

Topological Inference in Graphs and Images

Robin Vandaele

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Computer Science Engineering

Prof. Tijl De Bie, PhD* - Prof. Yvan Saeys, PhD**

* Department of Electronics and Information Systems
Faculty of Engineering and Architecture, Ghent University

** Department of Applied Mathematics, Computer Science and Statistics
Faculty of Sciences, Ghent University

Supervisors

December 2020

Wettelijk depot: D/2020/10.500/127
NUR 919, 958
ISBN 978-94-6355-450-3

Members of the Examination Board

Chair

Prof. Gert De Cooman, PhD, Ghent University

Other members entitled to vote

Prof. Olivier Gevaert, PhD, Stanford University, USA
Bo Kang, PhD, Ghent University

Prof. Jefrey Lijffijt, PhD, Ghent University
Jan Ramon, PhD, INRIA Lille, France
Bastian Rieck, PhD, Eidgenössische Technische Hochschule Zürich, Switzerland

Supervisors

Prof. Tijl De Bie, PhD, Ghent University
Prof. Yvan Saeys, PhD, Ghent University

Acknowledgements

“Well, why don’t you do both?”, is what my supervisor, Tijl De Bie, asked me
when I told him I was still in doubt whether I should first do an additional Master
in Statistical Data Analysis, rather than starting a PhD. Looking back to this, I
don’t think he will ask this a second time to someone else.

With a Master of Science in Mathematics from Ghent University, you are not
qualified to directly enroll for a PhD in Computer Science at Ghent University.
You have to enroll in an additional doctoral training program consisting of—brace
yourselves—courses in mathematics. Yes. I was such a (proud) mathematician
enrolled for a PhD in Computer Science, a doctoral training program, and a MSc
in Stastical Data Analysis. I furthermore had the brilliant idea to start working on
a topic on which neither I nor my supervisors knew anything about in advance.
Last but not least, I combined this with multiple (and awesome) teaching responsi-
bilities during the first three years of my research. Coming from a Master program
where the only time I needed to use a computer was to write my thesis, it is safe to
assume that it took some time—as in years—for my research finally took off. I’m
not even sure if my ‘plane’ is fully airborne to this day.

The fact that I did not give up after what might be the roughest start of a PhD
compared to all of my friends and colleagues, would never have been possible
without having such a great mentor as Tijl. Hence, undoubtedly he deserves the
first ‘thank you’ in this acknowledgments. Thank you Tijl, for your guidance,
patience, kindness, and hospitality.

I furthermore would like to thank my other supervisor Yvan Saeys, who also
stated one of my favorite quotes: “well, when is your sandwich ever not full?”.
Apart from his excellent guidance, he ensured the possibility of investigating many
biological research topics and applications, which are among my favorite. I defi-
nitely look forward to our future collaborations.

I also thank the members of the examination board for accepting to be part
of the jury, thoroughly reading and evaluating my work, and providing me with
useful and critical feedback that had a noticeable positive impact on this thesis. I
highly appreciate the time and effort you have all voluntarily put into this.

Naturally, my gratitude is not restricted to persons in my professional life.
There is someone in my personal life who I would also like to thank deeply. So-
meone who chose to stick by me during my entire career as a PhD researcher,

ii

in good times and bad times. Someone who showed unconditional love during
these past few months of working late, during the weekends, and holidays. Of
course, I’m talking about my rabbit Smoef. It should be mentioned that the same
applies to my girlfriend Sarah, although she appreciated the working late, during
the weekends, and holidays a tad less.

I would also like to express my gratitude to many of my former and current
colleagues at the AIDA research group (in alphabetical order): Ahmad, Alex,
Bo, Dieter, Edith, Jefrey, Lemon, Len, Maarten, Paolo, Raphaël, Sander, Xi, and
Yoosof, for the enjoyable times we shared and those that are yet to come. Simi-
larly, I would like to thank all my many other former and current colleagues at
the DaMBi research group, with a special thanks to Wouter Saelens and Robrecht
Cannoodt for guiding me through my cell trajectory inference experiments, and
Jonathan Peck, with whom I experienced great times both during my former life
as a mathematics student, as well as during my time as a PhD researcher.

I furthermore thank some of my external colleague researchers, namely Olivier
Gevaert who showed to be a great mentor during my stay at Stanford University
and remains such to this day, Bastian Rieck with whom I can actually discuss
topological data analysis in full mathematical detail, as well as Gert De Cooman
and his entire research group with whom I experienced amazing times teaching and
in Pizzeria La Rustica. Gert, if you are reading this thesis, note that it is important
to realize that we consider 0 a natural number. Of course, this applies to anybody
else reading this thesis as well.

A special thanks goes to my high school teacher in mathematics Jan Van Lan-
genhove, who enriched me with the beautiful world of mathematics. He lies at the
roots of my journey that started off by choosing to become a mathematician rather
than an engineer. No regrets.

Finally, I deeply thank my (step)parents, family members, and friends, for their
thorough support during this tremendous journey.

Oh wait! I forgot someone! I furthermore thank one of my dearest former
colleagues, Florian Adriaens, with whom I experienced some of the most fun times
during my time as a PhD researcher, such as during our trip to Alaska. Similar to
how Bo always welcomed me with a pretty smile when I arrived at work around
8.30am, I welcomed Florian with the same smile when he arrived at noon.

Damn you coronavirus for making me miss these smiles.

Gent, oktober 2020
Robin Vandaele

Samenvatting

Grafen zijn naar voren gekomen als krachtige datarepresentaties, van voor de
hand liggende voorbeelden zoals sociale netwerken tot nabijheidsgrafen van hoog-
dimensionale metrische data. Het begrijpen van de topologische structuren van
deze grafen geeft ons cruciale inzichten in hun globale relationele eigenschap-
pen. Ze leren ons hoe verschillende sociale gemeenschappen met elkaar verbonden
zijn door middel van sleutelfiguren, hoe verschillende biologische cellen uit elkaar
evolueren tijdens celdifferentiatie, of welke groepen knooppunten samenhangende
objecten vormen in biomedische afbeeldingen.

Een eerste voorbeeld van een dergelijke topologische structuur vind je op de
omslag van dit proefschrift,1 alsook in Figuur 1, die de distributie van aardbe-

1Mogelijks ontbreekt de omslag in een online versie van dit proefschrift. In dit geval verwijzen we
de lezer naar Figuur 1.

Figuur 1: (Nederlands). De meeste aarbevingen vinden plaats nabij de randen waar
tektonische platen samenkomen, die een graafgestructureerd model vormen.

(English). Most earthquakes occur at the boundaries where tectonic plates meet, forming a
graph-structured topology.

iv

vingslocaties op aarde laat zien. De meeste aardbevingen vinden plaats nabij een
grens tussen twee tektonische platen. Het zijn zelfs deze locaties die geologen
helpen de grenzen van deze platen te bepalen. Deze grenzen kunnen worden weer-
gegeven door verschillende lijnsegmenten op (een kaart van) de aarde, en samen
vormen ze het onderliggende graafgestructureerd topologisch model van de aard-
bevingslocaties. Dit model wordt benaderd door de oranje graaf op de omslag van
dit proefschrift.

Merk op dat dit formeel gezien geen topologisch model in een graaf is, maar
eerder een graafgestructureerd model op zichzelf. Men kan echter eerst een boven-
liggende graaf construeren uit de aardbevingslocaties, door elke aardbevingsloca-
tie x met elk van diens ‘naburige’ aardbevingslocaties y te verbinden door middel
van een boog {x, y}. Deze bogen kunnen formeel bepaald worden door middel van
een afstandsmetriek tussen de aardbevingslocaties, bijvoorbeeld door middel van
de sferische (geografische) afstanden op aarde, en een nabijheidsregel dat specifi-
ceert wanneer twee locaties (lokaal) dichtbij genoeg zijn volgens deze afstanden
om verbonden te worden met een boog. Het onderliggende model van de originele
data (de aardbevingslocaties), valt dan samen met het onderliggende model van
dergelijke nabijheidgraaf geconstrueerd uit deze data. Zoals bovendien zal blijken
uit dit proefschrift, is dit precies hoe we te werk zullen gaan voor het bepalen van
graafgestructureerde modellen in puntenwolken, d.w.z. eindige metrische ruimten
die overeenkomen met onze waargenomen data, zoals de aardbevingslocaties.

Merk op dat hier sprake is van nogal verwarrende terminologie: we beschou-
wen graafgestructureerde modellen in grafen, die als het ware zelf als graafge-
structureerde modellen kunnen worden beschouwd. In dit proefschrift zullen we
dit conceptueel duidelijk maken door middel van veel verschillende voorbeelden,
waarvan de eerste al gegeven wordt op de omslag van dit proefschrift. Een van
de belangrijkste doelen van dit proefschrift, alsook wat we als onze belangrijk-
ste bijdrage beschouwen, is dan ook dat we op een overtuigende manier aantonen
dat graafgestructureerde modellen in veel grafen voorkomen en een veel lagere
topologische complexiteit (in termen van hoeveel knooppunten, cycli, bladeren,
multifurcaties, . . . ,) hebben dan de originele bovenliggende graaf.

Een tweede voorbeeld wordt gegeven in Figuur 2. Hier zien we een graaf die
weergeeft hoe verschillende karakters uit de Harry Potter-serie met elkaar verbon-
den zijn door middel van vriendschappelijke relaties. Elk personage kan nauw ver-
bonden worden met, d.w.z. is hoogstens een paar vriendschappen verwijderd van,
één van de hoofdpersonages, zoals Perkamentus, Voldermort of natuurlijk Harry
Potter zelf. Verder zijn er ook directe en indirecte verbanden tussen deze hoofd-
personages. Het is waarschijnlijk voldoende dat u zich ervan bewust bent dat de
serie bestaat, om te weten dat Harry Potter en Voldermort niet de beste vrienden
zijn. Desalniettemin toonde Bartemis Crouch Jr. (niet de vriendelijkste van alle
personages voor degenen die minder bekend zijn met de serie), die rechtstreeks
verbonden is met Voldermort, een bijzondere interesse in Marcel Lubbermans (be-
slist een vriendelijker personage), die op zijn beurt rechtstreeks is verbonden met
Harry door middel van een vriendschappelijke relatie. Het zijn precies die directe
en indirecte verbanden tussen deze hoofdpersonages die het model vormen dat

v

Figuur 2: (Nederlands). Een circulair topologisch model (rood) in de Harry Potter graaf
(blauw), die vrienschappelijke relaties tussen personages uit de sage weergeeft. De layout

van de graaf is gegeven door een krachtgestuurd layout algoritme.

(English). A circular topological model (red) in the Harry Potter network (blue), which
displays friendly relationships between characters of the saga. The graph layout is

provided through a force-directed layout algorithm.

ten gronde ligt aan de originele graaf, hier benaderd door de rode graaf in Figuur
2. Niettemin hoeven niet alle hoofdpersonages noodzakelijkerwijs in dit model te
worden opgenomen. Zo zijn bijvoorbeeld Harry Potter, Ron Wemel en Hermelien
Griffel zo nauw met elkaar verbonden, dat één van hen (zoals Harry) voldoende is
om dit cluster van personages in het model te representeren.

Merk op dat we in tegenstelling tot het voorgaande voorbeeld van aardbe-
vingslocaties, nu een expliciet gegeven graaf beschouwden en het dan ook inge-
wikkelder is om over een continue versie van dit model spreken, of over een extrin-
sieke ruimte waarin het zich bevindt. Bovendien zijn de aardbevingslocaties een
gevolg van hun onderliggend graafgestructureerd model, d.w.z. de verdeling van
aardbevingen is het resultaat van de positionering van de tektonische platen (en de
wrijving daartussen) en niet andersom. Het is voor discussie vatbaar of soortgelijk
causaal verband tussen het ‘model’ en de ‘data’ geldt voor de Harry Potter graaf,
waarbij J.K. Rowling, de schrijfster van de serie, eerst de globale relaties tussen
‘goed’ en ‘kwaad’ zou kunnen hebben vastgelegd, om pas nadien de karakters hier
omheen te plaatsen (onwaarschijnlijk met grafentheorie in gedachten). Echter,
voor een groot aantal andere realistische grafen zou dergelijke analoge interpre-
tatie minder steek houden. Een goed voorbeeld hiervan zal geı̈llustreerd worden
in Hoofdstuk 3, door middel van de Karate graaf, een welbekende graaf binnen

vi

het domein van graafdelving. Zoals we in Hoofdstuk 3 zullen bespreken, kan
deze graaf eenvoudig gemodelleerd worden door middel van een lineaire verbin-
ding tussen twee afzonderlijke gemeenschappen. Echter, gezien dit een voorbeeld
is van een volledig non-fictieve graaf—waarbij we filosofische vragen zoals “of
er goddelijke entiteiten aan het werk zijn” en “of we allemaal in een gigantische
computersimulatie leven, waarin we een virtuele wereld in Matrix-stijl ervaren
waarvan we denken dat die echt is” achterwege laten—was dit lineaire model in
de Karate graaf niet aanwezig vóór de werkelijke data, d.w.z. de entiteiten in de
graaf. Doorheen dit proefschrift bespreken we dan ook dat vereenvoudigde graaf-
gestructureerde modellen van nature voorkomen in veel realistische grafen, maar
omgekeerd zijn niet al deze grafen het causaal gevolg van een dergelijk model.

In het eerste en grootste deel van dit proefschrift (hoofdstukken 3-6) bestuderen
we het probleem van topologische inferentie van graafgestructureerde modellen in
grafen, hetgeen overeenkomt met het identificeren van de modellen zoals we hier-
boven besproken hebben. Daartoe onderzoeken we bestaande en ontwikkelen we
nieuwe methoden binnen het opkomende gebied van de topologische data-analyse
(TDA). Merk op dat ons gebruik van de term TDA moet worden geı̈nterpreteerd in
de zin dat we de onderliggende ‘vorm’ van onze data bestuderen, zonder ons daar-
voor noodzakelijk te beperken tot methoden uit de topologie. Dergelijke methoden
worden evenals gecategoriseerd binnen (of worden soms zelfs beschouwd als een
synoniem voor) TDA, zelfs wanneer hun einddoel niet specifiek topologische infe-
rentie is. Inderdaad, de meest prominent gebruikte en bestudeerde methode binnen
TDA onder de naam van persistente homologie—die ook een belangrijke rol zal
spelen in meerdere van onze hoofdstukken—heeft recent geleid tot veel nieuwe
toepassingen binnen machinaal leren, zoals voor regressie- en classificatieproble-
men. Echter, in dit proefschrift zullen we ons niet beperken tot louter methodes
uit de topologie om topologische inferentie uit te voeren, maar zullen we hiervoor
ook een groot aantal methodes uit de grafentheorie en optimalisatie bestuderen en
ontwikkelen.

Doorheen dit proefschrift zullen we ons in het bijzonder focussen op directe
toepassingen van topologische inferentie in grafen voor celtraject-inferentie (CTI),
hetgeen formeel zal worden geı̈ntroduceerd in Hoofdstuk 3. Hier is het de taak om
het graafgestructureerd model dat het differentiatieproces voorstelt dat biologische
cellen ondergaan tijdens cellulaire ontwikkelingen, te bepalen . Denk bijvoorbeeld
aan gezonde cellen die plotseling evolueren tot kankercellen, of immuuncellen die
zich moeten aanpassen om ons lichaam te beschermen tegen nieuwe interne geva-
ren. Het meten van de gen- of eiwitexpressie van vele individuele cellen op een
bepaald moment en positie in een dergelijk differentiatieproces, leidt tot hoogdi-
mensionale puntenwolkgegevens (elk punt komt overeen met één cel) waarbij elke
dimensie overeenkomt met de expressie van een bepaald gen of eiwit. Net als bij
de aardbevingslocaties die we hierboven beschreven, is ons doel om het model dat
het biologische differentiatieproces van de cellen voorstelt te bepalen uit een na-
bijheidsgraaf opgebouwd uit deze (in dit geval hoogdimensionale) data. Het zal
echter blijken dat dit een enorm moeilijk probleem is, met veelal slechte resultaten
in de praktijk, zowel voor de methoden die wij zullen ontwikkelen alsook de an-

vii

dere huidige methoden die hiervoor worden toegepast. Een belangrijk onderdeel
van ons proefschrift is dan ook dat we de inherente moeilijkheden waarmee CTI
wordt geconfronteerd in een wiskundig geformaliseerde manier zullen beschrijven
en aantonen. Dit is het onderwerp van Hoofdstuk 6.

In het tweede deel van ons proefschrift (Hoofdstuk 7) bestuderen we het pro-
bleem van topologische inferentie in afbeeldingen. Zoals we zullen bespreken,
kan dit wiskundig gezien ook als een ‘topologische inferentie in grafen’-probleem
worden beschouwd. We maken dit onderscheid dan ook vooral voor de duide-
lijkheid. Echter zullen we geen graafgestructureerde modellen afleiden in dit deel,
maar meer bepaald goed gedefinieerde 2D-vormen en objecten die worden weerge-
geven door de afbeelding. Daartoe breiden we de toepasbaarheid van persistente
homologie uit tot realistische afbeelding, door middel van een casestudy waarin
we biomedische huidlaesiebeelden beschouwen binnen de context van ongesuper-
viseerde segmentatie.

Onze belangrijkste bijdragen in dit proefschrift (en het werk dat ertoe geleid
heeft,) zijn als volgt.

• Zoals hierboven vermeld, beschouwen we het feit dat we op een overtui-
gende manier aantonen dat topologische modellen in veel verschillende gra-
fen voorkomen als de belangrijkste bijdrage van dit werk. Ons werk zal
daarom vergezeld zijn van vele en grondige visualisaties van dergelijke mo-
dellen, met toepassingen die variëren van simplistische voorbeelden zoals
het modelleren van onze geliefde vriend Pikachu, tot meer serieuzere toe-
passingen zoals sociale netwerken en CTI.

• We voorzien een autonome inleiding tot de gebieden van grafentheorie, to-
pologie en TDA, in Hoofdstuk 2.

• We voorzien een inleiding tot topologische inferentie in grafen en bespre-
ken de moeilijkheden met betrekking tot het wiskundig formaliseren van dit
probleem in Hoofdstuk 3.

• We ontwikkelen en bestuderen een methode voor topologische inferentie
uit nabijheidsgrafen (meer specifiek uit Rips-grafen opgebouwd uit punten-
wolkgegevens) gebaseerd op locale topologische informatie (Hoofdstuk 4).

• We ontwikkelen en bestuderen een methode voor topologische inferentie
uit meer algemeen gegeven grafen met behulp van tussenliggende woud-
representaties, waarvoor we ook het concept van een f -den introduceren
(Hoofdstuk 5).

• We introduceren een nieuwe functie geëvalueerd op knopen in grafen, ge-
naamd de grenscoëfficiënt, die intuı̈tief de binnen- en buitenkant van een ge-
geven graaf aangeeft door middel van meetkundige informatie (Hoofdstuk
5).

• We introduceren een nieuw optimalisatieprobleem in grafen voor topologi-
sche inferentie door middel van woudrepresentaties. Verder leiden we veel

viii

belangrijke theoretische resultaten af uit dit probleem, waaruit blijkt dat deze
enorm interessant is vanuit zowel een wiskundig als computationeel stand-
punt (Hoofdstuk 5).

• We tonen dat zelfs de meest performante onder de huidige CTI-methoden
nog steeds slecht presteren voor veel celtraject-datasets, of het aantal blade-
ren, d.w.z. de begin- en eindstadia, binnen boomgestructureerde biologische
differentiatieprocessen onderschatten (Hoofdstuk 5). Verder verantwoorden
we het gebruik van een topologische afstandsmetriek om deze moeilijkhe-
den in een wiskundig geformaliseerde manier te beschrijven (Hoofdstuk 6).

• We breiden de toepasbaarheid van TDA uit tot ongesuperviseerde object-
detectie in realistische afbeelding door middel van topologische beeldmo-
dificatie. Alsook ontwikkelen we een methode die dergelijke topologische
informatie gebruikt voor topologische beeldverwerking, waarbij de topolo-
gische objecten van belang worden gemarkeerd op de afbeelding. We tonen
zowel kwalitatief als kwantitatief aan dat topologische beeldverwerking in
staat is om verschillende methoden voor ongesuperviseerde binaire segmen-
tatie, oversegmentatie, alsook randdetectie te verbeteren, door middel van
een casestudy van biomedische huidlaesiebeelden (Hoofdstuk 7).

• Ten slotte en gerelateerd aan onze eerstgenoemde bijdrage, door aan te to-
nen dat topologisch modellen voorkomen in enorm veel verschillende gra-
fen, ongeacht of ze gegeven zijn of afgeleid uit puntenwolken, stimuleren we
nieuw onderzoek naar het formaliseren van deze modellen, nieuwe en effec-
tievere methoden om deze te infereren, alsook nieuwe toepassingen van deze
modellen zoals visualisatie, graafinbedding en graaf-neurale-netwerken. We
bespreken deze onderwerpen in detail als toekomstig werk en geven alvast
enkele concrete aanwijzingen hiervoor (Hoofdstuk 8).

Summary

Graphs have emerged as powerful representations of data, from obvious examples
such as social networks, to proximity graphs of high-dimensional metric data. Un-
derstanding the topological structures of these graphs provides us crucial insights
into their global relational properties. They teach us how different social commu-
nities are connected through key figures, how different biological cells evolve from
each other during cell differentiation, or which groups of nodes form coherent ob-
jects in biomedical images.

A first example of such topological structure is illustrated on the cover of this
thesis,2 as well as in Figure (Figuur) 1 in the Dutch summary of this thesis above,
which shows the distribution of earthquake locations on the Earth. Most earthqua-
kes tend to occur at the boundaries where the tectonic plates meet. As a matter
of fact, the locations of earthquakes actually help geologists to define the boun-
daries of these tectonic plates. These boundaries can be displayed by various line
segments on (a map of) the Earth, and together, they form the underlying graph-
structured topological model of earthquake locations. This model is approximated
by the orange graph on the cover of this thesis.

Note that this is not formally a topological model in a graph, but rather a graph-
structured model itself. However, one may first construct a superimposed graph
from the earthquake locations, by connecting each earthquake location x to each
one of its ‘neighboring’ earthquake locations y by an edge {x, y}. These edges
may formally be defined through a distance measure between the earthquake lo-
cations, e.g., the great-circle (geographic) distances, and a neighborhood rule that
specifies when two locations are (locally) close enough according to these distan-
ces to be connected by an edge. The underlying model of the original data (the
set of earthquake locations), then coincides with the underlying model of such a
proximity graph constructed thereof. Moreover, as we will show in this thesis, this
is exactly how we proceed for inferring graph-structured models in point clouds,
i.e., finite metric spaces corresponding to our observed data, such as the earthquake
locations.

