nij 
ρi = noise variance of image plane i 
wi(s) = i.i.d. random variables with zero mean and unit 
variance 
⊕ denotes modulo M addition in each index (a toroidal 
lattice structure is assumed so a complete neighbor set 
could be defined for pixels on the boundary of the image) 

The image observations are assumed to have zero mean 
(i.e., the sample mean is computed and subtracted from all 
pixels). 
The parameters associated with the MSAR model are θ 
and ρ vectors which collectively characterize the spatial 
interaction between neighboring pixels within and 
between color planes. A least-squares (LS) estimate of the 
MSAR model parameters is obtained by equating the 
observed pixel values of an image to the expected value of 
the model equations. This leads to the following estimates 
[13], [12]: 
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Multispectral Markov Random Field (MMRF) Model 
The second kind of model considered is the Multispectral 
Markov Random Field (MMRF) Model. A multispectral 
image may be considered Markovian with respect to its 
neighbor set if it has the following property: 
 
p( yi(s) | all other image observations ) = p( yi(s) | 
neighborhood observations) 
 
Because the conditional distribution of yi(s) given all other 
observations and yi(s) given the neighborhood 
observations are the same, the best linear estimator of the 
observed values may be written in terms of the 
neighborhood observations as: 
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where the estimation error 
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is a stationary noise sequence with unit variance i.i.d 
variates, wi(s) for some choice of cij’s. 
Since the resulting system of equations that could be 
employed to obtain a LS estimate of the model parameters 
is nonlinear, an approximate LS estimate approach is 
employed here. This is an iterative method that involves 
repeatedly solving the pair of equations [13], [12]: 
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Q(s) is evaluated using 

nρρ ˆ=  and 
0ρ̂  is taken as [ 1 1 

1 ]T . The iteration terminates when convergence is 
obtained, i.e. subsequent iterations fail to produce 
significant changes in θ. This approach works well in 
practice, typically requiring less than 10 iterations to 
obtain the LS estimate of MMRF model parameters. 
 
Pseudo-Markov Random Field (PMRF) Model 
The third model is the Pseudo-Markov Random Field 
(PMRF) model which has the same model equations as the 
MMRF: 
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However, by restricting the correlation structure of the 
stationary noise sequences {ei(s)} of the PMRF model, it 
lends itself to a linear LS estimation scheme of its model 
parameters, instead of the non-linear iterative approach 
used for the MMRF model. The assumed correlation 
structure for {ei(s)} is: 
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The LS estimate of the PMRF model parameters is given 
by [13], [12]: 
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Neighborhood Sets 
The parameter that estimates the coefficients which define 
the dependence of a pixel value at a location on a plane on 
the pixels in its neighborhood set is dependent on the type 
of neighborhood set used. In this experiment, two different 
types of neighborhood sets were used, a full and a half 
neighborhood, for each model. The full neighborhood set 
consists of the eight elements that surround the pixel being 
observed, and the half neighborhood consists of the four 
elements of the surrounding eight in the vertical and 
horizontal directions. These neighborhoods are symmetric, 
and they are shown in Fig. 5. 
 
Color Content Characterization 
In addition to modeling color texture, the general color 
content of the image is also important. Additional features 
focusing on the color alone are also considered. This is 
done using the sample mean of the pixel values in the red, 
green, and blue (RGB) planes. The defined feature vector 
is: 
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with 

iµ̂ s being the sample mean of the respective color 
component. The reason for using ratio of color means 
instead of color means themselves is that such a ratio is 
illumination invariant. Assuming that the observed value 
at each pixel is a product of illumination and spectral 
reflectance, the ratios of the color means are invariant to 
uniform changes in illumination intensity (i.e. the power 
of the illumination source changes uniformly across the 
spectrum). This kind of uniform change would cause each 

iµ̂  to change by the same scale factor making the defined 
ratios invariant to illumination changes. This property 
makes the color-content features more robust. In the event 
that the denominator of any of the ratios of the color 
means goes to zero, the color mean with a value of zero is 
changed to a value of one to avoid the mathematical 
exception of dividing by zero. This case; however, is very 
unlikely, since we are dealing with textures and natural 
images that do not tend to have large areas with a solid 
color extreme. 
 
