1,549 research outputs found

    A Neural Multi-sequence Alignment TeCHnique (NeuMATCH)

    Full text link
    The alignment of heterogeneous sequential data (video to text) is an important and challenging problem. Standard techniques for this task, including Dynamic Time Warping (DTW) and Conditional Random Fields (CRFs), suffer from inherent drawbacks. Mainly, the Markov assumption implies that, given the immediate past, future alignment decisions are independent of further history. The separation between similarity computation and alignment decision also prevents end-to-end training. In this paper, we propose an end-to-end neural architecture where alignment actions are implemented as moving data between stacks of Long Short-term Memory (LSTM) blocks. This flexible architecture supports a large variety of alignment tasks, including one-to-one, one-to-many, skipping unmatched elements, and (with extensions) non-monotonic alignment. Extensive experiments on semi-synthetic and real datasets show that our algorithm outperforms state-of-the-art baselines.Comment: Accepted at CVPR 2018 (Spotlight). arXiv file includes the paper and the supplemental materia

    Intelligent Combination of Structural Analysis Algorithms: Application to Mathematical Expression Recognition

    Get PDF
    Structural analysis is an important step in many document based recognition problem. Structural analysis is performed to associate elements in a document and assign meaning to their association. Handwritten mathematical expression recognition is one such problem which has been studied and researched for long. Many techniques have been researched to build a system that produce high performance mathematical expression recognition. We have presented a novel method to combine multiple structural recognition algorithms in which the combined result shows better performance than each individual recognition algorithms. In our experiment we have applied our method to combine multiple mathematical expression recognition parsers called DRACULAE. We have used Graph Transformation Network (GTN) which is a network of function based systems in which each system takes graphs as input, apply function and produces a graph as output. GTN is used to combine multiple DRACULAE parsers and its parameter are tuned using gradient based learning. It has been shown that such a combination method can be used to accentuate the strength of individual algorithms in combination to produce better combination result which higher recognition performance. In our experiment we were able to obtain a highest recognition rate of 74% as compared to best recognition result of 70% from individual DRACULAE parsers. Our experiment also resulted into a maximum of 20% reduction of parent recognition errors and maximum 37% reduction in relation recognition errors between symbols in expressions

    Preprocessing for Images Captured by Cameras

    Get PDF

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    Topological inference in graphs and images

    Get PDF
    • …
    corecore