Remark the rather confusing mix of terminology here: we are considering
graph-structured models in graphs, which can be regarded as graph-structured mo-

2Possibly the cover is missing from an online version of this thesis. In this case we refer the reader
to Figure (Figuur) 1.

x

dels themselves. Throughout this thesis, we will make this conceptually clear by
means of many different examples, the first of which is already illustrated on the
cover of this thesis. Indeed, one of the main purposes of this thesis, as well what we
consider our main contribution, is that we convincingly show that graph-structured
models occur in many graphs, and have a far lower topological complexity (in
terms of how many nodes, cycles, leaves, multifurcations, . . . ,) than the original
superimposed graph.

A second example is given in Figure (Figuur) 2 in the Dutch summary. Here,
we are given a graph that captures how different characters from the Harry Potter
series are linked to each other by means of friendly relations. Every single charac-
ter can be closely connected to, i.e., is at most a few friendships away, from one of
the main characters, such as Dumbledore, Voldermort, or of course, Harry Potter
himself. Furthermore, there are also direct and indirect connections between these
main characters. E.g., it is likely to be sufficient that you are aware that the series
exists, to know that Harry Potter and Voldermort are not the dearest friends. Ne-
vertheless, Bartemis Crouch Jr. (not the kindest of all characters for those who are
less familiar with the series), who is directly connected to Voldermort, showed a
particular interest in Neville Longbottom (definitely a more kind character), who
in turn is directly connected to Harry through friendship. It are exactly those di-
rect and indirect links between these main characters that make up the topological
model underlying the original graph, in this case, represented by the red graph in
Figure (Figuur) 2. Nevertheless, not all main characters must necessarily be in-
cluded in this model. E.g., Harry Potter, Ron Weasley, and Hermione Granger are
all so closely connected to each other, that one of them (such as Harry) suffices to
represent this cluster in the model.

Observe that unlike the former example of earthquake locations, we now con-
sidered a directly given graph, and it is far more complicated to talk about a con-
tinuous version of this model, or an extrinsic space in which it resides in. Fur-
thermore, the earthquake locations are a consequence of their underlying graph-
structured model, i.e., the distribution of earthquakes is a result from the positi-
oning of the tectonic plates (and the friction between them), and not vice versa.
Arguably, a similar causal relationship between the ‘model’ and ‘data’ may hold
for the Harry Potter network, where J.K. Rowling, the writer of the series, might
have derived the global high-level relationships between ‘good’ and ‘evil’ first, and
only then placed the actual characters around it (although unlikely keeping graph
theory in mind). However, for a wide variety of other real-world graphs, such an
analogous interpretation would make far less sense. A good example of this will
be illustrated in Chapter 3 through the Karate network, a well-known graph within
the field of graph mining. As we will discuss in Chapter 3, this graph can be mo-
deled well by a linear connection between two separate communities. However, as
this is an example of a real-world graph—neglecting philosophical questions such
as “whether there are any divine entities at work” or “whether we are all living in-
side a gigantic computer simulation, experiencing a Matrix-style virtual world that
we think is real”—this linear model in the Karate network was not present before
the actual data, i.e., the entities in the graph. Hence, throughout this thesis, we

xi

argue that simplified graph-structured models occur naturally in many real-world
graphs, but conversely, not all of these graphs are the causal result of such model.

In the first and major part of our thesis (Chapters 3-6), we consider the pro-
blem of topological inference of graph-structured models in graphs, which coinci-
des with inferring the models as discussed above from our data. To this end, we
investigate existing and develop new methods within the rising field of topological
data analysis (TDA). Note that our use of the term TDA should be interpreted in
the sense that we are studying the underlying ‘shape’ of our data, without neces-
sarily restricting to techniques from topology for this purpose. These techniques
are also categorized into (or sometimes even considered synonym to) the field
TDA, even though their end goal may be different from actual topological infe-
rence. Indeed, the most prominently used and studied method within TDA under
the name of persistent homology—which will also play a major role in multiple of
our chapters—has led to many recent advantages within general machine learning
problems such as regression and classification. However, we will not restrict to
purely techniques from topology for performing topological inference throughout
this thesis, but will also study and develop a vast amount of techniques from graph
theory and optimization for this purpose.

Throughout this thesis, we will particularly focus on direct applications of to-
pological inference in graphs within the field of cell trajectory inference (CTI),
which will be formally introduced in Chapter 3. Here, the task is to infer the
graph-structured model that represents the differentiation process the biological
cells undergo during cellular development. Think of normal cells that suddenly
evolve into a cancer cells, or immune cells that need to adapt to protect our body
against new internal threats. Measuring the gene or protein expression of many in-
dividual cells at a particular time and point in such a differentiation process, leads
to high-dimensional point cloud data (each point corresponding to one cell) where
each dimension corresponds to the expression of one particular gene or protein.
Similar to the earthquake locations above, the model representing the biological
differentiation process of the cells is then to be inferred from a proximity graph
constructed from this (in this case high-dimensional) data. It turns out that this is
a very difficult problem, with often poor results in practice, both for the methods
we will develop as well as for the state-of-the-art. An important part of our the-
sis will hence be explaining the inherent difficulties CTI is confronted with in a
mathematically formalized manner. This is the topic of Chapter 6.

In the second part of our thesis (Chapter 7), we consider the problem of to-
pological inference in images. As we will discuss, this can mathematically be
considered to be a problem of topological inference in graphs as well, and we
make this distinction mainly for clarity. However, we will not be inferring graph-
structured models in this part, but rather well-defined 2D shapes and objects that
are displayed by the image. To this end, we will extend the applicability of per-
sistent homology to real-world images, by considering a case-study of biomedical
skin lesion images within an unsupervised segmentation context.

Our main contributions in this thesis (and the work that led to it) are as follows.
• As mentioned above, what we consider the main contribution of our work is

xii

that we convincingly show that topological models occur in many different
types of graphs. One will therefore find our work accompanied by many
and thorough visualizations of such models, with applications ranging from
toy examples such as modeling our beloved friend Pikachu, to more serious
applications such as social networks and CTI.

• We provide a self-contained introduction to the fields of graph theory, topo-
logy, and TDA in Chapter 2.

• We provide an introduction to topological inference in graphs, and discuss
the difficulties in terms of providing a mathematical formalization of this
problem (Chapter 3).

• We develop and study a method for topological inference from proximity
graphs (more specifically from Rips graphs constructed from point cloud
data) based on local topological information (Chapter 4).

• We develop and study a method for topological inference from general gi-
ven graphs by using intermediate forest representations, for which we also
introduce the concept of an f -pine (Chapter 5).

• We introduce a new vertex-valued function termed the boundary coefficient
(BC), that intuitively marks the inside and the outside of a given graph based
on geometrical information (Chapter 5).

• We introduce a new graph optimization problem termed Constrained Leaves
Optimal subForest (CLOF) for performing topological inference through
forest representations. Furthermore, we derive many important theoretical
results from this problem, showing that CLOF is highly interesting from
both a mathematical as well as a computational perspective (Chapter 5).

• We show that even the highest ranked CTI methods still lead to a low per-
formance on many cell trajectory data sets, or commonly underestimate the
number of leaves, i.e., the start and end states, within tree-structured biolo-
gical differentiation processes (Chapter 5). We furthermore justify the usage
of a topological distance metric to explain these difficulties in a mathemati-
cally formalized manner (Chapter 6).

• We extend the applicability of TDA to improve unsupervised object detec-
tion in real-world images through topological image modification (TIM). We
furthermore develop a method that uses such topological information for to-
pological image processing (TIP), highlighting the topological objects of
interest on the image. We qualitatively and quantitatively show that TIP im-
proves various unsupervised methods for binary segmentation, oversegmen-
tation, and edge detection, through a case-study of biomedical skin lesion
images (Chapter 7).

• Finally, and related to our first stated contribution, by showing that topologi-
cal models occur in a wide variety of graphs, whether given or derived from
point clouds, we aim to stimulate new research into how to formalize these
models, more effective methods for inferring these, as well as new appli-
cations of these models such as visualization, graph embedding, and graph
neural networks. We discuss these topics more concretely as future work,
and provide some first directions to these (Chapter 8).

Acronyms

BC Boundary Coefficient

CLOF Constrained Leaves Optimal subForest
CTI Cell Trajectory Inference

GCN Graph Convolutional Network

kNN k Nearest Neighbor

LCC Local Cluster Coefficient
LTDA Local Topological Data Analysis

MDS Multidimensional Scaling
MST Minimum Spanning Tree

PCA Principal Component Analysis

TDA Topological Data Analysis
TIM Topological Image Modification
TIP Topological Image Processing

xiv

Publications

The contents of this thesis is based on, but not limited to, the results reported in
the following papers.

Articles in Journals

• Robin Vandaele, Yvan Saeys, Tijl De Bie. Mining Topological Structure
in Graphs through Forest Representations. Journal of Machine Learning
Research, 21(215):1–68, 2020. [1]

• Robin Vandaele, Guillaume Adrien Nervo, and Olivier Gevaert. Topological
image modification for object detection and topological image processing of
skin lesions. Scientific Reports, 10(1):21061, 2020. [2]

• Robin Vandaele, Bastian Rieck, Yvan Saeys, and Tijl De Bie. Stable Topo-
logical Signatures for Quantifying Patterns through Graph Approximations
of Metric Trees. Submitted to Pattern Recognition Letters, 2020. (Under
revision)

Articles in Archived Proceedings

• Robin Vandaele, Tijl De Bie, and Yvan Saeys. Local Topological Data Ana-
lysis to Uncover the Global Structure of Data Approaching Graph-Structured
Topologies. In Michele Berlingerio, Francesco Bonchi, Thomas Gärtner,
Neil Hurley, and Georgiana Ifrim, editors, Machine Learning and Know-
ledge Discovery in Databases, pages 19–36, Cham, 2019. Springer Interna-
tional Publishing. [3]

Articles in non-Archived Proceedings

• Robin Vandaele, Yvan Saeys, and Tijl De Bie. The Boundary Coefficient: a
Vertex Measure for Visualizing and Finding Structure in Weighted Graphs.
In Proceedings of the 15th International Workshop on Mining and Learning
with Graphs (MLG), 2019. [4]

xvi

Contributions Outside of this Thesis

A particular type of topological structures, termed metric graphs, will play an im-
portant role throughout this thesis. The task of cell trajectory inference (CTI) is to
infer such models from high-dimensional expression data, where each observation
corresponds to a cell at some time during a biological differentiation process, and
each feature (dimension) corresponds to how much a particular gene or protein
is expressed by such cell. As we will see in Chapter 5, even the highest ranked
state-of-the-art methods for performing CTI still struggle to infer the models in
many cases. This will then be further explored in Chapter 6 in a mathematically
formalized manner.

These observations also led to new contributions that are not contained within
this thesis. First, we studied in which way we can and cannot extend the existing
theoretical results for preserving geodesic distances on smooth manifolds [5], to
the case of metric graphs. These results led to a recent paper, that is planned for
presentation during the International Conference on Pattern Recognition (2020),
which will be published in archived proceedings:

• Robin Vandaele, Tijl De Bie, and Yvan Saeys. Graph Approximations to
Geodesics on Metric Graphs. In The International Conference on Pattern
Recognition (ICPR), 2020.

We then continued this research, by providing probabilistic results that state
how likely one will capture geometrical properties of metric graphs through Rips
or kNN graph representations. The results are based on geometrical characteristics
of the model relative to the (Euclidean) space it resides in. We furthermore studied
and discussed the effect of two different types of noise, i.e., low-dimensional and
high-dimensional, on the difficulty of this problem, connecting the latter to known
phenomena that fall under the curse of dimensionality. We concluded that—as
one would also intuitively expect—having a good representation of the data in
the Euclidean space that places regions that are far apart in the model far apart
in the Euclidean space as well (which is one of the main purposes of dimensio-
nality reduction methods) increases the likeliness of one to infer true geometrical
properties of the model through Rips or kNN graph representations. Furthermore,
we studied the use of persistent homology to provide topological signatures that
allows us to evaluate and compare different cell trajectory data representations (for

xviii

varying dimensionality reduction methods or varying proximity graph constructi-
ons) in terms of how well they capture particular topological properties of interest
(components, cycles, or leaves). Note that this study was partially based on the
results from Chapter 6 of the current thesis, where we discuss these signatures in
particular for leaves. This research was then presented through our recent Master
thesis in Statistical Data Analysis:

• Robin Vandaele. Topological Data Analysis of Metric Graphs for Evalua-
ting Cell Trajectory Data Representations. Master’s thesis, Ghent Univer-
sity, 2020. [6]

Table of Contents

Acknowledgements i

Samenvatting iii

Summary ix

Acronyms xiii

Publications xv

Contributions Outside of this Thesis xvii

1 Introduction 1
1.1 Outline . 2
1.2 Visualizations . 7
1.3 Code . 7

2 Literature Overview: Topological Data Analysis and Graphs 9
2.1 Introduction . 9
2.2 Introduction to Category Theory 9
2.3 Basic Concepts of Topology . 10
2.4 Graphs, Proximity Graphs, and Metric Graphs 15

2.4.1 Proximity Graphs . 18
2.4.2 Metric Graphs . 20

2.4.2.1 Geometric Realization of a Graph 21
2.5 Introduction to Topological Persistence 23

2.5.1 Simplicial Homology . 23
2.5.2 Persistent Homology . 32

2.5.2.1 Computing Persistent Homology 35
2.5.2.2 Introducing Persistent Homology through Eu-

clidean Point Clouds 36
2.5.2.3 Persistent Homology of Metric Spaces 40
2.5.2.4 Persistent Homology of Sublevel Filtrations . . 42

2.6 Mapper . 45
2.7 Merge Trees . 47

xx

3 Introduction to Topological Models in Graphs 51
3.1 Introduction . 51
3.2 A Topological Model in the Karate Network 52
3.3 Introduction to Cell Trajectory Inference 54
3.4 On Formalizing Underlying Models in Graphs 56

3.4.1 Properties of a Topological Model in a Graph 57
3.4.2 Expressing the Relationship between the Model and Data:

the Difficulties . 58
3.5 Discussion and Conclusion . 61

4 Methods from Local Topological Data Analysis 63
4.1 Introduction . 63
4.2 Relation to Persistent Local Homology 64
4.3 Locating Multifurcations in Metric Data 64
4.4 Comparing Local to Global Topological Information for Cycles . . 66

4.4.1 Algorithm for (δ0, δ1)-Classification 68
4.5 Reconstructing the Graph from Local Topological Information . . 69

4.5.1 An Example for Cell Trajectory Data 73
4.6 Discussion and Conclusion . 75

5 Inferring Topological Models through Forest Representations 79
5.1 Introduction . 79
5.2 The Boundary Coefficient . 80

5.2.1 The Transmissivity of a Node 81
5.2.2 The Boundary Coefficient as the Average Transmissivity . 82
5.2.3 Properties of the Boundary Coefficient 83
5.2.4 Comparing the Boundary Coefficient to other Measures . 87
5.2.5 Computation of the Boundary Coefficient 88

5.3 Forest Representations of Graphs through f-Pines 91
5.3.1 The f-Pine of a Graph 92
5.3.2 Properties and Computation of the f -Pine 92
5.3.3 The BC-pine of a Graph 94

5.4 Constrained Leaves Optimal subForest (CLOF) 95
5.4.1 Solving CLOF in Tree Graphs 96
5.4.2 Solving CLOF in Forest Graphs 100

5.5 f-Pines for Topological Data Analysis of Graph-Structured Data . 101
5.5.1 Vertex Betweenness as Cost Function for CLOF 102
5.5.2 Other Cost Functions for CLOF 104
5.5.3 Estimating the Number of Leaves 105
5.5.4 Identifying Missing Cycles 106

5.6 Backbone Inference as a Facility Location Problem in Networks . 109
5.7 Experiments: Inferring Backbones in a Variety of Graphs 111

5.7.1 Summary of the used Data Sets 112
5.7.2 Summary of the Baseline Methods 114
5.7.3 Qualitative Analysis of the Results 115

xxi

5.7.4 Quantitative Analysis of the Results 129
5.7.4.1 Introducing General Quantitative Metrics 129
5.7.4.2 Quantitative Summary of our Results 133

5.8 Backbone Inference for Cell Trajectory Inference 136
5.9 Discussion and Conclusion . 141

6 Topological Signatures through Graph Approximations 143
6.1 Introduction . 143
6.2 On Preserving Topology vs. Geometry 144
6.3 Topological Persistence through Graph Approximations 145

6.3.1 Stability through Graph Approximations 147
6.3.2 Stability for Metric Trees 151

6.4 Charting Cell Trajectory Data Sets through Topological Signatures 157
6.5 Discussion and Conclusion . 159

7 Topological Object Detection in Images 161
7.1 Introduction . 161
7.2 Persistent Homology for Object Detection 163
7.3 Topological Image Modification 165

7.3.1 Image Smoothing . 165
7.3.2 Border Modification . 166

7.4 Topological Image Processing 168
7.5 Unsupervised Segmentation of ISIC 2018 Skin Lesion Images . . 171

7.5.1 Topological Image Processing of Skin Lesion Images . . . 171
7.5.2 Presenting the Binary Segmentation Algorithms 172
7.5.3 Metrics for Evaluating Binary Segmentations 172
7.5.4 Experimental Results . 173

7.6 Improving Other Generic Methods 176
7.7 Discussion and Conclusion . 178

8 Concluding Remarks and Future Work 181
8.1 Conclusion . 181
8.2 Future Work . 183
8.3 Our Work in a Broader Context 187

1
Introduction

The recent field of topological data analysis (TDA) aims to study the shape of
data. However, real world data is often accompanied by the presence of noise and
outliers. Furthermore, it is algorithmically difficult or even impossible to classify
topological spaces up to a homeomorphism (formally defined in Chapter 2) [7, 8],
and hence, through empirical data derived thereof. This limits the applications of
TDA, notably to graphs and images, in an unsupervised setting.

Nevertheless, topological information and models can provide us crucial in-
sights into such data. In biology, graphs inferred from high-dimensional cell tra-
jectory data model the dynamic changes immune cells undergo to protect our body
against environmental and internal threats [9]. In geoinformatics, inferring graphs
from GPS coordinates allows one to obtain up-to-date road maps, which are criti-
cal for many applications, such as GPS-based navigation services and autonomous
transportation [10]. In social sciences, graphs allow one to model how different
communities are connected, and identify which figures play a key role in these
connections [11]. In case of biomedical skin lesion images, extracting groups or
clusters of nodes that mark well-defined topological objects on the image allow
fast and automatic segmentation of the lesions.

We therefore study, extend, and develop new and existing methods within the
field of TDA for unsupervised learning, exploratory data analysis, and topological
inference in graphs and images. To this end, we develop the necessary theory and
algorithms, and include thorough verification on both artificial and real world data.

2 CHAPTER 1

1.1 Outline

Literature Overview: Topological Data Analysis and Graphs [Chapter 2]
We start by providing a self-contained, yet basic introduction to topology, graphs
(also called networks), and TDA. This chapter serves as a background chapter and
includes the necessary material, definitions, and results that will be used in the rest
of the thesis. Note that this chapter also touches on many aspects that may not
be required to fully understand all problems we consider and methods we develop
throughout this thesis. However, this chapter is of value to anyone who is inter-
ested in, but unfamiliar with the topic of TDA, and therefore can be considered
as a valid contribution on its own (even though none of the material presented in
this chapter is novel). Indeed, at the time of writing, the majority of the machine
learning community is still unaware of the wide variety of applications in which
TDA finds usage, or even unaware of the entire field of TDA. 1

To help one decide whether one may skip (parts of) this chapter, we summarize
its key observations and material below.

• Section 2.2 contains a very brief introduction to category theory, providing
two of its most important definitions, i.e., categories and isomorphisms. Cat-
egory theory can be regarded as the branch of mathematics that formalizes
mathematical structures in a general setting. E.g., what are the homeomor-
phisms of topological spaces, and what are the isometries of metric spaces,
can all be considered as isomorphisms within their respective categories.
Nevertheless, category theory is rather unimportant throughout this thesis,
and this section mainly serves anyone interested in more fundamental re-
search in TDA.

• Section 2.3 summarizes the basic concepts of topology and metric spaces.
The included definitions (e.g. a topological space in terms of open sets) are
often more complicated than the key ideas we wish to present. The main
takeaways of this section are as follows. Topology studies the properties of
geometric objects that are preserved under continuous deformations, such
as stretching, bending, and twisting. The term homeomorphism refers to a
bijective map between geometric objects that preserves all such topological
properties. It is important to realize that topology is often a rather weak
characterization of structure. E.g., a coffee mug and a donut are topolog-
ically equivalent, and so are any finite metric spaces (point clouds) of the
same size. Topological properties are therefore often much weaker than ge-
ometrical properties: although the spaces above may not be topologically
distinguished, they might based on a metric (distance) defined on them. The

1As was I before I started my PhD.

INTRODUCTION 3

term isometry refers to a bijective map between geometric objects that pre-
serves all distances, and how close two such objects are to being isometric
is expressed through the Gromov-Hausdorff distance between them.

• Section 2.4 presents the necessary definitions from graph theory, as well as
of two proximity graphs we often consider throughout this thesis, termed
the Rips graph (also known as the unit disk graph) and the kNN graph.
We furthermore define metric graphs, which can be regarded as continu-
ous drawings of graphs in some Euclidean space Rd, and which will be the
topological models underlying all point cloud data considered in this thesis.

• Section 2.5 provides an introduction to persistent homology, which may be
considered the main tool of TDA. The first parts of this section (Sections
2.5.1-2.5.2.1) present fundamental results within the field of algebraic topol-
ogy in which persistent homology finds its roots, and how these relate to its
computation. Again, these parts mainly serve anyone interested in more
fundamental research in TDA, and someone unfamiliar with such abstract
mathematics might find them more challenging (yet perhaps, highly inter-
esting).

The following parts (Sections 2.5.2.2-2.5.2.4) illustrate the purpose of per-
sistent homology and what it computes, i.e., persistence diagrams, through
a variety of clear examples. For this thesis, it is more important to under-
stand what persistent homology computes, rather than the actual results from
algebraic topology on which is founded. Hence, we ensured that Sections
2.5.2.2-2.5.2.4 are sufficiently self-contained for this purpose.

Another important takeaway of Section 2.4 is that the information encoded
through (persistent) homology is generally weaker than the information en-
coded through topology, even though the latter was already relative weak
(e.g., when compared to geometry). Neither topology, nor homology can
distinguish between a coffee mug and a donut. However, unlike homology,
topology can e.g. distinguish between a circle and a cylinder, which have
distinct intrinsic dimensions. Fortunately, unlike topology, homology does
admit effective computation and comparison algorithms.