Features for Color Textures 
The features that are used for classification of color 
textures are the color content as discussed previously and 
the estimated θ and ρ parameters of the discussed 
multispectral random field models. For the MSAR model 
with the full neighborhood set, the estimated parameters 
lead to a feature set with 40 features. Using the half 
neighborhood set, 22 features were extracted from the 
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images. Because of the similarities of the parameters of 
the MMRF and PMRF models, the resulting amount of 
features created using the full and half neighborhoods 
were the same for each model respectively. With these two 
models, 28 features were created using a full 
neighborhood set, and using a half neighborhood set, 16 
features were created for each image. The estimated θ 
parameters are used directly whereas ratios of the ρ 
parameters of different color planes in the form of 

g

r

ρ
ρ  and 

b

r

ρ
ρ  are utilized. The justification for using ratios is the 

same as the one explained to use the rations of the color 
means. The parameter vectors θij are a function of the 
selected neighbor sets. Thus we have for the MSAR model 
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with each θij representing a vector with a number of 
elements equal to the number of neighbors in the 
neighborhood set parameters. 
For the MMRF and PMRF models, the θij of symmetric 
neighbors are taken to be equal in these models. 
Consequently, only half of θij parameters are used. 
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and 
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Table 1 summarizes the number of features obtained for 
each model and neighborhood set. 
 

4. FEATURES FOR GREY-LEVEL TEXTURES 
The grey-level version of each of the color textures 
considered in this study is also generated using the 
conversion method discussed previously. In this study, 
GLCM was used. GLCM takes an image with a known 
number of grey-levels and calculates the frequency of the 
gradient of color between pixels; effectively calculating a 
2-D histogram. After this histogram is calculated, the 
values are divided by the total number of pixels so that the 
GLCM becomes a listing of relative probabilities. Finally, 
the probability matrix is read and manipulated such that 
features corresponding to texture properties of the image 
can be calculated. 
To calculate the GLCM, the image is analyzed by starting 
at the upper left-hand corner, at location (0, 0), and then 
sequentially read in a raster scan fashion. An angle of 
analysis for the second pixel must also be used: 0, 45, 90, 
and 135 degrees were used. Because the GLCM 
calculation uses absolute values to determine the grey-
level gradient, angles of 180, 225, 270, and 315 degrees 
are obtained from their symmetric counterparts. 
Additionally, using these angles makes the features 
somewhat rotation invariant. In this project, distances of 1 
and 2 pixels were used, since they are typical values for 

the GLCM technique. After the )GLCM(d, θ  matrices are 
obtained, then the probability matrices )d,y,P(x, θ  are 
calculated. 
Finally, features are derived from the P matrix. While 
GLCM methods have been devised for over 50 different 
types of features, for this experiment, Contrast, Entropy, 
Energy, and Correlation were chosen. The following 
equations illustrate the formulae used for feature 
calculation: 
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Calculating features from GLCM methods is a relatively 
straightforward and fast algorithm. When GLCM is 
employed, the image must be of a minimum size (32 by 
32), or else there will not be sufficient information to 
derive an accurately classifiable feature set. 
 

5. CLASSIFICATION METHOD 
To achieve the classification, a neural network was 
selected, which was trained with the training set of the 
database (about 30% of the total number of images). A 
fully connected 4-layer network is being used in this 
study; it employs 2 hidden layers, and the hyperbolic 
tangent was used as the decision function. The number of 
nodes in the input and output layer are set directly by the 
input database. The input layer size is determined by the 
number of features being presented to the network. The 
output layer size is determined by the number of classes 
existing in the input set. In this study, a total of 73 classes 
are present in the database. The number of nodes in the 
hidden layers is not explicitly specified by the input data 
set. A larger number of nodes may increase the 
performance of the network but it will increase complexity 
and calculation time. The rule for the size of each of the 
hidden layers is given by the following equation [8]: 
 

1F2SIZEHL +×=  (28) 
 
where F is the number of features input to the network. 
The initial value of each weight in the network is set at 
random in the following symmetric range [14]: 
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where Fi is the fan-in of the node. This allows the range 
for possible weights to have different values for each layer. 
An example of the neural network used is shown in Fig. 6. 
 