• Section 2.6 presents the mapper algorithm, another extensively studied and
applied method within the field of TDA, that furthermore strongly connects
to graphs as well. We mainly include it because of its importance within
TDA, but also use it for a baseline comparison in Chapter 4. For our purpose,
it is more important to understand the intuitive working of the algorithm
(illustrated in Figure 2.14), rather than the theory behind it, which we mainly
include for completeness.

4 CHAPTER 1

• Finally, Section 2.7 discusses the concept of a merge tree, which is studied
much less commonly than persistent homology and the mapper algorithm
by the current TDA community. The only reason we include it, is because
the concepts and results from this section will play an important role in a
proof of one of our results, i.e., Theorem 6.3.1 in Chapter 6. Apart from this
result, the material in Section 2.7 will not be used in this thesis.

Introduction to Topological Models in Graphs [Chapter 3] In this chapter,
we first present the problem of topological inference from and of graphs on an
intuitive level. We will show this through an example of the Karate network, a
well-known graph within the field of graph mining and analysis [12]. On both an
intuitive and visual level, a linear graph model will fit this network well (Section
3.2). We discuss why it is however difficult to provide a theoretical formalization
of this observation (Section 3.4). Indeed, we emphasize that

simplified graph-structured models occur naturally in many real-world graphs,
but conversely, many graphs are not the causal result of such model.

Hence, although a linear graph model fits the Karate network well, this does not
necessarily mean that the graph itself is a result of a linear graph model.

In contrast to this, the field of cell trajectory inference (CTI) considers high
dimensional point cloud data that is derived from ground-truth graph-structured
models. One of the most important applications we will consider multiple through-
out this thesis is to infer these models from proximity graphs (Section 2.4.1) con-
structed from this data. Hence, a similar to all proximity graphs constructed from
point cloud data throughout this thesis, these graphs will have (and result from) a
ground truth graph-structured model, as we discuss in Section 3.3.

Models from Local Topological Data Analysis [Chapter 4] In this chapter,
we present methods that reconstruct a global non-subgraph model from metric
data based on local topological information obtained through local topological
data analysis (LTDA) [3]. We briefly discuss their connection to persistent local
homology in Section 4.2. These methods are inspired on the fact that for metric
graphs (Section 2.4.2), it suffices to know the degree (Section 2.4.2) of each point
locally everywhere to be able to reconstruct the entire topology. Even more than
this, it suffices to know whether these degree are different from 2 or not [13]. These
properties hold on a theoretical level, and are inferred in a (metric) data setting
through clustering algorithms. In Section 4.3, we show how these are used to infer
degrees and hence multifurcations underlying metric data. Furthermore, in Section
4.4, we show how we can use a similar procedure to infer the presence of cycles
without the need of 1-dimensional (persistent) homology (Section 2.5). In Section
4.5, we introduce a reconstruction algorithm that uses this inferred information to

INTRODUCTION 5

reconstruct the entire global model. We also discuss how storing and using inferred
degrees improves our method over an existing reconstruction method that only
classifies nodes according to their degree being different from 2 or not [13]. We
evaluate our method for various synthetic and real-world metric data throughout
this entire chapter, and conclude upon our work in Section 4.6.

Inferring Topological Models through Forest Representations [Chapter 5]
In this chapter, we present a completely different approach towards inferring graph-
structured models in graphs. These models will be subgraphs—which we term
backbones—of the original given graphs. Unlike the reconstruction methods dis-
cussed in Chapter 4, our backbone inference method will be based on the assump-
tions that real world graphs contain ‘noise’ and ‘outliers’, instead of properties of
the underlying ground truth model (if there even is such a model). Note that the
concepts of noise and outliers may not be well-defined in any given graph. How-
ever, in terms of backbones, there interpretation will be intuitively the same as for
point cloud data, being that they surround the underlying model of the graph.

We introduce the boundary coefficient (BC) [4] for quantifying core nodes in
a graph in Section 5.2. This coefficient is used to construct a forest representa-
tion—in our case termed an f -pine [4]—of the original graph from which we can
much more efficiently infer the backbone. This inference is performed by solving
the Constrained Leaves Optimal subForest (CLOF) problem, which we present in
Section 5.4. We summarize how these three puzzle pieces, being the BC, f -pines,
and CLOF, fit together and form an effective method for inferring backbones in
given graphs (whether metric or non-metric) in Section 5.5. We also show how we
can regard our method as a facility location problem in networks, and discuss its
advantages over existing such methods in Section 5.6. In Section 5.7, we quali-
tatively and quantitatively confirm the applicability, effectiveness, and scalability
of our method for discovering backbones in a variety of graph-structured data,
such as social networks, earthquake locations scattered across the Earth, and high-
dimensional cell trajectory data. We furthermore focus on the use of our method
for the particular case of CTI in Section 5.8. We show it is competitive with the
state-of-the-art through a large scale analysis of 333 cell trajectory data sets, even
though our method was not particularly designed for this task. We conclude upon
the work in this chapter in Section 5.9.

Topological Signatures through Graph Approximations [Chapter 6] In this
chapter, we build further upon our conclusions from Section 5.8. More specifically,
in Section 5.8 we will show that accurately performing CTI is a difficult problem to
this day, and that high-ranked state-of-the-art approaches still struggle to infer cell
trajectories in many data sets, as well as to correctly infer the number of leaves,
i.e., start or end states, of the model. The purpose of Chapter 6 is hence to provide

6 CHAPTER 1

theoretical and practical insights into why this is the case. However, the results
in this chapter extend to any other application considering metric trees (Section
2.4.2).

In Section 6.2 we point out the difference between preserving geometrical and
topological properties further, which we initially started in Section 2.3. Although
preserving geometry is much stronger than preserving topology, the former allows
some form of quantization under which we fail to do this, through the Gromov-
Hausdorff distance (Definition 2.3.14). This means that we can empirically ap-
proximate the geometry of our model arbitrarily well, even when our inferred
topology is incorrect. In Section 6.3, we build upon this fact and provide topolog-
ical signatures for metric trees that capture the underlying topological properties
of these models well whenever we compute these signatures from graph approxi-
mations that preserve the geometry well. In Section 6.4, we use these signatures to
provide a charting of cell trajectory data sets with an underlying metric tree model,
through which we confirm our observations in the field of CTI on both a theoret-
ical and practical level, providing novel insights into this field. We furthermore
explain how our signatures lead to a new method for quality control within the
field of CTI. We conclude upon the work in this chapter in Section 6.5.

Topological Object Detection in Images [Chapter 7] This Chapter—which
came to existence through a three month research visit to the Gevaert lab on mul-
tiscale data fusion at Stanford University School of Medicine—will be notably
different from the previous chapters. We will be considering the problem of topo-
logical inference in images, more specifically for the particular task of object de-
tection. This can still be regarded as a topological inference problem defined on
graphs, as for object detection it suffices to restrict to 0-dimensional (persistent)
homology (Section 2.5). Nevertheless, we will not be inferring graph-structured
models similar as in our previous chapters, but rather well-defined real world 2D
shapes and objects.

In Section 7.2 we discuss how 0-dimensional persistent homology can be used
for the task of object detection, as well as the difficulties that accompany this ap-
proach in case of real-world images. In Section 7.3, we introduce topological
image modification (TIM), in order to overcome these difficulties and enhance the
ability to extract relevant topological information from images. We present two
topological image modifiers, namely smoothing and border modification for this
purpose. In Section 7.4, we discuss how this topological information can be used
to process images in a completely unsupervised way, as to enhance the ability of
segmenting the objects from the images. We qualitatively and quantitatively con-
firm the effectiveness of our approach for improving three different generic and
unsupervised methods for providing binary segmentations of biomedical skin le-
sion images in Section 7.5. We qualitatively confirm that our approach improves

INTRODUCTION 7

three other algorithms for oversegmentation, edge detection, and binary segmen-
tation in Section 7.6. We conclude upon the work in this chapter in Section 7.7.

1.2 Visualizations
(Graph) visualizations will be tremendously important throughout this entire the-
sis, both for explaining our methods as well for qualitative analysis of our results.
Indeed, given how difficult it is to mathematically formalize topological models
(as we will discuss in Section 3.4), thoroughly illustrating their existence is neces-
sary to understand these models. We therefore emphasize how these visualizations
were obtained right from the start. For this, we distinguish between two cases.

• Graphs with an extrinsic space will correspond to proximity graphs (Rips
or kNN) constructed from Euclidean point cloud data. We therefore always
use the coordinates from the original data to provide the layout of the nodes.
These are either given explicitly if the data lies in R2 or R3, or derived
from a dimensionality reduction method. This will be clear from context, or
specified in the main text and/or figure caption.

• Graphs without an extrinsic space correspond to graphs given at hand
(e.g. social networks). These graphs will always be plotted using layout al-
gorithms from the igraph library in R [14]. Unless the layout algorithm has
been specified, we use the standard setting. This means that the algorithm
is chosen through the layout nicely function, a smart function that chooses
the layouter based on the graph itself.

1.3 Code
R (Chapters 4 & 6), R and Python (Chapter 5), and Python (Chapter 7) code for
this entire thesis organized with READMEs per chapter can be found on https:
//github.com/aida-ugent/PhD_Code_Robin_Vandaele.

8 CHAPTER 2

2
Literature Overview: Topological Data

Analysis and Graphs

2.1 Introduction

The emergent area of topological data analysis (TDA) aims to understand the
shape of data [15, 16]. Its tools are increasingly being applied to supervised and
unsupervised machine learning problems [17–21]. The most prominently applied
and studied methods are persistent homology and the Mapper algorithm. In this
chapter, we introduce these methods, the mathematical background on which they
are founded, and other concepts and results that will be used throughout this thesis.

Note that not all of the material presented in this chapter will be equally es-
sential for the rest of this thesis. A concise overview of the key observations and
material per section is therefore provided in Section 1.1.

2.2 Introduction to Category Theory

Category Theory is the branch of mathematics that formalizes mathematical struc-
tures. Many mathematical structures, such as topological spaces, groups, and
graphs, can be studied in a generic setting through category theory.

Categories contain classes, which are collections of mathematical objects that
can be unambiguously defined by a property shared by its members. As not un-
common in mathematics, our notion of class is informal. Classes differ from sets

10 CHAPTER 2

in that the latter can be formally defined through the systematic axiomatic rules
provided by Zermelo–Fraenkel set theory [22]. In contrast to this, classes are very
generic in terms of the mathematical objects they may include.

Definition 2.2.1. (Category). A category C consists of the following three mathe-
matical entities:

• A class Obj(C) whose elements are called the objects;

• A class hom(C) of morphisms, also called arrows or maps. Each morphism
f has a source object a ∈ Obj(C) and a target object b ∈ Obj(C). We write
f : a→ b and say that f is a morphism from a to b. We write HomC(a, b),
or Hom(a, b) when C is clear from the context, to denote the hom-class of
all morphisms from a to b.

• For every a, b, c ∈ Obj(C), a binary operation

◦ : Hom(a, b)×Hom(b, c)→ Hom(a, c) : (f, g) 7→ ◦(f, g) =: g ◦ f,

(one may read ‘g after f ’,) called composition of morphisms, such that the
following axioms hold:

1. For all x ∈ Obj(C), there exists a morhpism 1x : x → x, called
the identity morphism for x, such that for all f ∈ Hom(a, x), and
g ∈ Hom(x, b), we have

1x ◦ f = f and g ◦ 1x = g (identity).

2. For all f ∈ Hom(a, b), g ∈ Hom(b, c), and h ∈ Hom(c, d), we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f (associativity).

Isomorphism are formalized in category theory as the functions that preserve
all mathematical structure of the considered spaces. They are the homeomor-
phisms in the category of topological spaces, the isometries in the category of
metric spaces, and so on.

Definition 2.2.2. (Isomorphism). Let C be a category and f ∈ HomC(a, b). f is
called an isomorphism if there exists g ∈ HomC(b, a) such that g ◦ f = 1a and
f ◦ g = 1b. In this case, g is called the inverse of f , and is also denoted by f−1.

2.3 Basic Concepts of Topology
Topology is the branch of mathematics concerned with the properties of particular
structured spaces, more specifically, topological spaces, that are preserved un-
der continuous deformations, i.e., homeomorphisms. These deformations include
stretching, twisting, crumpling and bending, but not tearing or gluing.

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 11

The focus of this section is to introduce the basic concepts of topology used in
this thesis.

There are several equivalent definitions of a topological space. One may choose
the axiomatisation that is best suited for the application. The choice will have no
significant impact on this thesis. We will use the most commonly used definition
in terms of open sets [23].

Definition 2.3.1. (Topological Space). A Topological Space is an ordered set
(X, τ), where X is a set and τ is a collection of subsets of X , i.e., τ ⊆ P(X),
satisfying the following axioms:

1. ∅ ∈ τ ∧X ∈ τ .

2. Any union of members of τ belongs to τ . This union can be taken over
finitely or infinitely many sets.

3. The intersection of any finite number of members of τ belongs to τ .

The elements of τ are called open sets, and the collection τ is called a topology
on X .

If (X, τ) is a topological space, then for any subset S ⊂ X , τ straightforwardly
induces a topology on S as follows.

Definition 2.3.2. (Subspace Topology). Let (X, τ) be a topological space and
S ⊆ X . Letting τS := {S ∩ U : U ∈ τ}, the tuple (S, τS) forms a topological
space, called the subspace topology on S.

In a sense, topological spaces (X, τ) are some of the weakest structured spaces.
E.g., they do not impose any proximity measure between the points contained in
X . This leads to the rather famous and traditional joke that a topologist cannot
distinguish a coffee mug from a donut (the variant of the pastry with the hole in
the center). This is because either shape can be continuously deformed into the
other.

Definition 2.3.3. (Continuous Function). Let (X, τX) and (Y, τY) be two topo-
logical spaces. A function f : X → Y is said to be continuous, if

V ∈ τY =⇒ f−1(V) := {x ∈ X : f(x) ∈ V } ∈ τX .

Hence, f is said to be continuous if the inverse image f−1(V) of every open set V
in Y is an open set in X .

Definition 2.3.4. (Category of Topological Spaces). The category of topological
spaces Top is the category whose objects are topological spaces and whose mor-
phisms are continuous maps.

12 CHAPTER 2

Homeomorphisms are known as the isomorphisms for the category of topolog-
ical spaces: they preserve all the topological structure of a given topological space.
Due to their importance within the field of topology, we provide their definition—
which also easily follows from Definition 2.2.2—separately.

Definition 2.3.5. (Homeomorphism). Let (X, τX) and (Y, τY) be two topological
spaces. A function f : X → Y is said to be a homeomorphism if it has the
following properties:

• f is a bijection.

• f is continuous.

• The inverse function f−1 : Y → X is continuous.

Hence, the joke that a topologist cannot distinguish a coffee mug from a donut,
is mathematically formalized through the fact that there exists a homeomorphism
between these shapes.

One of the many topological properties preserved through such homeomor-
phisms, are the connected components of a topological space.

Definition 2.3.6. (Connectedness in Topological Spaces). A topological space
(X, τ) is said to be connected if X cannot be represented as the union of two or
more disjoint nonempty open subsets in τ . The maximal connected subsets (in the
sense of Definition 2.3.2) are called the connected components of X .

Topologists are brilliant when it comes to finding counterintuitive examples
that contradict what one might believe. Hence, contrary to what one may sus-
pect, if (X, τ) is a connected topological space, then not necessarily every two
points x, y ∈ X are connected by a path. For this we have the separate notion
of path connectedness, which can easily be shown a strictly stronger concept than
connectedness.

Definition 2.3.7. (Path Connectedness in Topological Spaces). Let (X, τ) be a
topological space. A path in X is a continuous function ϕ : [a, b] → X , for some
a ≤ b ∈ R. Two points x, y ∈ X are said to be path connected, denoted x ∼ y,
if there exists a path ϕ : [a, b] → X such that ϕ(a) = x and ϕ(b) = y. (X, τ) is
said to be path connected if every two points in X are path connected.

The definition above requires that R can be regarded as a topological space.
Indeed, it is a metric space for the metric d : R × R : (x, y) 7→ |x − y|. Below,
we will show that metric spaces are a special type of topological spaces, that have
additional structure imposed on them. Note that when working with data, we most
often deal with metric spaces.

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 13

Definition 2.3.8. (Metric Space). A metric space is an ordered pair (X, d) where
X is a set and d is a metric on X , i.e., a function d : X ×X → R, such that for
any x, y, z ∈ X , the following holds:

d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

d(x, y) = d(y, x) (symmetry)

d(x, z) ≤ d(x, y) + d(x, z) (triangle inequality).

Definition 2.3.9. (Metric Map). Let (X, dX) and (Y, dY) be two metric spaces.
A metric map from X to Y is a function f : X → Y that does not increase any
distance, i.e., for all x1, x2 ∈ X , we have

dY (f(x1), f(x2)) ≤ dX(x1, x2).

Definition 2.3.10. (Category of Metric Spaces). The category of metric spaces
Met is the category whose objects are metric spaces and whose morphisms are
metric maps.

Isometries are the isomorphism of metric spaces (Definition 2.2.2), they pre-
serve all distances between points. Hence, although a coffee mug and a donut may
be topologically equivalent, they are not in the sense of metric spaces, i.e., isome-
tries. Thankfully, for this very reason, humanity is unlikely to pour their morning
drink into their breakfast.

The fact that metric spaces may be regarded topological spaces, is because they
admit an intuitive concept of open sets.

Definition 2.3.11. (Open Sets in Metric Spaces). Let (X, d) be a metric space. A
subset U ⊆ X is said to be open, if

(∀x ∈ U)(∃ε ∈]0,∞[)(∀y ∈ X)(d(x, y) < ε =⇒ y ∈ U).

By letting τ be the set of open sets according to this definition, one easily
shows that (X, τ) forms a topological space.

In data science, we often deal with finite metric spaces, which we term point
clouds.

Definition 2.3.12. (Point cloud). A point cloud is a metric space (X, d) for which
|X| ∈ N.

In practice, point clouds (X, d) often arise from some (unknown and infinite)
metric space (M,d′). The restriction of d′ toX×X must not necessarily be equal
to d, and the purpose of d may be to provide an estimate of d′ [6].

Remark 2.3.13. According Definition 2.3.11, any two point clouds (X, dX) and
(Y, dY) for which |X| = |Y | are topologically equivalent. By this, we mean there

14 CHAPTER 2

Figure 2.1: Two equally sized point cloud samples X (Left) and Y (Right) from the metric
space (R2, dR2), where for d ≥ 1, we denote dRd for the Euclidean distance metric in Rd.
Although X visually resembles a bifurcating structure, according to Definition 2.3.11 it

cannot be topologically distinguished from Y (which resembles more of a ‘blob’).

exists a homeomorphism between the topological spaces (X, τdX) and (Y, τdY)

induced by the metrics dX and dY , respectively. Indeed, observe that for every
r ∈ R+, τdX contains the open ball

BdX (x, r) := {z ∈ X : dX(x, z) < r}.

By taking r = εX := minx 6=z∈X dX(x, z), for every x ∈ X , it follows that
BdX (x, εX) = {x} ∈ τdX The second axiom of a topological space in Definition
2.3.1, now shows that P(X) ⊆ τdX , so that necessarily P(X) = τdX . Anal-
ogously P(Y) = τdY . According to Definitions 2.3.3 & 2.3.5, every bijection
f : X → Y then trivially defines a homeomorphism between the topological
spaces (X, τdX) and (Y, τdY). Figure 2.1 shows that this is yet another example of
how weak topology may be (e.g. in comparison to geometry). Indeed, although the
two data sets in Figure 2.1 cannot be topologically distinguished according to the
Euclidean distance metric, they can be clearly geometrically distinguished for the
same metric (in the sense that there does not exist an isometry between the metric
spaces). Note that it is important to say that these spaces cannot be topologically
distinguished according to the metrics, as one may define other topologies on the
finite sets such that they can indeed be topologically distinguished. An example
of this would be taking the topology τdX induced by the metric dX for the metric
space (X, dX), and the trivial topology τ = {∅, Y } for the metric space (Y, dY).

The Gromov-Hausdorff distance quantifies how ‘close’ two metric spaces are
to being isometric.

Definition 2.3.14. Let (X, dX) and (Y, dY) be two metric spaces. A correspon-
dence is a set C ⊆ X × Y , such that for any x ∈ X , there exists y ∈ Y such

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 15

that (x, y) ∈ C, and vice versa. Given ε > 0, a correspondence C is an ε-
correspondence if (x, y), (x′, y′) ∈ C implies that |dX(x, x′) − dY (y, y′)| ≤ ε.
The Gromov-Hausdorff distance dGH(X,Y) is the infimum of the ε for which there
exists an ε-correspondence between (X, dX) and (Y, dY).

Remark 2.3.15. Below we will informally regard certain spaces (X, d) that define
a metric space apart from the requirement that d is real-valued, as metric spaces
as well. More specifically, we will consider metric spaces (X, d) for which we may
have d(x, y) =∞ for some x, y ∈ X . We then take |∞−∞| = 0 when this occurs
in the definition of an ε-correspondence as a result.

Finally, the definition of totally bounded metric spaces will be important for
introducing the stability results in Section 2.5.

Definition 2.3.16. A metric space (X, d) is called totally bounded if for every
ε > 0 there exists a finite collection of open balls in X of radius ε whose union
contains X .

2.4 Graphs, Proximity Graphs, and Metric Graphs
Graphs, also often called networks, will be the most important mathematical ob-
jects in this thesis. They are widely used for representing relations, information,
and structure in various fields of science. Some examples include:

• gene regulation networks and protein interaction networks in biology [24,
25];

• co-authorship networks and social networks in social sciences [26, 27];

• road networks in geoinformatics [28];

• proximity graphs (Section 2.4.1) constructed from point cloud data, such as
earthquake locations in geology [4], galaxies in space in astrophysics [29],
or cell trajectory data in biology [9];

• graphs modeling partially structured data, such as images [30].

Figure 2.2 shows an example of a graph from social sciences.
As mathematical objects themselves, graphs are commonly studied in the fields

of graph theory, combinatorics, and optimization [31]. They are formally defined
as follows.

Definition 2.4.1. (Graph). An undirected finite graph is a pair G = (V,E), where
V is a finite set whose elements are called the vertices of G, and

E ⊆ {S ∈ P(V) : |S| = 2}

16 CHAPTER 2

Figure 2.2: A well-known example of a graph is the Karate network [12]. This graph
models 34 members of a karate club, and connects members who interacted outside the

club. A conflict between the administrator “John A” (A) and instructor “Mr. Hi” (H) led
to splitting the club into two communities, corresponding to the blue and yellow nodes.

is a set whose elements are called the edges of G. Here, P(V) denotes the power
set of V , i.e., the set of all subsets of V . We also denote V (G) to refer to the set
of vertices of G, and E(G) to refer to the set of edges of G. We say that G is
positively weighted, if we have a weighting function ω : E(G) → R+. For any
v ∈ V , we call δ(v) := {e ∈ E : v ∈ e} the degree of v. We call v a leaf of G if
δ(v) = 1, and a multifurcation if δ(v) ≥ 3.

When referring to any graph in this thesis, we mean in the sense of Definition
2.4.1. Hence, we always consider finite, undirected, positively weighted graphs,
without selfloops (since e ∈ E implies that e is a set for which |e| = 2) or parallel
edges (since E is a set). In the case we have no explicit weighting function ω, i.e.,
for unweighted graphs, we implicitly let ω ≡ 1, i.e., ω equals the constant function
that maps every edge to weight 1. For both weighted and unweighted graphs, the
weighting function will often remain unmentioned, unless specifically required so.

Similar to topological spaces, graphs have a notion of connectedness defined
on them. This is closely related to the concept of paths.

Definition 2.4.2. (Paths in Graphs). Let G = (V,E) be a graph. A walk in G

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 17

is sequence v0, e1, v1, . . . , vk, k ∈ N, of vertices vi ∈ V , 0 ≤ i ≤ k, and edges
ei ∈ E, 1 ≤ i ≤ k, such that ei = {vi−1, vi}. A walk v0, e1, v1, . . . , vk, is called
a path (from v0 to vk) if all vertices v0, . . . , vk are distinct. Note that the edges
e1, . . . , ek in a path v0, e1, v1, . . . , vk, are all distinct, and we sometimes identify
a path with the set of edges it contains. If there exists a path from u to v, then we
say that u and v are connected in G. Note that by taking k = 0 in the definition of
a path, it follows that each node is connected to itself. A walk v0, e1, v1, . . . , vk, is
called a cycle, if k > 2, v0 = vk, and all vertices v0, . . . , vk−1 are distinct.

Definition 2.4.3. (Connectedness in Graphs). Denote by u ∼ v that there exists a
path from u to v inG. Otherwise, we denote u � v. Then∼ defines an equivalence
relation V/∼ on V , whose equivalence classes are determined by the sets

[v] := {v ∈ V : u ∼ v},

for v ∈ V . The elements in V/∼ are called the connected components of G, and
[v] ∈ V/∼ is called the connected component of v. We denote β0(G) := |V/∼ |
for the number of connected components of G. We say that G is connected if
β0(G) = 1, and disconnected if β0(G) > 1. Note that for the empty graph
G = ({}, {}), it holds that β0(G) = 0.

The concepts of paths and connectedness allow us to define a notion of distance
between nodes in a graph as follows.

Definition 2.4.4. (Shortest Path Distance). Let G = (V,E) be a graph with
weighting function ω, and u, v ∈ V . The shortest path distance between u and v is
defined as

dG(u, v) =

{
∞ if u � v;

min{L(P) : P is a path from u to v in G} if u ∼ v,

where
L(P) :=

∑
e∈P

ω(e),

is the length of the path P . The tuple (V, dG) is called the metric space induced
by G. We also denote dunwG for the metric that is obtained on G by letting ω ≡ 1.

By letting a +∞ = ∞ for a ∈ R, ∞ +∞ = ∞, and ∞ ≤ ∞, the tuple
(V (G), dG) satisfies the three axioms of a metric space given in Definition 2.3.8.
However, dG is not necessarily a real-valued function wheneverG is disconnected,
as formally required by this definition. Nevertheless, we will often regard the tuple
(V (G), dG) as a metric space for any graphG. It would be unnecessary to formally
introduce a separate definition for metric spaces with possibly infinite distances
between points for this thesis. Note that this space does however formally defines

18 CHAPTER 2

a topological space (V (G), τ) in the sense of Definition 2.3.11. However, even
though the presence of edges in the defining graph might make it apparent that
we also impose some additional continuous segments in this space, this is not the
case, and one would still not be able to distinguish this topological space from
any other point cloud (X, d) for which |X| = |V (G)|, as explained in Remark
2.3.13. Hence, the notions of connectedness inG (Definition 2.4.3) and (V (G), τ)

(Definition 2.3.6) do not coincide.

2.4.1 Proximity Graphs

For a large part of this thesis, we will study data which has an underlying graph-
structured topology, which will be further clarified in Chapter 3. This data may
come in the form of a graph itself, and the task may then be to infer a much simpler
topological graph representation that models the data well. In other cases, we only
have a point cloud available. The data may then resemble a graph when looking
to the data ‘from far away’ (Figure 2.1 Left). However, as the topological space
induced by the metric on the data (Definition 2.3.11), it cannot be distinguished
from any arbitrary metric space containing an equal number of points, as also
discussed in Remark 2.3.13.

Nevertheless, on a point cloud (X, d), we can impose at least some non-trivial
notion of connectedness, i.e., in the sense of Definition 2.4.3, by constructing a
proximity graph onX . These graphs are constructed according to particular neigh-
borhood rules, which specify when two points in X should be connected by an
edge in the resulting graph. The type of neighborhood rule defines the class of the
considered proximity graph. We will consider two of the most commonly used
proximity graphs, namely the (Vietoris-)Rips graph, also known as the unit disk

Figure 2.3: A collection of fixed radius closed ball neighborhoods, and the corresponding
Rips graph. Image from [32].

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 19

graph [33], and the (undirected) kNN graph [34].

Definition 2.4.5. (Rips graph). Let (X, d) be a finite metric space, and ε ∈ R≥0.
The Rips graph Rε(X) is defined as the graph G = (V,E), for which V = X ,
E = {{x, y} ∈ X : 0 < d(x, y) ≤ ε}, and ω : E → R+ : {x, y} 7→ d(x, y).

Figure 2.3 illustrates how a Rips graph is constructed. These graphs will be
used extensively in Chapter 4 to infer graph-structured models underlying point
cloud data, but find other applications such as representing the bonds between
atoms in complex molecules as well [35].

Unlike the Rips graphs, where the ‘scope’ around each point is kept fixed, the
kNN graph allows one to vary this scope according to the local data density.

Definition 2.4.6. (kNN graph). Let (X, d) be a finite metric space, and ε ∈ R≥0,
and k ∈ N. Suppose for each x ∈ X , its set of k closest neighbors (distinct from x)
according to d, denoted Nk(x), is uniquely defined. The (undirected) kNN graph
NNk(X) is defined as the graph G = (V,E), for which V = X , E = {{x, y} ⊆
X : y ∈ Nk(x) ∨ x ∈ Nk(y)}, and ω : E → R+ : {x, y} 7→ d(x, y).

It is a natural assumption that the set of k closest neighbors for any point is
uniquely defined in practice. Nonzero distances between different pairs of points
sampled from a continuous space are generally equal with zero probability.

Figure 2.4 illustrates a point cloud data set X ⊆ R2, that resembles a graph-
structured topology (containing one edge and one isolated node), as well as both

Figure 2.4: An example of a Rips graph (left) and a kNN graph (right). Rips graphs tend to
deal better with outliers, while kNN graphs tend to deal better with non-uniform density,

requiring less edges to truthfully represent the geometry of the model in this case.

20 CHAPTER 2

a Rips graph (ε = 2) and a kNN graph (k = 5) are constructed from X . From
this example, one can immediately deduce important properties of these classes of
proximity graphs. Rips graphs are more robust to outliers, but may include many
edges in dense regions of the data. In contrast to this, kNN graphs often force
outliers to connect to far away regions. However, they generally require less edges
to truthfully represent dense regions, only depending on the local scale of the data.

By constructing a proximity graph G on a finite point cloud X , we essentially
do not resolve our issue that X cannot be topologically distinguished from an ar-
bitrary point cloud that consists of an equal number of points. Indeed, the identity
map from X to itself (or even any permutation) induces a homeomorphism be-
tween the topological spaces induced my the metric spaces (X, d) and (X, dG)

(Definition 2.3.11). This is why the notions of connectedness in graphs and topo-
logical spaces are distinct. Nevertheless, proximity graphs serve as geometrical
approximations of metric graphs, which will be introduced in the following sec-
tion. This allows one to study relevant topological properties of continuous models
through discrete proximity graph representations [6].

2.4.2 Metric Graphs

Metric graphs will be some of the most important topological spaces handled in
this thesis. They are metric spaces that generally consist of an uncountable number
of points, but can be modeled through a (finite) graph. They are formally defined
as follows.

Definition 2.4.7. (Metric Graph). A metric graph M in Rd is the union of the
images of a set of smooth curves

{
ϕi : [ai, bi]→ Rd

}
i=1,...,m

, with the following
properties

• (join at endpoints) for every 1 ≤ i < j ≤ m, ϕi(]ai, bi[) ∩ ϕj(]aj , bj [) = ∅
and the cardinality of ϕi([ai, bi]) ∩ ϕj([aj , bj]) is either 0 or 1,

• (no self-intersections) for every 1 ≤ i ≤ m, ϕi is injective.

The points in V (M) :=
⋃
i=1,...,m{ϕi(ai), ϕi(bi)} are called the nodes of M.

Note thatM may have isolated nodes, as our definition allows the necessary con-
dition ai = bi for some 1 ≤ i ≤ m for this to hold. We also sometimes simply
identifyM with the set

{
ϕi : [ai, bi]→ Rd

}
i=1,...,m

. We denote by ΓM the set of
maximal connected components ofM, whereM is seen as the topological space
induced by the standard topology on Rd. We callM connected if |ΓM| = 1. For
a node v ∈ V (M), we define the degree of v as δ(v) := |{1 ≤ i ≤ m : {v} (
Im(ϕi)}|. For 1 ≤ i ≤ m and a point x ∈ Im(ϕi)\{ϕi(ai), ϕi(bi)}, we define the
degree of x as δ(x) := 2. x ∈M is called a leaf ofM if δ(x) = 1. We call x and
y connected, denoted by x ∼ y, if there exists a path from x to y inM, otherwise

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 21

we call x and y disconnected, denoted by x � y. A path γ : [a, b] →M is called
a cycle if b > a, γ(a) = γ(b), and γ is injective on]a, b[.

If M is a metric graph, then each connected component C ∈ ΓM defines a
metric space (C, dM), where for x, y ∈ C, the geodesic distance dM(x, y) equals
the minimum of the arc lengths of all piecewise smooth curves ψ : [a, b]→ C for
which ψ(a) = x and ψ(b) = y. We can extend these metrics toM×M by letting
dM(x, y) = ∞ if x and y are not connected. Similar to the discussion above,
it follows that (M, dM) satisfies all axioms of a metric space, apart from the
requirement that dM is a real-valued function ifM is not connected. Nevertheless,
as we did for the metric spaces induced by graphs (Definition 2.4.4), we will regard
these spaces informally as metric spaces as well, and directly identify these with
the metric graphs themselves. Note that this metric always induces a topology on
a M in the formal sense. Moreover, degrees, paths, connectedness, as well as
cycles, are all preserved under homeomorphisms ofM, so that we regard these as
topological properties ofM.

Having a distance measure defined on a metric graphM, we are able to define
the diameter and radius ofM as follows.

Definition 2.4.8. LetM be a metric graph. The diameter of a metric graphM is
defined as diam(M) := maxx,y∈M dM(x, y) ∈ [0,∞], and its radius is defined
as rad(dM) := minx∈Mmaxy∈X dM(x, y) ∈ [0,∞].

Note that the diameter and radius of a metric graph M are metric properties
and generally are not preserved under homeomorphisms ofM.

From our discussion above it easily follows that each connected component of
a metric graph is path connected. This leads us to the definition of metric trees,
which will be important in Chapter 6.

Definition 2.4.9. (Metric Tree). A metric tree is a metric graph for which there is
a unique path between every two points.

2.4.2.1 Geometric Realization of a Graph

Let G = (V,E) be a graph, and suppose we have a function ψ : V → Rd and a
smooth curve ϕe : [ae, be] → Rd for each edge e ∈ E, such that the following
properties are valid.

• ψ is injective.

• if e = {u, v} ∈ E, then {ψ(u), ψ(v)} = {ϕe(ae), ϕe(be)}.

• for every e 6= e′ ∈ E, ϕe(]ae, be[) ∩ ϕe′(]ae′ , be′ [) = ∅.

22 CHAPTER 2

(a) A graph G. (b) A geometric realizationM of G in R3.

Figure 2.5: A geometric realizationM of a graph G. Whereas the metric space induced
by G is a discrete space,M is a continuous space containing uncountable many points.

It can be easily verified that the union of the images of ψ and {ϕe}e∈E defines a
metric graphM. We call any such metric graphM a geometric realization of G.
A geometric realization of a graph G can be seen as a ‘drawing’ of G in Rd, such
that no two edges intersect at interior points.

Conversely, every metric graphM =
{
ϕi : [ai, bi]→ Rd

}
i=1,...,m

defines a
graph G = (V,E) for which M is a geometric realization of G. This graph G
can be constructing by letting V be the set of nodes ofM, and letting {u, v} ∈ E
iff u 6= v and {u, v} = {ϕi(ai), ϕi(bi)} for some 1 ≤ i ≤ m. Graph theo-
retical ‘topological’ properties of G, such as connected components, leaves, and
cycles, then coincide with the corresponding topological properties of a geometric
realizationM of G, and conversely.

It is known that every graph G has a geometric realization in Rd whenever
d ≥ 3 [36, Geometric Realization Theorem]. If M is a geometric realization
of a graph G in R2, then M is called a planar embedding of G. G is called a
planar graph whenever it has a planar embedding. Not every graph admits a planar
embedding, and the problem whether a given graph G is planar is computationally
easy to solve [31].

Figure 2.5 illustrates a graph G and a geometric realization M of G in R3.
Note that G clearly also admits a geometric realization in R2 (as a matter of fact,
the visualization in Figure 2.5a directly corresponds to such a realization), and
hence, that G is planar.

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 23

2.5 Introduction to Topological Persistence

Persistent homology [37] can easily be said to the most profoundly used and stud-
ied tool in TDA. It is being increasingly and successfully applied to a wide variety
of practical machine learning problems [38–43]. Nevertheless, it has a rather ab-
stract mathematical foundation, most notably in the fields of category theory and
algebraic topology [44]. For this reason, at the present day of writing, it is still
considered more of a niche and lesser known topic within machine learning.

In the following sections, we will introduce the most important concepts of
persistent homology and explain its purpose. As mentioned in the outline of this
thesis, the first parts of this section will touch on the many theoretical aspects
of (persistent) homology (Section 2.5.1 and the start of Section 2.5.2), and how
these relate to its computation (Section 2.5.2.1). Although we ensured that these
sections are sufficiently self-contained, they are—even though this might appear
not to be the case at first sight—rather concise.1 Someone unfamiliar with topics
such as TDA and algebraic topology may therefore find them more challenging.
However, we ensured that the following parts (Sections 2.5.2.2-2.5.2.4)—which
are less abstract than the former sections—are sufficiently self-contained for one
to comprehend the purpose of persistent homology and what it computes, i.e.,
persistence diagrams. One is therefore freely able to skip to these sections, which
are more important for one to comprehend the rest of this thesis.

2.5.1 Simplicial Homology

Simplicial Homology is a way to study topological properties of topological spaces
whose ‘building blocks’ are n-simplices, i.e., the n-dimensional analogs of tri-
angles. These are spaces that—by definition—are homeomorphic to simplicial
complexes (Figure 2.6). Such a homeomorphism is then also called a triangula-
tion. Note that the majority of the topological models that occur in data science—
including metric graphs—can be triangulated. We formalize these concepts below.

Definition 2.5.1. (Abstract Simplicial Complex). A family of finite sets ∆ is called
an abstract simplicial complex if for every σ ∈ ∆ and σ′ ⊆ σ it holds that σ′ ∈ ∆.
The finite sets that belong to ∆ are called faces or simplices of the complex. The
dimension of a face σ ∈ ∆ is defined as |σ|−1, and σ is called a (|σ|−1)-simplex.
An abstract simplicial k-complex is a simplicial complex ∆ where the largest di-
mension of any face in ∆ equals k. The vertex set V (∆) of an abstract simplicial
complex ∆ is the set of 0-simplices in ∆. Two abstract simplicial complexes ∆ and
∆′ are called isomorphic if there exists a bijection φ : V (∆)→ V (∆′) for which
σ ∈ ∆ iff φ(σ) := {φ(v) : v ∈ σ} ∈ ∆′.

1For a more detailed description we recommend [44].

24 CHAPTER 2

Figure 2.6: A simplicial 3-complex. Image from [45].

Any graph G = (V,E) straightforwardly induces an abstract simplicial com-
plex V ∪E, since v ∈ e ∈ E =⇒ v ∈ V . Hence, an abstract simplicial complex
lies somewhere between a graph and a hypergraph. Similar to a graph, the latter
is also a tuple H = (V,E)—where the elements in E ⊆ P(V) are called the
hyperedges of H—but without the additional restriction that e ∈ E =⇒ |e| = 2.
Hence, hypergraphs admit higher-order relations than graphs. Abstract simplicial
complex can then be seen as hypergraphs, with the additional constraint that its hy-
peredges are closed under inclusion. Intuitively, we thus have the following class
relationships

{graphs} ({abstract simiplicial complexes} ({hypergraphs}.

As the name suggests, there is also a ‘less abstract’ definition of simplicial
complexes.

Definition 2.5.2. (Simplicial Complex). A k-simplex σ is the convex hull

σ =

{
k∑
i=0

λivi :

k∑
i=0

λi = 1 ∧ λ0, . . . , λk ≥ 0

}

of k + 1 affinely independent points v0, . . . , vk ∈ Rd, d ≥ k. k is then called the
dimension of σ. The convex hull of any nonempty subset of the k + 1 points that
define a k-simplex is called a face of the simplex. A simplicial complex K is a set
of simplices, satisfying the following conditions:

1. every face of a simplex in K is also in K;

2. the non-empty intersection of any two simplices σ, σ′ ∈ K is a face of both
σ and σ′.

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 25

A simplicial k-complex is a simplicial complex K where the largest dimension of
any simplex in K equals k.

Let K be a simplicial k-complex. Denote V (σ), for the finite set of points in
Rd, d ≥ k, of which the convex hull equals σ. It can then be easily seen that
the set ∆ = {V (σ) : σ ∈ K} is an abstract simplicial complex. Conversely, it
is known that every abstract simplicial k-complex ∆ is isomorphic to an abstract
simplicial complex ∆ = {V (σ) : σ ∈ K} for some simplicial d-complex K for
which d ≥ 2k + 1 [36, Geometric Realization Theorem]. We then call |∆| = K

a geometric realization of ∆. Loosely speaking, an abstract simplicial complex
is a simplicial complex without associated geometry. Note that this concept of
geometric realization coincides with the one for graphs and metric graphs defined
in Section 3.2.

The Euclidean space in which a simplicial complex (geometric realization) |∆|
is embedded, induces a topology on |∆| (Definition 2.3.2). Most often, these are
the topological properties we are interested in, and not the topological properties
of the ‘isolated points’ in ∆ (see also the discussion Section 2.4.1). However, in a
computational setting—similar to (metric) graphs—topological properties of |∆|
are studied through their discrete counterparts of the finite representation ∆. We
now formalize what these topological properties correspond to.

Suppose that ∆ is a finite abstract simplicial complex. By definition, an orien-
tation of a simplex σ ∈ ∆ is given by an ordering (v0, . . . , vk) of the vertices in σ,
with the convention that two orderings define the same orientation if they differ by
an even permutation. This means that every simplex σ admits exactly two distinct
orientations, and by convention, they are each other negatives. Note that we omit
a more formal definition of an orientation, as the fact that simplices with an op-
posite orientation cancel each other out in summation will be more important than
the exact choice which orientation is positive and which is negative. Intuitively, if
σ is a 1-simplex, which can be visualized through a line segment, then choosing
the orientation coincides with choosing one of the two possible directions to tra-
verse this segment. If σ is a 2-simplex, which can be visualized through a triangle,
then choosing an orientation coincides with what the choice between clockwise
and counterclockwise means. Note that providing a similar intuitive meaning of
choosing the orientation is rather difficult for higher-dimensional simplices.

Before we proceed with introducing the concept of homology, we require the
introduction of a fundamental algebraic structure, known as a ring. As we will see
below, fixing a ring will be important when computing topological properties from
finite abstract simplicial complexes.

Definition 2.5.3. A ring is a set R equipped with two binary operations + and
·, respectively termed the addition and multiplication, satisfying the following ax-
ioms:

26 CHAPTER 2

1. R is an abelian group under the addition, meaning that

• for all a, b, c ∈ R, (a+ b) + c = a+ (b+ c), that is, + is associative;

• for all a, b ∈ R, a+ b = b+ a, that is, + is commutative;

• there exists an element 0 ∈ R such that a + 0 = a for all a ∈ R, that
is, 0 is the additive identity;

• for every a ∈ R there exists −a ∈ R such that a + (−a) = 0 for all
a ∈ R, that is, −a is the additive inverse of a;

2. R is monoid under multiplication, meaning that

• for all a, b, c ∈ R, (a · b) · c = a · (b · c), that is, · is associative;

• there exists an element 1 ∈ R such that a · 1 = 1 · a = a for all a ∈ R,
that is, 1 is the multiplicative identity;

3. the multiplication is distributive with respect to the addition, meaning that

• for all a, b, c ∈ R, a · (b + c) = (a · b) + (a · c), that is, · is left
distributive;

• for all a, b, c ∈ R, (b + c) · a = (b · a) + (c · a), that is, · is right
distributive.

We also sometimes denote a− b for a+ (−b), and ab for a · b. If furthermore the
multiplication R is commutative, i.e., a · b = b · a for all a, b ∈ R, then R is called
a commutative ring. Finally, if R is a commutative ring in which each 0 6= a ∈ R
has a multiplicative inverse a−1 ∈ R, i.e., for which it holds that aa−1 = 1, then
R is called a field.

The concept of a ring only plays a minor role in this thesis, and we mainly
include its definition for completeness. Note that many known structures, such as
Z, Q, R, and C equipped with their standard addition and multiplication are (com-
mutative) rings. However, the natural numbers N is not, as the addition generally
has no inverse.