6. CLASSIFICATION RESULTS 
The neural network classification results are shown in 
Table 2. The number of correctly classified samples out of 
the total of 5,120 (~70% of the total database) tested 
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samples is shown for the color and gray-level images for 
features derived from different models. 
These results demonstrate that very high classification (in 
the 90% range) can be achieved for 64×64 color texture 
images using features of MSAR, MMRF, or PMRF 
models with a simple 8-pixels neighborhood. This high 
classification rates are obtained on a very large 
heterogeneous color texture database with minimal 
training of a neural network. Considering the results for 
both neighborhoods, it may be concluded that the features 
based on the full neighborhood, rather than those based on 
the half neighborhood, would be the best choice for the 
classification task. 
As for classification results of the gray-level counterpart 
images, the accuracy rates are well below 50% for both 
sets of GLCM based features. By comparing the 
classification results of color images to their gray-level 
converted counterparts, the advantage of using color 
becomes apparent. The color results are clearly better. 
While the color textures are classified in the 90% range, 
the rate for gray-level images is below the 50% range. 
When only grey-level information is considered for texture 
classification, the textural details within a single plane can 
become fuzzy, and interaction between different image 
planes becomes more dominant. Inter-plane interactions 
are efficiently captured by the multispectral models 
causing them to perform better than the single plane, gray-
level features. 
 

7. CONCLUSIONS 
In this work three different multispectral random field 
models, MSAR, MMRF, and PMRF, are used for 
supervised color texture classification. Features are 
defined on the estimated parameters of these models fitted 
to the images. These models capture both inter-plane and 
intra-plane interactions of image pixels resulting in richer 
characterization of the image compared to the gray-level 
only GLCM based features. The performance is tested on 
a large database of 5,120 images and 73 classes. It is 
shown that a small and compact neighbor set is all that is 
needed for the classification task. In a neural network 
based classification scheme and utilizing normalized 
features, very high classification in the 90% range is 
obtained for 64×64 images. 
To show the advantage of incorporating color (multi-plane 
activity) in the classification task, gray-level counterparts 
of the color texture images are created and classified using 
GLCM based features. It is shown that the classification 
result is inferior to that of color textures. 
In addition to supervised classification applications, the 
discussed features are particularly attractive in image 
segmentation tasks. The requirements in the image 
segmentation applications are often diametrically opposed; 
the desire for a large number of image features to 
accurately identify uniform texture regions versus the need 
for a spatially compact neighbor set to allow accurate 
detection of texture boundaries. Based on the results of 
this study, the multispectral random field based approach 

can satisfy both requirements providing a good tool for 
image segmentation. 
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Fig. 1.  Overall approach 
 
 

                           
 

Fig. 2.  Real-world texture and reference texture 
 
 

 
 

Fig. 3.  Image sampling 
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Fig. 4.  Partitioning of the overall database 

 
 

 
 
Fig. 5.  Full and half neighborhood sets used in the image classification experiments. The (0,0) position is represented by the 
white circles, and the black circles denote the relative neighbor locations. 
 
 

Table 1. Results of Feature Extraction Process from Color Texture Images 
 

Features Neighborhood Set # of Features # of Images in Database # of Files with Features Created 
MSAR half 22 7,680 7,680 
MSAR full 40 7,680 7,680 
MMRF half 16 7,680 7,680 
MMRF full 28 7,680 7,680 
PMRF half 16 7,680 7,680 
PMRF full 28 7,680 7,680 
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Fig. 6.  This is an example of a 4 Layer fully connected neural network 
 
 

Table 2. Summary of Neural Network Classification Results for 64×64 Images 
 

 
Model Type 

No. of Correctly Classified 
Out of 5,120 

Accuracy 
Rate 

Color Image Database 
MSAR (half neighborhood) 
MSAR (full neighborhood) 
MMRF (half neighborhood) 
MMRF (full neighborhood) 
PMRF (half neighborhood) 
PMRF (full neighborhood) 

3,277 
4,567 
3,645 
4,623 
3,574 
4,628 

64.0% 
89.2% 
71.2% 
90.3% 
69.8% 
90.4% 

Gray-Level Image Database 
GLCM (1 pixel distance) 
GLCM (2 pixels distance) 

2,299 
2,017 

44.9% 
39.4% 
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