Choosing a commutative ring R is albeit important for (persistent) homology
and its computation, and—as we will discuss below—the obtained results may
depend on this choice. A popular choice in TDA is takingR = F2, i.e., the (small-
est) Galois field of two elements {0, 1} in which the addition and multiplication
are performed modulo 2. The benefit of taking R = F2 is that one does not have
to bother with orientations of simplices: positive and negative are then the same.
As a matter of fact, for all persistent homology computations within this thesis we
take R = F2. (At least) for all of our considered data, this choice will not matter.
Furthermore, the fact that one requires choosing such ring to compute topological

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 27

properties of a space defined independently from any ring may be rather confus-
ing. One will therefore find that starting from Section 2.5.2.2, we will no longer
talk about these rings.

Given a simplicial complex ∆ in which each complex has an orientation, and
a commutative ring R, a simplicial k-chain is a finite formal sum

λ1σ1 + . . .+ λNσN ,

where each σi is an oriented k-simplex in ∆ and λi ∈ R, 1 ≤ i ≤ N ∈ N, and (as
discussed above) each orientation is declared equal to the negative of the simplex
with the opposite orientation. By a formal sum we mean that even if it doesn’t
make sense to add things, we do it anyway. One should not bother too much with
trying to interpret these sums. E.g, if σ 6= σ′ are two k-simplices in ∆, then σ+σ′

is just σ + σ′, and nothing else. It does not equal σ ∪ σ′, nor does it equal σ̃ for
any other σ̃ ∈ ∆\{σ, σ′}. As some fictional Disney character might say: “let it
go”. Welcome to the wonderful world of abstract mathematics.

Nevertheless, the operations permitted by such formal sums are not much dif-
ferent from those by more well-known structures, such as vector spaces. Indeed,
considering the basic vectors e1 = (1, 0) and e2 = (0, 1) in R2, there is no ‘eas-
ier’ way to write e1 + e2. Yet, there is ‘another’ way, i.e., e1 + e2 = (1, 1), and
one may use similar notations for formal sums as well. Furthermore, similar to
vector spaces, operations such as σ + σ = 2σ, σ − σ = 0, 10 · (42σ) = 420σ

are all permitted, but operations such as multiplying two simplices σ1 and σ2 are
not straightforwardly defined. The fact that such formal sums are very similar in
behavior to vector spaces, is because the set of all k-chains with the formal addi-
tion over R forms an R-module, which is a weaker variant of a K-vector space (K
being a field).

Definition 2.5.4. (Module). LetR be a ring and 1 its multiplicative identity. A left
R-module M consists of an abelian group (M,+) and an operation · : R×M →
M , such that for all r, s ∈ R and x, y ∈M , we have

1. r · (x+ y) = r · x+ r · y;

2. (r + s) · x = r · x+ s · x;

3. (rs) · x = r · (s · x);

4. 1 · x = x.

For r ∈ R and x ∈ M , we also sometimes denote rx for r · x. The elements in
R are called the scalars. A right R-module is defined analogously, except that the
ring acts on the right, i.e., · : M×R→M , and the above axioms are written with
the scalars on the right. If R is commutative, then left R-modules are the same as
right R-modules, and are simply called R-modules.

28 CHAPTER 2

The set of all k-chains, denoted ∆k, hence forms an R-module for the chosen
commutative ring R (one may assume all the axioms in Definition 2.5.4 and their
right hand counterparts to hold by definition). A natural set of generators of ∆k—
which are to be interpreted similarly as basis vectors of a vector space—is then the
set of all k-simplices in ∆.

Similar to linear maps between vector spaces, we can have linear maps between
modules, which are completely determined by the image of the generators. These
are the (homo)morphisms in the category of R-modules.

Definition 2.5.5. (Boundary Map). Given a simplicial complex ∆ and a ring R,
the boundary map ∂k : ∆k → ∆k−1 between the R-modules ∆k and ∆k−1 is
defined by letting for each simplex σ = (x0, . . . , xk),

∂k(σ) =

k∑
i=0

(−1)i(x0, . . . , x̂i, . . . , xk),

where (x0, . . . , x̂i, . . . , xk) is the (k−1)-face of σ obtained by omitting the vertex
xi, while preserving the ordering of the remaining vertices. The boundary map ex-
tends linearly to all k-chains in ∆k. By convention, we let ∂0 ≡ 0. This coincides
with taking ‘empty sums’ in the definition of ∂0, and letting ∆−1 = 0. If C is a
k-chain in ∆k, we also sometimes refer to ∂k(C) as the boundary of C.

Chain complexes are algebraic structures that consist of a sequence of abelian
groups of modules and a sequence of homomorphisms between consecutive groups
such that the image of each homomorphism is included in the kernel of the next.
Note that throughout this section, by kernel we mean the algebraic structure that
consists of all elements mapped to 0, i.e., the neutral element for the addition.
Chain complexes can be defined and studied more generally in the field of category
theory. As we have not—and will not require to have—specified (homo)morphisms
in the case of (abelian) groups, we will only provide the definition for modules.

Definition 2.5.6. (Chain Complex). A chain complex (A•, d•) is a sequence of
modules . . . , A0, A1, . . ., also called boundary operators, connected by homomor-
phisms dn : An → An−1, such that the composition of any two consecutive maps
dn and dn−1 is the zero map dn−1 ◦ dn : An → An−2 : x 7→ 0.

The collection of R-modules ∆k connected by the boundary maps ∂k forms a
chain complex (∆•, ∂•). This is easy to see whenever we take R = F2, as for any

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 29

σ = (v0, . . . , vk) ∈ ∆, we have

∂k−1(∂k(σ)) = ∂k−1

(
k∑
i=0

(v0, . . . , v̂i, . . . , vk)

)

=

k∑
i=0

∂k−1 ((v0, . . . , v̂i, . . . , vk))

=

k∑
i=0

i−1∑
j=0

(v0, . . . , v̂j , . . . , v̂i, . . . , vk) +

k∑
j=i+1

(v0, . . . , v̂i, . . . , v̂j , . . . , vk)

= 2

∑
0≤i<j≤k

(v0, . . . , v̂i, . . . , v̂j , . . . , vk) = 0.

A more general proof for rings R 6= F2 can be found in [46, Lemma 2.7.]. As a
consequence, it holds that Im(∂k+1) ⊆ ker(∂k).

Definition 2.5.7. Let ∆ be an abstract simplicial complex, R a ring, and ∂k the
corresponding boundary maps. We call the kernel ker(∂k) the k-th cycle module,
and the image Im(∂k) the k-th boundary module.

The relation Im(∂k+1) ⊆ ker(∂k) has a geometric interpretation. It implies
that every (k+ 1)-boundary, which is a k-chain that is the image of some (k+ 1)-
chain under ∂k+1, has zero boundary under ∂k, and hence, by definition, is a k-
cycle. However, the reverse inclusion does generally not hold. In this case, there
exist k-cycles that are not the boundary of any (k+ 1)-chain. These correspond to
‘holes’ in the simplicial complex, as illustrated by Figure 2.7.

Definition 2.5.8. (Homology Module). Let ∆ be an abstract simplicial complex,
R a ring, and ∂k the corresponding boundary maps. The k-th homology module
of ∆ is the R-module

Hk := ker(∂k)/Im(∂k+1).

The k-th Betti number of ∆, denoted βk, is the rank of Hk, i.e., its number of
generators.

The k-th Betti-number βk quantifies the extend to which the reverse inclusion
ker(∂k) ⊆ Im(∂k+1) fails. Following the conventing in Definition 2.5.5, in case
of the 0-th Betti-number, we find that

β0 = rank(H0) = rank(ker(∂0)/Im(∂1)) = rank(∆0/Im(∂1)),

30 CHAPTER 2

x1 x2

x0

∂2

x1 x2

x0

x1 x2

x0

x4x3 x5

∂2
x1 x2

x0

x4x3 x5

Figure 2.7: Geometric interpretation of the boundary operator. The boundary operator
∂k+1 maps a (k + 1)-chain to a k-cycle. However, some k-cycles, such as the red chain in

the bottom simplicial complex, are not the boundary of any (k + 1)-chain. These
correspond to ‘holes’ in our simplicial complex.

Now consider the graph that results from ∆ after discarding all but the nodes (0-
simplices) and edges (1-simplices), as well as discarding the orientation of all the
edges. We call this graph the 1-skeleton or graph skeleton of ∆, and call two
nodes of ∆ connected whenever they are connected in this graph, and identify
(connected) components of this graph with connected components of ∆. Now
take

x+ Im(∂1) = λ1(v1) + . . . λN (vn) + Im(∂1) ∈ ∆0/Im(∂1).

Suppose that 1 ≤ i < j ≤ N , vi and vj are connected through a path that goes
consecutively through the points vi = u0, u1, . . . , ul−1, ul = vj in the 1-skeleton
of ∆. Each (uk, uk+1) and (uk+1, uk) is in ∆1 for 0 ≤ k < l. Hence, we find that

λi(vi) + Im(∂1) = λi(vi) + λi∂1 ((vi, u1) + . . .+ (ul−1, vj)) + Im(∂1)

= λi(vi) + λi ((vi)− (u1) + . . .+ (ul−1)− (vj)) + Im(∂1)

= −λi(vj) + Im(∂1).

Hence, we are allowed to substitute the term λi(vi)+λj(vj)+Im(∂1) by the term
(λj − λi)(vj) + Im(∂1) in the expression for x + Im(∂1). By induction, it holds

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 31

that

x+ Im(∂1) = λ′i1(vi1) + . . . λ′iM (viM) + Im(∂1) ∈ ∆0/Im(∂1),

where each vij belongs to a different component of ∆, and there is no ‘simpler’
way to write x+ Im(∂1). It follows that β0 equals the number of connected com-
ponents of ∆. If k ≥ 1, then βk expresses the number of k-dimensional holes.
1-dimensional holes correspond to ‘circular’ holes, whereas 2-dimensional holes
coorespond to ‘voids’ or ‘cavities’. These types holes can be straightforwardly
visualized. In general, for k ≥ 1, a k-dimensional hole is to be interpreted as the
inside of a k-dimensional sphere. The core power of (persistent) homology is that
it allows one to exactly quantify the number of such holes in |∆|, through its dis-
crete representation ∆. E.g., in the bottom simplicial complex in Figure 2.7, there
are essentially many cycles, in a graph theoretical sense. However, there is only
one 1-dimensional hole in the topological space |∆|, so that β1(∆) = 1.

Although we have only introduced simplicial homology, expressing holes (topo-
logical properties) in simplicial complexes, homology can be defined for any topo-
logical space. This is known as singular homology. Instead of considering sim-
plices, one considers singular simplices, which are injective continuous functions
from the standard d-simplex (the convex hull of the d + 1 unit vectors in Rd+1)
to a topological space. Boundary operators and chain complex are then defined
analogously as for simplicial homology. Simplicial homology and singular ho-
mology agree for spaces that can be triangulated. This allows one to talk about the
homology, and in following sections, filtrations, persistent homology, and persis-
tence diagrams, of any topological space occurring in data science, whether these
are geometric realizations of abstract simplicial complexes constructed from data,
or topological models that underlie the observed data. For more information on
this topic, we refer to Hatcher, 2020 [44].

As also commented above, at first reading one might consider it strange that
Betti-numbers, which quantify topological properties, i.e., ‘holes’, depend on a
choice of ring R, which may be completely unrelated to the actual topological
space |∆|. Indeed, there exist topological spaces with different Betti-numbers
when computed over different rings. An example is the Klein bottle K, for which
we would find β1(K) = 2 over R = F2, and β1(K) = 1 over R = Fp for any
prime number p > 2 [47]. This is related to the fact that the Klein bottle is an ex-
ample of a non-orientable surface. This is beyond the scope of this thesis however,
and we refer the interested reader to Hatcher, 2020 [44]. For our topological spaces
of interest—most notably (metric) graphs—one may unambiguously interpret the
Betti number βk as the number of k-dimensional holes in the space, not requiring
the ring R to be specified. Without further specification, all (persistent) homology
computations in this thesis are performed over R = F2, as also mentioned above.

Finally, one should be aware that ‘having the same Betti-numbers’ is a strictly

32 CHAPTER 2

weaker concept than ‘having the same topology’. More formally, Betti-numbers
are topological invariants, i.e., they are preserved under homeomorpishms of topo-
logical spaces (keeping the ring R fixed), but not conversely. E.g., a circle is not
homeomorphic to a cylinder, but both topological spaces consist of one connected
component, have one 1-cycle (more formally one equivalence class of such cycles),
and do not include any higher dimensional cycles. One cannot discern between
these spaces based on homology. It is important to realize this. As we discussed
above, topology does not allow us to distinguish a coffee mug from a donut. Ho-
mology thus allows one to distinguish between even less spaces. However, it is
known that there cannot exist an algorithm to determine when arbitrary topologi-
cal spaces are homeomorphic [48]. Hence, in some sense, we are lucky that there
exists something like (persistent) homology which we can actually compute, as
will be discussed in the following section.

2.5.2 Persistent Homology

Persistent homology can be regarded as simplicial homology at varying scales.
Instead of identifying the Betti-numbers of one given simplicial complex, we track
the change in Betti-numbers across a varying sequence of simplicial complexes.
This is formalized through the concept of a filtration.

Definition 2.5.9. (Filtration). Let ∆ be an abstract simplicial complex. A filtration
is a sequence F = (∆i)i∈N of subcomplexes of ∆, such that ∆i ⊆ ∆j whenever
i ≤ j.

The i-th simplicial complex ∆i in a filtration F gives rise to its own chain
complex (∆i

•, ∂
i
•). Now consider the inclusion maps ιi : ∆i ↪−→ ∆i+1 for a given

filtration F . Each inclusion map ιi induces a chain map (ιi•) = (ιi)i∈N between
the chain complexes (∆i

•, ∂
i
•) and (∆i+1

• , ∂i+1
•). More formally, for x ∈ ∆i

k and
k ∈ N, it holds that

∂ik ◦ ιi(x) = ∂ik(x) = ιi ◦ ∂ik(x).

This is written out in the commutative diagram in Figure 2.8.

Definition 2.5.10. Let F = (∆i)i∈N be a filtration defined on an abstract simpli-
cial complex ∆. The sequence of chain complexes

(
(∆i
•, ∂

i
•)
)
i∈N connected by the

chain maps
(
(ιi•)

)
i∈N is called a persistence complex.

Now let F = (∆i)i∈N be a filtration defined on an abstract simplicial complex
∆, and take

x+ Im(∂ik+1) ∈ Hi
k = ker(∂ik)/Im(∂ik+1).

It holds that x ∈ ∆i ⊆ ∆i+1, so that ∂i+1
k (x) is well-defined and must necessarily

equal ∂i+1
k (x) = ∂ik(x) = 0. It follows that x ∈ ker(∂i+1

k), so that

ηik(x+ Im(∂ik+1)) := x+ Im(∂i+1
k+1) ∈ Hi+1

k = ker(∂i+1
k)/Im(∂i+1

k+1).

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 33

...
...

∂ik+2 ∂i+1
k+2

. . .
ιi−1

∆i
k+1

ιi
∆i+1
k+1

ιi+1 . . .

∂ik+1 ∂i+1
k+1

. . .
ιi−1

∆i
k

ιi
∆i+1
k

ιi+1 . . .

∂ik ∂i+1
k

...
...

Figure 2.8: A persistence complex illustrated through a commutative diagram.

Hence, the inclusions (ιi)i∈N, induce module homomorphisms ηik : Hi
k → Hi+1

k .

Definition 2.5.11. Let F = (∆i)i∈Z be a filtration defined on an abstract sim-
plicial complex ∆. The kth persistence module Hk is the family of kth homology
modules Hi

k together with the module homomorphisms ηik : Hi
k → Hi+1

k . A per-
sistence module is said to be of finite type if each component module is finitely
generated and there exists some integer z ∈ Z such that the maps ηik are isomor-
phisms for all i ≥ z.

The finiteness of an abstract simplicial complex guarantees that the corre-
sponding persistence module is of finite type [46]. Indeed, in this case we can-
not indefinitely grow the simplicial complexes in (∆i)i∈N, and at some point, the
corresponding homology modules must remain fixed.

Similar to how simplicial homology generalizes to simplicial homology for
arbitrary topological spaces, all concepts defined in this section generalize to ar-
bitrary topological spaces as well. However, persistence modules of finite type—
which are those we deal with in practice—allow for a convenient decomposition
leading to the concept of a persistence diagram. First, we require some new defi-
nitions.

Definition 2.5.12. (Graded Ring) A graded ring R is a ring with a direct sum
decomposition into abelian groups

R =
⊕
i∈N

Ri,

such that for each x ∈ Ri and y ∈ Rj , it holds that xy ∈ Ri+j .

34 CHAPTER 2

An example of a graded ring is the polynomial ring

F[X] :=
⊕
i∈N

Xi · F,

where F is a field.

Definition 2.5.13. A left graded module is a left module over a graded ring R,
such that

M =
⊕
i∈N

M i,

such that for each λ ∈ Ri and m ∈M j , it holds that λm ∈M i+j .

A kth persistence module Hk can be identified with a graded module over the
corresponding polynomial ring R[X], i.e.,

Hk =
⊕
i∈N

Hi
k,

where we let

X ·
∑
i∈N

mi :=
∑
i∈N

ηik(mi),

which inductively and linearly extends toHk.

Theorem 2.5.14. [46, Theorem 4.8] LetHk be a persistence module of finite type
over a polynomial ring F[X], where F is a field. Then there existsM,N ∈ N, such
that up to a module homomorphism,

Hk =

(
M⊕
i=1

(Xai)

)
⊕

(
N⊕
i=1

(
Xbj

Xdj

))
.

If F = (∆i)i∈Z is a filtration defined on an abstract simplicial complex ∆,
then the powers ai, bj , dj , in the decomposition of Hk in Theorem 2.5.14 cap-
ture the birth and death of k-dimensional holes across the sequence of simplical
complexes (|∆i|)i∈Z [46]. The numbers bj and dj express that a k-dimensional
hole that appeared at complex ∆bj disappears at complex ∆dj . The numbers ai
that a k-dimensional hole appeared at complex ∆ai , but never disappears. This
forms the basic idea behind persistent homology and persistence: k-dimensional
holes that persist over long intervals represent relevant topological properties of
the considered space. This will be made clear in the following sections, which
will visualize the information captured through persistent homology by means of
persistence diagrams.

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 35

2.5.2.1 Computing Persistent Homology

In a practical setting, we are dealing with finite data. Corresponding simplicial
complexes and filtrations will then be finite as well. Instead of indexing filtrations
through integers, they are commonly indexed through an increasing sequence of
reals t1 < . . . < tn, called times. The purpose of computing persistent homology
is then to obtain the times at which k-dimensional holes across a filtration

F = ∅ ⊆ ∆t1 ⊆ . . . ⊆ ∆tn = ∆.

are born and at which times they die, for a given upper bound on the dimension
k of the holes. Formally, this corresponds to indexing F through the integers
1 ≤ i ≤ n, extending F indefinitely through ∆tn = ∆n ⊆ ∆n+1 := ∆ ⊆
∆n+2 := ∆ ⊆ . . ., identifying the integer powers ai, bj , dj in Theorem 2.5.14
for each of the considered dimension of holes, and mapping them back to the
corresponding times tai , tbj , tdj ≤ tn. For ease of explanation, we will assume
that we are considering the fixed field of coefficients F2 over which we compute
(persistent) homology (which is exactly our choice throughout this thesis).

First, we order the m = |
⋃

∆| simplices {σ1, . . . , σm} in ∆, such that i < j

whenever t(σi) < t(σj), where t(σ) denotes the time of appearance of σ, defined
as

t(σ) = min{ti : σ ∈ ∆ti}.

Naturally, we only include simplices of which the cardinality is at most the dimen-
sion of holes we are interested plus two. We then construct a binary matrix M of
which the rows and columns correspond to the simplices in ∆, for which Mij = 1

iff σi ⊆ σj and |σi| = |σj | − 1. The birth and death times can then be obtained
through simple linear and algebraic operations on M (modulo 2) [40, Algorithm
2.1].

The time complexity of this algorithm is cubic in the number of simplices m
[40]. This is still one of the major drawbacks of (computing) persistent homology
to this day. E.g., when one is interested in 1-dimensional holes, i.e., loops, one
requires to build 2-simplices, resulting in the number of simplices itself being
cubic in the number of data points. However, in case one is only interested in 0-
dimensional holes, persistent homology can be computed in O(nα(n)) time—n

being the number of vertices, i.e., 0-simplices, which equals the number of data
points in practice—using a union-find structure [36]. Here α(·) is the inverse of
the Ackermann function, which for all practical purposes may be considered a
constant no greater than 4 [49].

In general, efficiently computing or ‘approximating’ (through the bottleneck
distance metric which will be defined in the following section) persistent homol-
ogy is an active research topic at the time of writing [50, 51].

36 CHAPTER 2

2.5.2.2 Introducing Persistent Homology through Euclidean Point Clouds

Although the fundamental results leading to persistent homology discussed in the
previous sections are rather abstract, its purpose and what it computes are actually
easy to visualize. As mentioned in the outline of this thesis, we will ensure that
this and the following sections are sufficiently self-contained for one to understand
the purpose of persistent homology, and the persistence diagrams it computes. For
this reason, some of the terminology we will introduce in this section may already
have been introduced (more formally) above.

A custom case in data science for illustrating how persistent homology works,
is that we have a point cloud data set X embedded in a Euclidean space Rd. In
our case, we will take a look at the point cloud X that is visualized in left plot in
Figure 2.9. The task is then to infer topological properties of the model underlying
X , by means of persistent homology.

Looking at X (Figure 2.9 Left), the only topological information that can be
deduced from it is that it is a set of points, since no two point clouds of the same
size can be topologically distinguished as discussed in Remark 2.3.13 (at least
according to any metric defined on them, which we assume to be the Euclidean
distance metric here).

A partial solution to this can be obtained by constructing a simplicial complex
from X , for which one often considers the Vietoris-Rips complex

V Rkε (X) :=

{
S ⊂ X : |X| ≤ k + 1 ∧ max

x,y∈S
‖x− y‖ ≤ ε

}
. (2.1)

Each element σ in such a simplicial complex is called a face or simplex. If
|σ| = k + 1, it is also called a k-simplex, and k is called the dimension of σ.
The dimension of a simplicial complex is the maximal dimension of its included
simplices, and is constrained by k for the Vietoris-Rips complex VRkε (X). Here,
ε is a parameter that specifies the upper bound on the diameter of subsets of X
which should be included in the simplicial complex. Note that VR1

ε(X) = Rε(X)

(hence our chosen name for the Rips graph). VRkε (X) is then obtained through
Rε(X) by ‘filling in’ all cliques up to cardinality k + 1 in the graph through a
simplex. Six examples of such complexes VR2

ε(X) (for varying ε) are shown in
Figure 2.9.

In general, a simplicial complex can be seen as a generalization of a graph,
where apart from nodes (0-simplices) and edges (1-simplices), it may also include
triangles (2-simplices), tetrahedra (3-simplices), and so on. More specifically, the
two defining property of simplicial complex ∆ are that

• ∆ is a set of finite subsets of some given set X;

• If σ′ ⊆ σ ∈ ∆, then σ′ ∈ ∆

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 37

Figure 2.9: An example of six simplicial complexes VR2
ε(X) in the Vietoris-Rips filtration

of a point cloud data set X resembling two disconnected circles in the Euclidean plane.

However, one should note that technically this is the definition of an abstract sim-
plicial complex, and the term simplicial complex actually refers to a geometrical
realization of such a complex. Such realization can be seen as a continuous draw-
ing of the complex in some Euclidean space Rd, such that the intersection of two
simplices σ and σ′ corresponds to a common face of σ and σ′. This is similar to
how a metric graph is a geometric realization of a graph, but we also ‘fill in’ the 2-
simplices, 3-simplices, . . . , which is usually how we visualize (abstract) simplicial
complexes (such as in Figure 2.9). Sometimes the term ‘simplex’ is only used to
refer to geometric realizations of their discrete counterparts, and the discrete coun-
terparts are only referred to as ‘faces’. However, throughout the rest of this thesis,
it will not really be a problem for one to mix up this terminology, i.e., to identify
simplicial complexes with their discrete counterparts, and we will often proceed
to do this. The most important thing to be aware of, is that (persistent) homology
is concerned with topological properties of the ‘continuous versions’ (geometric
realizations) of simplicial complexes, which are computed through their ‘discrete’
(abstract) counterparts. Compare this to how the connectedness of a graph (as
a graph) determines the connectedness of any of its geometric realizations (as a
topological space).

Once we have constructed a (Vietoris-Rips) complex VRkε (X) fromX , we can
now infer more interesting topological properties. E.g., in Figure 2.9, we see that
VR2

0.75(X) captures the two most important topological properties of the model
underlying X , which consists of two disconnected circles. Homology exactly cap-
tures such information by associating Betti numbers βk to our simplicial complex.
βk corresponds to how many k-dimensional holes there are in the complex. In this
sense, a 0-dimensional hole correspond to a gap between two components, and β0
equals the number of connected components. A 1-dimensional hole corresponds
to a loop (which can be seen as a circle, ring, or a handle of a coffee mug), and a
2-dimensional hole corresponds to a void (which can be seen as the inside of a bal-
loon). In general, an n-dimensional hole corresponds to the interior of a n-sphere

38 CHAPTER 2

in Rn+1. Note that no n-dimensional holes can occur in the Euclidean space Rd
whenever d ≤ n, and therefore (as well as for computational purposes) one often
restricts the dimension k of the simplicial complexes that are constructed from the
data. E.g., in Figure 2.9, we restrict to the case k = d = 2.

The difficulty lies in pinpointing an exact value for ε for which VRkε (X) truth-
fully captures the topological properties of the model M underlying X . E.g.,
VR2

0.5(X) correctly captures that there are two components in the underlying
model, but not that there are two loops (Figure 2.9). VR2

1(X) does correctly cap-
tures that there are two loops in the underlying model, but then captures that there
is only one connected component. This is where ‘persistent’ homology comes into
play. Rather than inferring these topological properties (holes) for one particular
simplicial complex, the task of persistent homology is to track the change of these
topological properties across a varying sequence of simplicial complexes

∆0 ⊆ ∆1 ⊆ . . . ⊆ ∆n,

called a filtration. A commonly used example for Euclidean point cloud data is the
Vietoris-Rips filtration

VRk(X) :=
(
VRkε (X)

)
ε
,

where ε is considered a time parameter that parameterizes the filtration. Note that
for a point cloud X , VRkε (X) can only change at finitely many times ε, so that we
may indeed regard this filtration to be of the (finite) form ∆0 ⊆ ∆1 ⊆ . . . ⊆ ∆n.

The information captured by persistent homology is often visualized by means
of a persistence diagram, which is a set

Dgmk = {(tai ,∞) : 1 ≤ i ≤ N}∪
{

(tbj , tdj) : 1 ≤ j ≤M
}
∪{(x, x) : x ∈ R} ,

where tai , tbj , tdj , 1 ≤ i ≤ N , 1 ≤ j ≤ N , correspond to the birth and death
times of k-dimensional holes across the filtration.2 Points (tai ,∞) are usually
displayed on top of the diagram. They correspond to holes that never die across
the (Vietoris-Rips) filtration.

Figure 2.10 shows the persistence diagrams Dgm0 and Dgm1 of the Vietoris-
Rips filtration for our considered point cloud data X (on top of each other, which
is common in TDA). Note that all points in Dgm0 have 0 as a first coordinate. This
corresponds to the fact that all connected components are born at time ε = 0 in
the filtration, at which time all points are added but no edges between them. At
around ε = 0.5, all but two components have died, i.e., merged with previously
existing components. One can deduce from Dgm0 that there are still two com-
ponents alive at this time that merge together at around ε = 0.8, after which one

2See also Theorem 2.5.14 and Section 2.5.2.1)

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 39

Figure 2.10: The diagrams Dgm0 and Dgm1 for the Vietoris-Rips filtration of the point
cloud data set in Figure 2.9. The four highly elevated points in the persistence diagram

identify the presence of two connected components (H0) and two cycles (H1).

component persists indefinitely. This is because once the underlying Rips graph
Rε(X) of the Vietoris-Rips complex connects all points through paths, all points
will naturally remain connected whenever we add more simplices to the complex.
Observe that this is consistent with the visualization in Figure 2.9. Dgm1 can be
read analogously, but this time for loops rather than components. Furthermore,
these loops are all born at different and nonzero times ε, since edges are necessary
for loops to be present. They all have finite death-times, since (unless we impose
an upper bound on ε which is sometimes done for computational purposes) they
must be filled in at least at some point in time.

Note that for interpreting these persistence diagrams, it is important to be aware
of the elder rule. This rules states that when two homology classes are merged, by
convention, the youngest of them, i.e., the one with the greatest birth-time, dies.
The term ‘homology classes’ is formally defined in Section 2.5.1, but not really
important for the rest of this thesis, and—for what will be our purpose—one may
freely replace this term with ‘connected components’ in the previous sentence.
More specifically, this rule for connected components will play an important role in
Chapter 7. In our current case for Dgm0, all components are born at the same time,
and the ordering of birth times are defined by the ordering of the data. However,

40 CHAPTER 2

different orderings would not affect the visualized diagram in Figure 2.10.
From Figure 2.10, we observe that the ‘most persisting holes’, which corre-

spond to the most elevated points in the diagrams relative to the diagonal, i.e., the
points (b, d) for which b−d is large, capture the topological properties of the topo-
logical modelM underlying X . The two highly elevated points in Dgm0 identify
the two connected components inM, one of which has an infinite death time, as
is custom for Vietoris-Rips filtrations. We also observe two highly elevated points
in the diagram Dgm1 of VR2(X). These correspond to the two cycles inM.

The fact that the persistence diagrams in Figure 2.10 capture topological prop-
erties of the underlying modelM well, may be quantified through the bottleneck
distance.

Definition 2.5.15. (Bottleneck Distance). Let Dgm and Dgm′ be two persistence
diagrams. The bottleneck distance between them is defined as

db
(
Dgm,Dgm′

)
:= inf

ϕ
sup
x
‖x− ϕ(x)‖∞ ∈ R ∪ {∞},

where ϕ ranges over all bijections from Dgm to Dgm′, and x ranges over all
points in Dgm. By convention, we let∞−∞ = 0 when calculating the distance
between two diagram points. Since persistence diagrams include the diagonal by
definition, |Dgm| = |Dgm′| = |R|. Thus, db

(
Dgm,Dgm′

)
is well-defined.

As we will see in the following section, Vietoris-Rips filtrations generalize
easily to arbitrary (non-Euclidean) metric spaces. For general metric (and hence,
Euclidean) spaces, we may derive a stability result (Theorem 2.5.16), which states
that if two spaces are geometrically close in terms of the Gromov-Hausdorff dis-
tance, so are their resulting persistence diagrams.

2.5.2.3 Persistent Homology of Metric Spaces

The Vietoris-Rips filtration can be defined for arbitrary metric spaces, where the
metric must not necessarily be Euclidean: one may just replace the metric (x, y) 7→
‖x − y‖ in (2.1) by any arbitrary metric (x, y) 7→ d(x, y). This is especially
useful when we are considering a data set X , for which we have a (possibly ap-
proximated) intrinsic metric, which is quite distinct form the (usually Euclidean)
extrinsic metric on the space X is embedded in.

This is illustrated in Figure 2.11, where we consider a data set X represent-
ing a circle in R2, and a data set Y representing a narrow ellipse in R2. When
we construct the Vietoris-Rips filtration from X through the Euclidean distances,
we easily infer the presence of the 1-dimensional hole from the 1-st dimensional
persistence diagram. This hole is more difficult to infer through the analogous di-
agram for Y , since it is much more narrow, and therefore, will be filled in quite
early in the Vietoris-Rips filtration.

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 41

(a) (Top) Two point clouds sampled from a circle
and ellipse and (Bottom) 10NN graphs

constructed from them.

(b) The 1-dimensional persistence diagrams
obtained from the (Top) Euclidean and (Bottom)

empirical geodesic distances.

Figure 2.11: 1-dimensional persistent homology of cyclic models through the Vietoris-Rips
filtration constructed from the Euclidean and empirical geodesic distances. The hole in the

ellipse is less apparent from the persistence diagram computed through the Euclidean
distances. This is resolved by approximating the intrinsic distances of the ellipse through

the geodesic distances of a proximity graph representation.

To overcome this issue, we proceed in the following way, which is illustrated
in the bottom row of Figure 2.11a. First, through the ordinary (Euclidean) dis-
tances, we construct proximity graphs (in this case 10NN graphs, see Definition
2.4.6) from the data. The shortest path distances on these graphs are used to ap-
proximate the true (geodesic) distances on the underlying models [6]. When we
now construct the Vietoris-Rips filtrations from these (approximated) intrinsic dis-
tances instead, the presence of the holes can be easily inferred from both of the
resulting persistence diagrams (Figure 2.11b).

This is a formal consequence of the following stability result.

Theorem 2.5.16. [40, Theorem 7.5] Let (X, dX) and (Y, dY) be totally bounded
metric spaces. Denote Dgml(VRk(M,dM)) for the l-th persistence diagram of
the Vietoris-Rips filtration VRk(M,dM) of a metric space (M,dM). It holds that

db

(
Dgml(VRk(X, dX)),Dgml(VRk(Y, dY))

)
≤ 2dGH((X, dX), (Y, dY)).

The Gromov-Hausdorff distance does not care much about cardinality. Hence,
a point cloudX and its underlying modelM can be close according to the Gromov-
Hausdorff distance, even though X is finite andM may consist of an uncountable
amount of points. Theorem 2.5.16 then guarantees that the empirical persistence
diagram of the Vietoris-Rips filtration constructed fromX , will be close to the true

42 CHAPTER 2

persistence diagram of the Vietoris-Rips filtration constructed fromM.3

Theorem 2.5.16 shows that we can compare metric, and hence, topological,
properties between two data sets X and Y through the persistence diagrams of
their Vietoris-Rips filtrations. For this as well as more general reasons (Theorem
2.5.18), persistence diagrams are often called topological signatures, as they en-
code topological information through a representation which is independent of the
cardinality, dimension, or type of the data considered. Furthermore, computing
the Gromov-Hausdorff distance is NP-hard [40], whereas the bottleneck distance
between two persistence diagrams with at most n points off the diagonal can be
computed in O(n1.5 log n) time [52, Theorem 3.1]. Given that the computation of
the persistence diagram itself is polynomial in time (Section 2.5.2.1), persistence
homology leads to a more practical tool for quantifying topological information in
metric spaces.

According to Theorem 2.5.16, if two spaces are close to being isometric, then
their persistence diagrams are close as well. Unfortunately, the converse is not true.
E.g., the Gromov-Hausdorff distance between a cylinder and circle of radius r can
be made arbitrarily large, by increasing the height of the cylinder. Nevertheless,
we would be unable to distinguish between these spaces based on the persistence
diagrams of their Vietoris-Rips filtrations: both spaces are characterized by one
connected component, one loop, and no higher-dimensional holes.

2.5.2.4 Persistent Homology of Sublevel Filtrations

The Vietoris-Rips filtration on a finite metric space (X, d) corresponds to a filtra-
tion on the simplicial complex that is obtained by filling all cliques of the Rips
graphRd<∞X,max

(X) through simplices, where

d<∞X,max := max{dX(x, y) : x, y ∈ X ∧ dX(x, y) <∞}.

Hence, when computing persistent homology of metric spaces, we implicitly im-
pose an ‘initial’ simplicial complex constructed from our data, which includes all
simplicial complexes across our filtration.

In other cases, we have an initial simplicial complex that is implicitly or ex-
plicitly induced by the type of data X we are considering. Ideal examples are
graphs and images. We then have a function f : X → R characterizing our data,
and we wish to capture ‘topological information’ of f . We illustrate this through
the example image in Figure 2.12.

Figure 2.12 (Top Left) shows a grayscale image I . We may identify the image
I with a function

fI : ∆I → R : σ 7→ max
p∈P

I(p),

3Note that the latter filtration does not have a countable indexing, as we required—for simplicity—
in Definition 2.5.9. However, filtrations, as well as their corresponding persistence diagrams, can be
more generally defined over an uncountable set of indices [40].

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 43

Figure 2.12: A filtration constructed from an image I . Pixels in the complex at a particular
time step are marked in yellow.

where ∆I is a simplicial complex that is obtained by letting the 0-simplices be the
set of pixels—or more formally, their coordinates—of the image I , the 1-simplices
the edges connecting all the neighboring pixels in I (vertically, horizontally, and
diagonally), and the 2-simplices all the cliques (triangles) of the resulting graph.
For a pixel p, i.e., a 0-simplex in ∆I , I(p) then equals the color—in this case, the
grayscale—value of the pixel in the image I .

We may then construct the sublevel filtration on the simplicial complex ∆I ,

Figure 2.13: Persistent homology of a grayscale image I . Two ‘outlying’ lifetimes for
0-dimensional holes (H0) represent the two components of I (the ‘1’ and ‘8’). Similarly,
the two ‘outlying’ lifetimes for 1-dimensional holes (H1) represent the two holes in I (the

holes in the ‘8’).

44 CHAPTER 2

defined as
F̄(fI) :=

(
F̄t(fI) := {σ ⊂ ∆I : fI(p) ≤ t}

)
t∈R .

Similar to Vietoris-Rips filtration constructed from finite metric spaces, the filtra-
tion F̄(fI) only changes at finitely many steps. Figure 2.12 illustrates the sublevel
filtration for our example image.

Figure 2.13 shows the resulting 0-th and 1-st dimensional persistence diagrams
of the sublevel filtration F̄(fI). We observe that the persistence diagram captures
topological information of the objects displayed by the image I . In this case, this
corresponds to the two ‘objects’ displayed by the image I (the ‘1’ and the ‘8’) in
case of the 0-th dimensional persistence diagram, and the two cycles in the ‘8’ in
case of the 1-st dimensional persistence diagram.

The fact that persistent homology allows one to effectively capture topological
information encoded through the sublevel filtrations of real-valued functions, is a
consequence of the stability result below (Theorem 2.5.18), for which we first re-
quire another definition. Note that the following definition may be unclear without
having read the start of Section 2.5.2, but one should not bother much with it for
the purpose of this thesis. More specifically, one may assume that all functions
we consider within this thesis (and also the majority of those considered in data
science) are defined on a triangulable topological space, and satisfy the following
condition.

Definition 2.5.17. A real-valued function f on a topological space is called tame
if it has a finite number of homological critical values (the times t at which the
homology modules of F̄(f) change), and Hk

(
F̄t(f)

)
is finitely generated for all

k ∈ N and t ∈ R.

Theorem 2.5.18. [53, Main Theorem] Let (X, τ) be a triangulable topological
space with continuous tame functions f, g : X → R. Denoting Dgml

(
F̄(h)

)
for

the l-th persistence diagram of the sublevel filtration F̄(h) of a function h, it holds
that

db
(
Dgml

(
F̄(f)

)
,Dgml

(
F̄(g)

))
≤ ‖f − g‖∞.

It is important to note the occurrence of the maximum norm ‖·‖∞ in the stabil-
ity result of Theorem 2.5.18. This implies that when we conduct many but small
perturbations on the functional values of a function f , the persistence diagram
of its sublevel filtration would hardly change in terms of the bottleneck distance.
However, if one would significantly alter one function value of f , then the per-
sistence diagram may significantly change as well. In the case of our example
image I , this can be interpreted as follows. If we would add a small amount of
uniform or Gaussian noise to our image, we would still be able to infer the pres-
ence of two components and two cycles from the resulting persistence diagram.
However, if we would significantly darken the single top left pixel in I , then we
would suddenly infer the presence of three connected components.

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 45

Finally, observe that persistent homology of metric spaces can also be regarded
as persistent homology of sublevel filtrations. Indeed, we can define a function
f that maps each subset S of a finite metric space (X, d) to the diameter of S,
i.e., maxx,y∈S d(x, y). The Vietoris-Rips filtration on X then coincides with the
sublevel filtration on the abstract simplical complex ∆ that contains all subsets in
X of finite diameter (possibly constrained by some specified dimension). Hence,
in this sense, persistent homology through sublevel filtrations is the most general
formulation of all three presented in Sections 2.5.2.2-2.5.2.4.

2.6 Mapper

In this section, we present the mapper algorithm [17], which is a well-known tool
from the field of TDA that is closely connected to graphs.

Consider a point cloud data set X ⊆ Rd. The first step of the mapper al-

Figure 2.14: The mapper algorithm for an example data set X resembling an ellipse in
R2. First, X is mapped to R by the filter f (in this case the height function on X). Next, an

overlapping collection of three bins is constructed in R. The preimage of f is then
clustered separately for each of these bins. The final output of the Mapper algorithm is a

graph of which the vertices equal all the obtained clusters, and where two distinct clusters
are connected by an edge if they have a nonempty intersection. The mapper algorithm

represents the topological structure underlying X well in this example.

46 CHAPTER 2

gorithm is to fix a filter function f : X → Rd′ (also known as a lens), where
usually d′ ∈ {1, 2}. These filters often correspond to standard dimensionality
reduction methods, such as PCA projections. Next, a collection of overlapping d′-
dimensional cubes (U1, . . . , Um), also called bins, covering Im(f) is constructed
in Rd′ . A standard clustering algorithm, such as single linkage clustering [54],
is then applied to each preimage f−1(Ui), 1 ≤ i ≤ m, resulting in ki clus-
ters Ci1, C

i
2, . . . , C

i
iki
⊆ X . This results in a total of K =

∑m
i=1 ki clusters

C ′1, . . . , C
′
K . The mapper algorithm then outputs an abstract simplicial complex

M, which contains a vertex (0-simplex) {vi} for each index i ∈ {1, . . . ,K}, as
well as a k-simplex spanned by the distinct indices i0, . . . , ik, k ≥ 1, whenever
Ui0 ∩ . . . ∩ Uik 6= ∅. Mapper mainly serves as a visualization tool for point cloud
data, so that one often restricts the simplicial complex to 0- and 1-simplices (the
output is then a graph) . Figure 2.14 illustrates the Mapper algorithm through an
example data set X , for which we used the height function, i.e., the y-coordinate,
as the filter f .

For completeness, we include the way the mapper algorithm is formalized be-
low. Note that this is not important for the rest of this thesis however.

Definition 2.6.1. (Nerve). Let (X, τ) be a topological space and U = {Ui}i∈I an
open covering of X . The nerve of U is defined as the abstract simplicial complex
N̂(U), which contains a vertex 0-simplex {vi} for each i ∈ I , and a k-simplex
{vi0 , . . . , vik}, whenever Ui0 ∩ . . .∩Uik 6= ∅ for distinct indices i0, . . . , ik, k ≥ 1.

Definition 2.6.2. (Pullback). Let (X, τX) and (Y, τY) be topological spaces,
and f : X → Y a continuous function (in the context of mapper, these func-
tions are called filters or lenses). Let U = (U1, . . . , Um) be an open covering
of Y , i.e., a collection of open sets in Y such that

⋃
i=1,...,m Ui = Y . Then

f?U := (f−1(U1), . . . , f−1(Um)) is an open covering of X , called the pullback
of U under f .

Remark 2.6.3. Note that the pullback cover f?U in the definition above is indeed
an open covering of X . First, it consists of open sets by Definition 2.3.3. Second,
for every x ∈ X , we must have f(x) ∈ Ui for at least one 1 ≤ i ≤ m, so that
x ∈ f−1(Ui) = {z ∈ X : f(x) ∈ Ui}. This shows that

⋃
i=1,...,m f

−1(Ui) = X .

Definition 2.6.4. (Cluster Function). Let (X, τ) be a topological space. A func-
tion

π : τ → P(τ) : U 7→ π(U),

with the following properties:

• for each U ∈ τ , it holds that
⋃
V ∈π(U) V = U ,

• for each U ∈ τ , it holds that V ∩ V ′ = ∅ whenever V, V ′ ∈ π(U) and
V 6= V ′,

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 47

is called a cluster function or cluster algorithm. Given a family U = {Ui}i∈I of
open sets in X , we define another family of open sets π?(U) :=

⋃
i∈I π(Ui).

Definition 2.6.5. (Mapper). Let (X, τX) be a topological space. Suppose π is a
cluster algorithm on X , f : X → Y a continuous function to a topological space
(Y, τY), and U = (U1, . . . , Um) an open covering of Y . The result of mapper
applied to this triple is the simplicial complex

M(π, f,U) := N̂(π?(f
?U)).

Definition 2.6.5 can both be regarded in a practical setting, where X is a finite
point cloud data set, or in a setting where X defines a (underlying) continuous
topological model. In the first case, every subset of X is open (according to the
topology induced by the metric space X is embedded in). A clustering algorithm
(in the usual context) that joins distinct points together is then necessary. If X
defines a (continuous) topological space (X, τ), e.g., the topological model under-
lying our observed data, then one may naturally take the clustering function π to
map each U ∈ τ to the set of connected components of the subtopology induced
on U .

The Mapper algorithm allows for a lot of flexibility to visualize data. Unfortu-
nately, this is accompanied by a sensitivity to the used parameters, as the Mapper
algorithm lacks robustness against the choice of filter, the amount of overlap of
bins, as well as the clustering method in the original space. Any change in these
choices can lead to a major change of the output of the algorithm [55]. A potential
solution to this issue was introduced in [56], under the name of multiscale mapper.
Here, one studies the resulting simplicial structures and maps between them, when
the mapper algorithm is conducted for varying coverings of the image of the filter.

2.7 Merge Trees
We end this chapter by presenting the concept of merge trees [57], which will be
used to conduct one of our proofs in Chapter 6. First, we require to introduce the
concept of a Reeb graph.

Definition 2.7.1. (Quotient Space). Let (X, τX) be a topological space and ∼ an
equivalence relation on X . The quotient set Y = X/ ∼ is the set of equivalence
classes of elements of X . We denote the equivalence class of x ∈ X as [x]. The
quotient space under ∼ is the set Y equipped with the quotient topology

τY := {U ⊆ Y : {x ∈ X : [x] ∈ U} ∈ τX} .

Definition 2.7.2. (Reeb Graph). Let (X, τ) be a connected topological space, and
f a continuous scalar function f : X → R. We define an equivalence relation ∼

48 CHAPTER 2

Figure 2.15: The graph of a function f together with its epigraph epif and merge tree Tf .
Three components of a levelset f

−1
(a) of the projection f : epif → R are highlighted in

bold, together with their representative points on Tf . Image adapted with permission
from [57].

onX , such that for x, y ∈ X , x ∼ y iff there exists a ∈ R such that x and y belong
to the same connected component of the level set f−1(a) := {z ∈ X : f(z) = a}.
The Reeb graph is the quotient space X/ ∼ endowed with the quotient topology.

Note that the Reep graph is technically not a graph. However, the term is quite
common in the TDA literature.

Definition 2.7.3. (Merge Tree [57]). Let (X, τ) be a connected topological space,
and f a continuous scalar function f : X → R. The epigraph of f is defined as

epif := {(x, y) ∈ X × R : f(x) ≤ y}.

The projection from the epigraph onto R is defined as

f : epif → R : (x, y) 7→ y.

The merge tree of f , denoted Tf , is the Reeb graph of f . We denote by f̂ the
function

f̂ : Tf → R : [(x, y)] 7→ y.

Note that f̂ is a well-defined function. Indeed, if [(x, y)] = [(x′, y′)] ∈ Tf ,
then (x, y) and (x′, y′) belong to the same connected component of some level set
f
−1

(a). This means that y = a = y′. Figure 2.15 illustrates an example of a
merge tree for a real-valued scalar function f .

For a projection f : epif → R, a ∈ R, and ε > 0, we have F̄a
(
f
)
⊆

F̄a+ε
(
f
)
, where F̄a

(
f
)

is the sublevel set

F̄a
(
f
)

:=
{

(x, y) ∈ epif : f((x, y)) ≤ a
}

LITERATURE OVERVIEW: TOPOLOGICAL DATA ANALYSIS AND GRAPHS 49

of f . Hence, any connected component in F̄a
(
f
)

maps into a connected compo-
nent of F̄a+ε

(
f
)
.

Similar to the bottleneck distance between the persistence diagrams obtained
through the sublevel filtrations of functions (Section 2.5.2.4), we can define a
‘topological’ distance between functions through their merge trees. This is for-
malized through the concept of shift maps.

Definition 2.7.4. (Shift Map [57]). Let Tf be a merge tree. The ε-shift map
ιε : Tf → Tf is defined by mapping x ∈ Tf with f̂(x) = a representing a
connected component X ⊆ F̄a

(
f
)
, to the point ιε(x) := y ∈ Tf which represents

the connected component in F̄a+ε
(
f
)

that includes X . In other words, ιε(x) is
obtained by following the path from x to the root of Tf until we reach a point y for
which f̂(y) = a+ ε.

Definition 2.7.5. (Interleaving Distance between Merge Trees [57]). Let Tf and
Tg be merge trees. Two continuous maps α : Tf → Tg and β : Tg → Tf are said
to be ε-compatible for some ε ≥ 0, if

ĝ(α(x)) = f̂(x) + ε, f̂(β(y)) = ĝ(y) + ε,

β ◦ α = ι2εTf
, α ◦ β = ι2εTg

,

where ι2εTf
and ι2εTg

denote the 2ε-shift maps in the respective merge trees. The
interleaving distance dI(Tf , Tg) is defined as the infimum of ε for which there are
ε-compatible α : Tf → Tg and β : Tg → Tf .

The interleaving distance is no less sensitive than the bottleneck distance be-
tween 0-dimensional persistence diagrams, which is formalized through the fol-
lowing theorem.

Theorem 2.7.6. [57, Theorem 3]. Given two tame functions f : X → R and
y : Y → R, it holds that

db
(
Dgm0

(
F̄(f)

)
,Dgm0

(
F̄(g)

))
≤ dI(Tf , Tg) .

3
Introduction to Topological Models in

Graphs

3.1 Introduction

The topic of this entire thesis is to study and perform topological inference in
graphs. Indeed, for our purpose in Chapter 7, i.e., (topological) object detection
in images, we will not require the inclusion of any higher-dimensional simplices
than nodes and edges in the simplicial complex identified with the image (Sec-
tion 2.5.2.4), so that they may be regarded as (functions defined on) graphs. Fur-
thermore, in case of point cloud data, we will always construct an intermediate
proximity graph, which we will use to perform topological inference or analysis.

With the only exception being object detection in images, we will also study
and perform topological inference of graphs. In this chapter, we will present this
problem on an intuitive level. Note that we will not provide a concrete theoretical
formalization in this chapter (nor in this thesis) of what a topological model in
a graph is. Nevertheless, throughout this thesis, we will show that such models
are clearly present in many different graphs, whether given or derived from point
cloud data.

In Section 3.2, we illustrate a first example of a non-causal topological model
in graphs. In Section 3.3, we introduce the problem of cell trajectory inference,
which will play an important role in Chapters 4-6. Similar to the earthquakes data
set illustrated on the cover of this dissertation, cell trajectory data leads to causal
topological models in graphs. Both types of models will be of interest throughout

52 CHAPTER 3

this thesis. Yet, this inconsistency in the dependency between models and graphs
is one of the reasons why it is difficult to provide a mathematical formalization
that applies to the majority of graphs. We discuss this further in Section 3.4.

3.2 A Topological Model in the Karate Network

We start by illustrating a first example of a (graph-structured) topological model in
a graph. Consider the Karate network G in Figure 3.1a. According to the ground
truth (see also the caption of Figure 2.2), the administrator John A and instructor
Mr. Hi play important roles in the network. This can also be visually deduced from
Figure 3.1a, as all members (nodes) in G lie close to (or more specifically, within
at most two hops from) either John A or Mr. Hi. The ground truth separates two
communities in the network, of which John A and Mr. Hi are the core members,
defining important ‘landmarks’ in G. These communities are identified through
the coloring of the nodes in Figure 3.1a.

The difference between topological model inference and community detection
in graphs lies in the fact that not only are we interested in identifying important
landmarks or communities in the graph, but also in the present ‘flow’ between
them. Indeed, although the two separate nodes for John A and Mr. Hi might model
the karate network relatively well in some sense (e.g., in terms of distances to all
other nodes), this would not model that there exists a connecting path or flow be-
tween them. In general, this flow induces connections between different landmarks
in our graph, and the landmarks together with the connections between them then
define a new graph B. The topology of B—which we identify with the topology
of one of its geometric realizations—then models the underlying topology of the
original graph.

We can now proceed in two ways to model the underlying topology of a graph
(such as the Karate network) G, both leading to the same model up to a homeo-
morphism.

• Subgraph models model the flow between landmarks inG through paths in
G itself (Figure 3.1b). The result is always a subgraph B of G.

• Non-subgraph models model the flow between landmarks in G through di-
rect links between them (Figure 3.1c). This results in an entire new graphB,
which has the landmarks inG as it nodes, and a link between two landmarks
whenever there is a flow between them that does not pass through any other
landmark.

Naturally, subgraph models—which we also call backbones—encode more in-
formation. Instead of just knowing that there exists a link between two landmarks,
we know an exact path between them. However, the difficulty lies in deciding on a

INTRODUCTION TO TOPOLOGICAL MODELS IN GRAPHS 53

(a) The karate network.

(b) A subgraph topological model of the karate
network.

(c) A non-subgraph topological model of the
karate network.

Figure 3.1: Two topological models for the Karate network.

54 CHAPTER 3

‘good’ path to model the flow. Inferring such models for given graphs will be the
topic of Chapter 5. Reconstruction methods that only model links between land-
marks, and hence, result in non-subgraph models, will be discussed in Chapter 4,
in which we target point cloud data.

The Karate network is a good example of a non-causal topological model in
graphs: the (linear) model is derived from the graph (data) itself, and the model did
not generate the data. Intuitively, the entities (members of the karate club) existed
prior to the model.

3.3 Introduction to Cell Trajectory Inference

Cell trajectory inference might currently be considered one of the most crucial
applications of (graph-structured) topological model inference in graphs, finding
usage within domains such as cancer research and immunology [58–62]. One will
therefore find we consider this problem quite a few times throughout this thesis
(mainly in Chapters 4-6). Note that some methods for cell trajectory inference
might not treat this as a topological inference problem in graphs, but may use the
extrinsic Euclidean space in which the data is embedded [63]. However, through-
out this thesis—and similar for all point cloud data we will consider—our first step
will be constructing a proximity graph from the cell trajectory data, so that we may
indeed treat this as a topological inference problem in graphs.

A cell trajectory data set X may be regarded as a data matrix in Rn×d. Each
of the n rows in X corresponds to one particular biological cell, from which ex-
pression data is gathered through one of various possible single cell sequencing
methods [64]. This expression data captures how much a particular gene or protein
is expressed by a particular cell. The d columns of X thus represent the genes or
proteins for which measurements are obtained. Hence, each entry Xij , 1 ≤ i ≤ n,
1 ≤ j ≤ d, quantifies how much gene/protein j is expressed by cell i. Since often
measurements of hundreds to thousands of genes or proteins are obtained at once,
d is usually large, resulting in high-dimensional point cloud data in Rd. Raw ex-
pression data generally requires a tremendous amount of pre-processing, such as
quality control, normalization, data correction, feature selection, and dimensional-
ity reduction, prior to its downstream analysis [9]. However, throughout this thesis
we will only make use of dimensionality reductions, as the expression data we will
consider have already undergone the various other steps [65].

In cell trajectory inference, the expression data X is gathered from differen-
tiating cells, i.e., biological cells that evolve from one state into another. Each
cell in X is then at some particular point during this biological differentiation pro-
cess, which may be modeled through a graphG. During differentiation, functional
changes of a cell correspond to changes in its expression profile. These changes
may be regarded continuous for our purpose. This results in the point cloud data

INTRODUCTION TO TOPOLOGICAL MODELS IN GRAPHS 55

(a) The ground truth model (a graph G) underlying the cell trajectory
data.

(b) The ground truth model (a metric graphM in black) underlying the cell
trajectory data, as well as the data itself, visualized through a diffusion map

embedding in R2. A 5NN graph (Definition 2.4.6, edges in red) is constructed from
this embedding, and we consider the ground-truth models of the point cloud data

and graph constructed thereof to be equal.

Figure 3.2: An example of a real cell trajectory data set X , along with its underlying
models represented as both a graph G and metric graphM.

56 CHAPTER 3

X ∈ Rn×d approximating a metric graphM—which is a geometric realization of
G—in Rd.

Figure 3.2 shows an example of a cell trajectory data set X . The underlying
graph model G, which displays the differentiation process the cells undergo (each
node represents one ‘milestone’ of this process), is shown in Figure 3.2a. Figure
3.2b shows the geometric realization M of G, as well as its location within the
data set X . However, as the original data X is high (1770-)dimensional, we vi-
sualized both the data as well as its ground-truth (metric graph) model in Figure
3.2b through a two-dimensional diffusion map embedding [66] of X . The 2D co-
ordinates resulting from this embedding correspond to the ‘comp 1’ and ‘comp 2’
axes in Figure 3.2b.

The main purpose of cell trajectory inference is to infer the model M from
the expression data X . As discussed in Section 2.4.2, topological information of
G corresponds to topological information of M and vice versa. The difference
is that knowledge of M allows one to map G, i.e., place the cell differentiation
network, into the original data X , which is something cell trajectory inference is
also concerned with (e.g., for pseudotime analysis [9]).

Cell trajectory data, and therefore proximity graphs constructed thereof (an
example is shown in Figure 3.2b), are good examples of causal relationships be-
tween the topological models and the (proximity) graphs derived from the data.
More specifically, changes in gene or protein expression during cell differentia-
tion may be modeled using ordinary differential equations [67], which define a
metric graph in the high-dimensional expression space to which the observed cells
are—accounting for the presence of noise which is quite common for this type of
data—-expected to lie close to. Intuitively, it is the cell differentiation process that
determines the positioning of cells, resulting in the observed data. Similarly, the
union of the boundaries of the tectonic plates can be regarded as a causal model
for (a proximity derived from) the earthquakes data set on the cover of this disser-
tation, as the friction between them is one of the main causes for the occurrence of
earthquakes.

3.4 On Formalizing Underlying Models in Graphs

Up to this point, we have seen various examples of graph-structured topological
models in graphs. In this section, we will describe these models further on an
intuitive level, and discuss both the possibilities and difficulties when it comes
to mathematically formalizing these models. Note that we will not provide such
exact mathematical formalization of these models in this section (hence the ’On’
in this section’s title), nor in this thesis. We will therefore put a lot of emphasis on
qualitative analysis and visualization to understand these models.

In Section 3.4.1 we discuss the intuitive properties we seek for in topologi-

INTRODUCTION TO TOPOLOGICAL MODELS IN GRAPHS 57

cal models of graphs. Finally, in Section 3.4.2 we discuss the various difficulties
when it comes to expressing the mathematical relationship between the topological
models and graphs.

3.4.1 Properties of a Topological Model in a Graph

We have seen that graph-structured models may occur both in given graphs, such
as in the Harry Potter or Karate network, or in graphs derived from point clouds,
such as earthquake locations or cell trajectory data. For point clouds with an ex-
trinsic space, the model can be both interpreted in a graph-theoretical sense, as
well as in a more ‘continuous’ topological sense, i.e., as a metric graphs. Graph-
theoretical ‘topological’ properties (such as paths, components, cycles, . . .) then
coincide with their formal topological counterparts for these models. Since given
graphs may not have such extrinsic space or model, we will describe our models
as graphs themselves in all cases. Despite this confusing terminology, i.e., the
original graph (data) is essentially a graph-structured topological model itself, all
graphs we have seen above may be characterized well through a more simplified
model. By ‘characterized well’, we mean that

1. the majority of nodes lie close to the model,

2. the model preserves the geometry of the original graph well,

whereas by ‘simplified model’ we mean that

3. the size of the model, i.e., in terms of number of vertices and/or edges it
includes, is much smaller than that of the original graph,

4. the model is significantly less topologically complex, i.e., has less leaves,
multifurcations, and cycles, than the original graph.

Note that essentially 4. is the only topological characteristic. However, throughout
this thesis, properties 1.-4. will be the ones we seek for in topological models of
graphs. Thus, apart from a model that only displays the topological properties,
we aim for a model that describes the entire original data well. E.g. Figure 4.4
illustrates well why this may be different.

Each one of these properties admits direct, and often multiple ways to be math-
ematically formalized. Yet, aiming to optimize each one of these may lead to gen-
eralization difficulties, which we will further clarify in Section 5.7.4. E.g., for 1.,
one might consider a cost that equals a sum, average, mean, or maximum of the
distances (either in the graph or in the extrinsic space) of all nodes in the original
graph (data) to the model, aiming to achieve a low such cost. However, as we
will see in Chapter 5, such optimization may lead to ineffective results when out-
liers are present, or when the data has a nonuniform density. Furthermore, clearly

58 CHAPTER 3

the original graph (data) will achieve the lowest cost for 1., and we would need
to impose that the additional simplification properties (3.-4.) are satisfied. How-
ever, the fact that we want our models to simultaneously satisfy properties 1.-4.,
that we want to accommodate for outliers or nonuniform density, that infinitely
many topologies may be associated with (geometric realizations of) finite graphs,
and that we consider such models in both given graphs and graphs derived from
point cloud data, makes it complicated for one to write down one simple mathe-
matical expression (or even a class of such expressions) associating a cost—to be
optimized—to a model, that effectively applies to the majority of graphs.

3.4.2 Expressing the Relationship between the Model and Data:
the Difficulties

Properties 1.-4. in Section 3.4.1 intuitively capture what we want a topological
model in a graph to satisfy. Yet, they do not tell us what a topological model in
a graph exactly is. More specifically, they do not specify how such model relates
to the original graph, e.g., in terms of dependencies, causality, or a generating
process. In this section, we discuss the difficulties when it comes to providing
such formalization that consistently applies to the majority of graphs occurring in
data science.

Indeed, one may consider mathematical expressions that specify how the graph
(data) is the probabilistic result of some (topological) model. This may be directly
possible for graphs derived from point cloud data where a ground-truth model
(metric graph) is present, as has been partially addressed in [6]. For given graphs,
one may consider random graphs [68, 69], which are obtained by starting with a
set of n nodes and adding successive edges between them at random. These graphs
are described by a probability distribution, or by a random process which gener-
ates them. Hence, one might capture the existence of a ground-truth topological
model within the mathematical formulas expressing the corresponding probabili-
ties or data generating process. To the best of our knowledge, random graphs have
not yet been characterized in terms of ground-truth topological models in such a
way that captures properties 1.-4. in Section 3.4.1. Furthermore, another ques-
tion that would arise from such formalization through random graphs is whether
one would treat given graphs and those derived from point clouds separately, or
whether one would aim for a formalization that is consistent for both (and prove
that this is indeed the case, e.g., starting from the results in [6]). Other difficulties
that further complicate providing a universal formalization of topological models
through random graphs—even when graphs derived from point cloud data would
be treated separately—are summarized below.

INTRODUCTION TO TOPOLOGICAL MODELS IN GRAPHS 59

Causal vs. non-causal The question whether there is a causal relationship be-
tween the topological model and the original graph relates to the question whether
there is a ground-truth topological model. Nevertheless, the answers to these ques-
tions may be different. E.g., in case of point cloud data (and hence, proximity
graphs derived thereof), there is often a causal relationship between the observed
data and the underlying ground-truth model, such as we discussed for the earth-
quake locations and cell trajectory data. However, there may not always be an
analogous interpretation for every type of graph considered. A clear example of
this is the Karate network, where the entities existed prior to the topological model
we derived (Section 3.2). However, even though there might not be a causal rela-
tionship between the model and data in this case, our inferred linear model does
fit the ground-truth metadata, i.e., the given community classes well (Figure 3.1).
Then there are other examples for which the existence of such causal relationship
may be ambiguous. E.g., in case of the Harry Potter network, J.K. Rowling (the
author) might have first thought of a ‘ground-truth’ model, which captures that
there are two communities (nodes), representing the ‘good’ and ‘evil’ characters,
and some possible connection between them. A (non-subgraph) model similar to
the one in Figure 3.1b may hence capture the ground truth of the Harry Potter net-
work well. One may then argue whether the actual characters were derived from
this model. Even so, providing a mathematical formalization that expresses how
J.K. Rowling proceeded to do this will be likely tedious.

We summarize these difficulties—through which what we consider one of the
most important phrases in this entire thesis—as follows.

simplified graph-structured models occur naturally in many real-world graphs,
but conversely, many graphs are not the causal result of such model.

This also complicates providing a universal formalization of topological models
through random graphs, where the corresponding probabilistic rules would express
the dependency between the model and data.

Small-world vs. non-small-world The Karate network is an ideal example of
one of the many real-world graphs that satisfy the small-world network model [70],
which states that the number of highly connected nodes—termed hubs—is much
smaller than the number of low degree nodes. This means that most nodes in small-
world networks are not neighbors of each other, but are likely to have common
neighbors. More formally, a small-world network is defined as a network G where
the expected number of hops between two randomly chosen nodes u and v grows
proportionally to the number of nodes in G, i.e.,

E [dunwG(u, v)] ∝ log |V (G)|.

60 CHAPTER 3

Figure 3.3: A graph G (nodes in blue) and a subgraph B (red) of G which truthfully
represents the linear topology of G.

The six degrees of separation is an idea that is also based on the concept of small-
world networks, and states that the set of all people (alive at one time) are six, or
fewer, social connections away from each other.

One might deduce that the model underlying a graph G is always induced by
the hubs of G and the flow between them (Section 3.2). However, this is gener-
ally not true, as there are many examples of non-small-world networks in which
simple graph-structured models are present as well, which do not even include
hubs. Intuitive examples are road networks, where nodes correspond to intersec-
tions and edges to streets between them (we should be rather grateful that no hubs
are present in these networks). Given two arbitrary locations, there are likely many
roads between them, but you are likely to spend most of your time traversing only
the highways (which make up the model underlying the road network) between
them. Another example we have already seen are earthquake locations. There
is no location on Earth where many boundaries of tectonic plates meet, and the
highest degree of the corresponding model is small. In general, proximity graphs
constructed from low-dimensional point cloud data are examples of non-small-
world networks. Examples other than the earthquake locations with an under-
lying (simplified) graph-structured model include galaxy locations distributed in
space [13,29], or low-dimensional embeddings of high-dimensional cell trajectory
data [9]. An illustrative example is given in Figure 3.3, which shows a Rips graph
G constructed on a noisy point cloud sampled from a line segment in R2. Clearly,
there is no strong correlation between the degree of a node and its closeness to the
underlying linear model centered in G.

This suggests that when formalizing topological models in graphs through ran-
dom graphs, one may need to consider different ways to express how the connec-
tions in the graph depend on the nodes in the model.

What nodes in the model represent Nodes—and edges between them—within
the topological model of graphs have an intuitive meaning on a global level: they
represent the existence of important connections in the underlying topology. Yet,

INTRODUCTION TO TOPOLOGICAL MODELS IN GRAPHS 61

(a) A complete bipartite graph G. The layout is
obtained through a bipartite layout algorithm.

(b) A possible topological representation of G.

Figure 3.4: A possible topological model in a complete bipartite graph
G = (V = A tB,E). The topological model captures the flow from A to B. Yet, the
nodes in G represented by the same node in the model are more distant to each other.

they have a less consistent meaning on a local level. I.e., in case of the models
we discussed up to this point, the nodes in the original graph represented by those
in the model—such as Harry Potter who represents Ron or Hermione in the Harry
Potter Network (Figure 2)—share a common property. In all these cases, nodes
in the original graph represented by the same node in the model can be regarded
close to each other. This is similar to the model in the Karate network (Section
3.2). However, such interpretation may be invalid for other types of graphs. To see
this, consider an unweighted complete bipartite graphG = (V,E), where V is the
union of two nonempty disjoint sets A and B, i.e., V = A t B, and {u, v} ∈ E
iff u ∈ A and v ∈ B. An example of such graph is shown in Figure 3.4. One
meaningful topological model may be obtained my modeling the flow from A to
B, such as in Figure 3.4a. In this case, all nodes in A are represented by the same
node in the model, yet, are more distant to each other than they are to nodes in B.

Hence, when one would formalize topological models in graphs through ran-
dom graphs, one may need to decide what nodes in the topological model actually
represent, and account for the possibility that nodes represented by the same node
in the model must not be close to each other.

3.5 Discussion and Conclusion

In this chapter, we provided a first introduction to topological models in graphs.
Both the Karate network and our considered cell trajectory data set (and hence,
a proximity graph derived thereof, which has the same underlying model by as-
sumption) could be modeled well by a simple graph-structured model. Despite the
confusion terminology, i.e., both the original graph and model can be considered
graph-structured models, these concepts were easy to understand through these
visual examples.

62 CHAPTER 3

We furthermore expressed the properties we seek for in topological models of
graphs in Section 3.4.1. Furthermore, we discussed that each of these properties
admits direct, and often multiple ways to be mathematically formalized, possibly
resulting in a cost function to optimized. Although this may lead to well-defined
optimization problems for inferring topological models in graphs, we discussed
why it may be rather complicated for one to write down one simple mathematical
expression (or even a class of such expressions) to effectively infer these models
through an associated cost. We will elaborate on this in Chapter 5.

Unfortunately, things do not become easier when it comes to mathematically
formalizing the relationship between graphs and their topological model. The wide
variety in topological behavior of graphs makes it difficult to provide a universal
approach that expresses these relationships in a way that applies to even the ma-
jority of graphs. Graphs commonly differ in terms of whether they are given or
derived from point cloud data, whether there is a causal relationship between them
and the model, whether they satisfy the small-world network model, or how nodes
in the model relate to the nodes they represent.

Nevertheless, as we have seen in this chapter and will extensively see in the
following chapters, topological models can occur in all of such graphs. Further-
more, although the methods we develop in the following chapters might only make
sense under the assumption that these models are present, they will also allow us
to confirm that this is indeed the case. Hence, despite—and, perhaps even more
interestingly, given—all the various difficulties discussed above, how to mathe-
matically formalize the concept of topological models in graphs is one of the most
important open problems resulting from this thesis. We will discuss this further in
Section 8.2.

4
Methods from Local Topological Data

Analysis

This chapter is based on the following publication.

• Robin Vandaele, Tijl De Bie, and Yvan Saeys. Local Topological Data Anal-
ysis to Uncover the Global Structure of Data Approaching Graph-Structured
Topologies. In Michele Berlingerio, Francesco Bonchi, Thomas Gärtner,
Neil Hurley, and Georgiana Ifrim, editors, Machine Learning and Knowl-
edge Discovery in Databases, pages 19–36, Cham, 2019. Springer Interna-
tional Publishing. [3]

4.1 Introduction

In this chapter we discuss reconstruction methods that build a non-subgraph topo-
logical model of a given metric space, based on local topological information
[3, 13]. These metric spaces will be defined through proximity graphs constructed
from Euclidean point cloud data approximating a metric graph. More specifically,
reconstruction methods target Rips graphs constructed from local neighborhoods
of proximity graphs, but generalize rather poorly to arbitrary given graphs.

In Section 4.2 we briefly discuss how these reconstruction methods relate to
persistent local homology, through which many of the concepts introduced in this
chapter can be mathematically formalized. Next, in Section 4.3 we discuss how
multifurcations can be inferred through local topological data analysis, followed

64 CHAPTER 4

by cycles in Section 4.4. In Section 4.5 we discuss how this topological infor-
mation on multifurcations and cycles can be used to reconstruct the global model
from the data. Finally, in Section 4.6 we conclude upon the effectiveness of re-
construction methods for inferring graph-structured models, and discuss further
directions for improving them.

We refer to the general method that deals with the analysis and inference of
local topological properties in data as local topological data analysis (LTDA).

4.2 Relation to Persistent Local Homology

The idea of persistent local homology [71–73] is to apply persistent homology
after discarding a local neighborhood Bd(x, r) of a data point x from a given fi-
nite metric space (data set) (X, d). As we will see in the following sections, this
is very similar to how local topological information is deduced for graph recon-
struction methods. However, unlike these reconstruction methods, persistent local
homology—similar to regular persistent homology—does not infer an exact topo-
logical property, but quantifies topological properties at many scales. On the one
hand, we have the parameter α (such as the time t, distance ε, . . .) which param-
eterizes the filtration after having discarded a fixed local neighborhood Bd(x, r).
On the other hand, we may also vary the radius parameter r. This leads to a
1-parameter family of persistence diagrams, parameterized by r, also known as
persistence vineyard or (α|r)-vineyard [74]. These persistence vineyards can be
seen as lines in the 3D space, where each line tracks the evolution of a particular
diagram point according to the increasing radius parameter r.

Unfortunately, graph reconstruction methods currently require exact local topo-
logical information near every data point x. E.g., they require a ‘yes or no’ answer
to the question if the local neighborhood of x corresponds to a multifurcation or
leaf, instead of a topological summary from which this might be deduced. Fur-
thermore, it is still unclear how this one may actually deduce exact topological
information, i.e., one precise number of interest, from persistence vineyards. For
this reason, we will discuss reconstruction methods based on local topological
information inferred at fixed scales, which can also be considered their main limi-
tations.

4.3 Locating Multifurcations in Metric Data

In this section, we consider the following problem. We are given a metric space
(X, d), and a point x ∈ X . The underlying topology of X is known to be metric
graphM. In practice, X will be a (Euclidean) point cloud data set, and d will be
obtained through the shortest path distances in a proximity graph G constructed

METHODS FROM LOCAL TOPOLOGICAL DATA ANALYSIS 65

Figure 4.1: The idea behind LTDA for data that approaches a metric graphM = S1
1 ∪S1

2 .
For appropriate proximity graphs, one finds the underlying degree of a data point x (black)

by counting the connected components in the graph induced by the intersection of a
spherical shell and the data (green points), representing branches emerging from x.

on X . The problem we then consider is ”to characterize the underlying topology
of X near x. Figure 4.1 illustrates how we proceed to this end. First we consider
a ball Bd(x, r) around X . By nature, the points within Bd(x, r) ∩X (the red and
green points in Figure 4.1) will then resemble one connected underlying topology
S ⊆M. If r is small enough, then furthermore S will be a ‘star’-shaped topology.
This means that S is equivalent to a topological space that is obtained by drawing
k ∈ N branches away from a center point m, accounting for the fact S may be the
isolated point m, i.e., k = 0 (we informally use the word ‘branch’ to refer to the
continuous counterpart of an edge). m is the representative point for x inM, and
the local topology of X near x, i.e., S, is topologically completely characterized
by k, which equals the degree of m inM (Definition 2.4.7).

The question is then how to infer the number k in a data setting rather than a
theoretical setting. The answer is based on the fact that in the theoretical model,
k equals the number of connected components in the star-shaped topology S, af-
ter removing the point m representing x. Accounting for the fineness of data and

66 CHAPTER 4

noise, we can hence infer k through a cluster algorithm on all points within a punc-
tuated neighborhood Bd(x, r)\Bd(x, r′) for some r′ < r. In [13], the used cluster
counting method corresponds to counting the number of connected components in
the Rips graph R4r′/3 (Bd(x, r)\Bd(x, r′)), and they let r = 5r′/3, where an
optimal choice of r′ (if existing) depends on the scale of the data. In contrast to
this, we impose that the (X, d) is derived as a Rips graph G = Rε(X) from some
point cloud set X (e.g., as shown in Figure 4.1), where the scale of the data is cap-
tured through ε, and hence, through the unweighted shortest path distance metric
on d = dunwG . We then count the connected components in the subgraph inRε(X)

that is induced by the points in Bd(x, r)\Bd(x, r′). This corresponds to the four
components marked by the green points in Figure 4.1. We set r = r′+ 1, which in
the unweighted case implies that Bd(x, r)\Bd(x, r′) = ∂Bd(x, r

′), and observe
that most often choosing r′ ∈ {2, 3} leads to good empirical results. Naturally,
other possible choices may be investigated as well.

Remark 4.3.1. Neither our approach, nor the one in [13], is to be practically
preferred over the other for inferring the degrees through LTDA. The intuition be-
hind both methods is exactly the same. However, our approach is currently more
heuristic. The choices for r and r′ have been theoretically justified in the sense that
through these choices their full reconstruction method [13, Algorithm 1] is guar-
anteed to reconstruct the underlying ground truth metric graph (M, dM) up to a
homeomorphism, under certain assumptions [13, Theorem 1]. Furthermore, under
these assumptions, they also provide a guarantee that the metric of the reconstruc-
tion approximates the metric dM well [13, Theorem 2]. It is left to say that these
assumptions are quite stringent, and quickly become impossible to satisfy when-
ever the metric distortion between (X, d) and (M, dM) is too large relative to
the shortest branch length ofM, e.g., as a result of the data set X containing too
much noise. Nevertheless, even though geometric information is strictly stronger
than topological information, geometric information can be captured well even
when topological information is inferred incorrectly (see Section 6.2 and [6]). For
this reason, we do not provide topological reconstruction guarantees as in [13].

Remark 4.3.2. There is no real contribution in our degree inference method over
the presented in [13]. Our contributions lie in inferring cycles through compar-
ing global to local topological information (Section 4.4), and our reconstruction
method (Section 4.5).

4.4 Comparing Local to Global Topological Infor-
mation for Cycles

IfM is a metric graph, then for any x ∈M, BM(x, r) does not contain any cycle
whenever r > 0 is small enough. Hence, cycles in (metric) graphs correspond to

METHODS FROM LOCAL TOPOLOGICAL DATA ANALYSIS 67

global and not local topological properties. However, we may reveal the presence
of a cycle through x by comparing global topological information relative to local
topological information near x. This is formalized through the following theorem.

Theorem 4.4.1. Let G = (V,E) be a graph. Then for each α ∈ V ∪ E, the
number of cycles passing through α is bounded from below by

δ1(α) := δ0(α) + β0(G)− (β0(G\α) + 1) ≥ 0, (4.1)

where G\α denotes the graph G after removing α, and

δ0(α) :=

{
δ(α) if α ∈ V,
2 if α ∈ E.

Moreover, for each α ∈ V ∪ E, a cycle passes through α iff δ1(α) > 0.

Proof. Let α ∈ V ∪ E and denote the number of cycles through α by β1(α).
Since the statement is trivially valid for β0(G) = 0, we may assume G to contain
at least one node, and hence, β0(G) ≥ 1. Furthermore, as the contributions of the
components in G other than [α]1 to β0(G) and β0(G\α) in (4.1) cancel each other
out, we may as well assume that β0(G) = 1. Hence, it is left to prove that

β1(α) ≥ δ1(α) = δ0(α)− β0(G\α) ≥ 0,

and that a cycle passes through α iff δ0(α) > β0(G\α). This follows easily
from the fact that each cycle through α passes through two neighbors of α which
remain connected after discarding α, and conversely, if two neighbors of α remain
connected after discarding α, then they induce a cycle through α in G.

Remark 4.4.2. As additional paths between two fixed neighbors of α ∈ V ∪E in
(G\α) do not change β0(G\α) more than one such path, δ1(α) only provides a
lower bound on β1(G).

Inferring δ1 for a given metric space (X, d) in a data setting is very similar
to inferring δ0 = δ (Section 4.3). Once δ has been inferred through the con-
nected components constituted by the points in Bd(x, r)\Bd(x, r′), we consecu-
tively subtract the number of connected components constituted by the points in
{y ∈ X : d(x, y) < ∞}\Bd(x, r′). This corresponds to the two components
marked by the blue and green points in Figure 4.1.

1The definition of connected components (Definition 2.4.3) can be naturally extended to edges
through their endpoints.

68 CHAPTER 4

4.4.1 Algorithm for (δ0, δ1)-Classification

Following the discussions above, given a given metric space (X, d) which is ob-
tained through a rips Graph G for which d = dunwG , we may provide a mapping

X → N× N : x 7→ (δ0(x), δ1(x)),

expressing the underlying local topology near x, as well as a lower bound on the
number of cycles through x, furthermore indicating whether or not a cycle passes
through x. We refer to this as (δ0, δ1)-classification.

For a graph G with n nodes and m edges, all pairwise unweighted shortest
path distances can be obtained in O(nm) time [75]. As the number of connected
components can be obtained in O(n + m) time during each of the O(n) iter-
ation of the while loop, the computational complexity of (δ0, δ1)-classification
is O(n(n + m)). For computational efficiency, the proposed algorithm marks
neighbors of a node with a particular local topology with the same local topol-
ogy, which allows to reduce the computational complexity further to O(n2) in
practice [3]. Furthermore, during each iteration for disconnected graphs, the com-
putational complexity for obtaining the unweighted distances may be further de-
creased, depending on the maximal number of nodes and edges in a component.

Data: Rips graph G & (unweighted) distance parameter r
Result: (δ0, δ1)-classification of the nodes

1 queue = V(G) initialize queue of the nodes to be classified
2 LG = matrix(length(V(G)), 2) initialize matrix to store node topologies
3 DG = distances(G, weights=NA) get all pairwise unweighted

shortest path distances
4 while queue do
5 u = queue[1] specify current node u to (δ0, δ1)-classify
6 d0 = nocomponents(subgraph(G, which(DG[u,] == r))

calculate the underlying degree δ0(u) near u
7 d1 = d0 - nocomponents(subgraph(G, which(r <= DG[u,] < Inf)))

calculate lower bound δ1(u) on underlying cycles near u
8 for v in union(u, neighbors(G. u)) do
9 map neighbors of u to the same class for efficiency

10 LG[v] = (d0, d1)
11 que.remove(v)
12 end
13 end
14 return LG
Algorithm 1: Pseudocode for (δ0, δ1)-classification. ‘nocomponents’ com-
putes the number of connected components of a given graph. Note that in this
algorithm, r plays the role of the smaller inner radius r′ discussed above. We
also start counting from 1, such as in R.

METHODS FROM LOCAL TOPOLOGICAL DATA ANALYSIS 69

Figure 4.2: When the underlying graph-structured topology of a data set X is
well-modeled by a Rips graphRε(X), counting connected components in induced

subgraphs suffices to learn topological structures locally, as well as the presence of cycles,
through Algorithm 1 (|D| = 873, ε = 3.5, r = 3, comp. time: 0.43s). By using these
identified local topologies, we are able to reconstruct a graph homeomorphic to the

underlying space through Algorithm 2 (r̃ = 4, comp. time: 8.04s).

Tuning ε and r The distance parameters ε and r may usually be tuned by manual
investigation. For all results in this chapter, it was sufficient to investigate the use
of either r = 2 or r = 3. Tuning ε is more data dependent, and can e.g. be done
through persistent homology (Section 2.5.2.2), by inferring a time during which
the most prominent features (components and cycles) persist. One may also inte-
grate over different parameter ranges, which are bounded by the maximal pairwise
(original) distance for ε, and by the unweighted radius of the graph for r, which is
defined similarly as in Definition 2.4.8. Consequently, one inspects how well the
reconstructed graph (Section 4.5) approximates the original graph, checking for a
balance between reducing the distance between them, the mean squared error, or
metric distortion (e.g., one may redefine distances as their projected distances on
the reconstruction), and the reduction of the graph size, as also discussed in [13].

4.5 Reconstructing the Graph from Local Topologi-
cal Information

Figure 4.2 shows the result of running (δ0, δ1)-classification, i.e., Algorithm 1, on
(a Rips graph constructed from) a point cloud data setX with an underlying graph-
structured topology. The question is now how we can use this local information to

70 CHAPTER 4

reconstruct the entire underlying topology (the gray graph in Figure 4.2).
In [13] it has been shown that it essentially suffices to consider which points

belong to an edge or not. In our setting, this corresponds to a binary ‘(δ0 == 2)’-
classification. One can then cluster all points that are marked as an edge and
those that are not separately. The obtained clusters then form the nodes of the
reconstructed graph model that will be outputted. Nodes corresponding to clusters
of non-edge points are then connected by an edge based on the criteria whether
there exists a cluster of edge points between them [13, Algorithm 1]. A cluster of
edge points connected to only one cluster of non-edge points marks a self-loop.
Although through the same reasoning a cluster of edge points connected to no
cluster of non-edge points marks an isolated cycle, this is not clearly mentioned
in [13].

The problem with this approach is that different clusters may not be separated
sufficiently, and branches may be too short relative to the amount of noise to even
detect points on edges. This is illustrated in Figure 4.3. Given the ‘(δ0 == 2)’-
classification that results from this example, [13, Algorithm 1] would provide a
graph reconstruction consisting of only one node, which would not model the un-
derlying bifurcating topology of the data.

Nevertheless, the exact (δ0, δ1)-classes provided for the data in Figure 4.3
completely characterize a bifurcating topology. Hence, the information retrieved
by (δ0, δ1)-classification needs to be both stored and used. Applying complete-

Figure 4.3: Classifying the local topologies (ε = 15, r = 3, comp. time: 0.17s), and using
these to reconstruct the underlying graph topology (comp. time: 0.34s) for a noisy sample

of 395 points approaching a Y-structured topology with nonuniform density.

METHODS FROM LOCAL TOPOLOGICAL DATA ANALYSIS 71

Data: Output LG of Algorithm 1 & unweighted distance parameter r̃
Result: A graph representing the underlying topology of X = V (G)

1 Cluster {x ∈ X : δ0(x) ≥ 3} by (δ0, δ1)-group in G
2 Let N1 be the collection of obtained clusters
3 ∀C ∈ N1, use D to obtain a representative center xC ∈ X
4 ∀C ∈ N1, use D to cluster {x ∈ D\C : dunwG (xC , x) ≤ r̃} in δ0(xC)

components (e.g., through hierarchical clustering)
5 Let N2 be the collection of obtained clusters
6 ∀C ∈ N2, Use d to obtain a representative center xC ∈ D
7 If for C,C ′ ∈ N2, C ∩ C ′ 6= ∅, split C ∪ C ′ into two nonempty disjoint

sets by ordering and thresholding the distances of the included points to
xC , according to D

8 Connect C ∈ N1 and C ′ ∈ N2 by an edge if C ′ merged from C in Step 5
or 8

9 Cluster D\(
⋃
N1 ∪

⋃
N2) by (δ0, δ1)-group in G

10 Let N3 be the collection of obtained clusters
11 Split each C ∈ N3 consisting of (2,1)-classified points that is

disconnected from N2 in at least three consecutive connected
components (this is an isolated cycle)

12 Connect C ∈ N2 ∪N3 and C ′ ∈ N3 by an edge if they are connected in G
13 Connect C,C ′ ∈ N2 by an edge if they are connected in G, unless this

contradicts δ0(xC) or δ0(xC′) in the current construction (this reduces
sensitivity to the ε parameter for constructing the Rips graph)

14 return A graph with (centers of)
⋃3
i=1Ni as vertices and the obtained

edges
Algorithm 2: Pseudocode for reconstructing the graph topology based on
(δ0, δ1)-classification

linkage hierarchical clustering [76] allows us to separate the points neighboring the
cluster of (3,0)-classified points in the example in Figure 4.3 into three separated
cluster. Inspired by this result, we use Algorithm 2 for reconstructing the under-
lying graph-structured topology from a (δ0, δ1)-classification. The pseudocode of
Algorithm 2 assumes the graph G used in Algorithm 1 is given, as well as a pair-
wise distance matrix D on the point cloud data X that was used to construct G,
e.g., the original (Euclidean) distances used to construct G. Note that the example
in Figure 4.3 also shows that we can no longer directly use connected components
in subgraphs of our Rips graph to efficiently separate disjoint branches. We solve
this by introducing an additional unweighted radius parameter r̃, and force the
non-multifurcation points within a distance r̃ of a multifurcation point to be clus-
tered in a number of clusters that is consistent with the inferred degree. However,
as we will discuss below, this additional parameter is only needed for connected
components displaying non-isolated cycles.

72 CHAPTER 4

The pseudocode of Algorithm 2 is written in a way that allows for many vari-
ants in its implementation. We use the original (Euclidean) metric used to con-
struct our Rips graph for Algorithm 1, but one may as well choose the weighted
distance matrix on G, which may lead to better results for computing centers of
long and curvy patches, at the cost of computational efficiency. We define the
center of a set U ⊆ X as the data point cX := arg minx∈U (maxy∈U D(x, y)),
which leads to better and more centered point than the point closest to the mean
in the case of nonuniform density. Representing the center in our current way
works well for short patches of the underlying topology, but is less efficient for
patches representing long and curving trajectories, as shown by the red graph in
Figure 4.4. An alternative method is to use a breadth-first traversal to decompose
long clusters representing edges into short and consecutive patches, resulting in
the black graph in Figure 4.4. Note that both graphs are nevertheless homeomor-
phic. One may connect different centers by shortest paths as well, leading to a
subgraph (backbone) model. Isolated circles are separated into four components
by starting a breadth-first traversal at a random point, dividing points according to
low, medium, or high distance from the root, and dividing the points at medium
distance into two separate components. Finally, we replace the representative point
of a (1,0) component—which represents a leaf in the underlying topology—such
that it is furthest from its adjacent center.

Figure 4.4: By a breadth-first traversal of the (2,0)-cluster, one may construct even better
approximations of the underlying structure (black) than the original reconstructed graph

(red).

METHODS FROM LOCAL TOPOLOGICAL DATA ANALYSIS 73

Tuning r̃ The unweighted distance parameter r̃ may be either tuned manually
(all results in this chapter were obtained by using either r̃ = r or r̃ = r + 1, r
being the distance parameter used to obtain the output of Algorithm 1), or tuned
in an integration scheme as discussed in Section 5.2.1. However, a new distance
parameter r̃ is not needed for components resembling isolated points, edges, cycles
or multifurcating trees. This last observations follows from the fact that for a tree
graph T = (V,E), i.e., a connected graph without cycles, whenever |E| ≥ 1 and
there are no vertices of degree 2 (these are irrelevant for representing the topology
of a geometric realization of the tree in terms of homeomorphisms), we have|E| =

1
2

∑
v∈V δ0(v) = 1

2 |{v ∈ V : δ0(v) = 1}|+ 1
2

∑
v∈V

δ0(v)≥3
δ0(v),

|E| = |V | − 1 = |{v ∈ V : δ0(v) = 1}|+ |{v ∈ V : δ0(v) ≥ 3}| − 1.

This implies that the union of points having either (1,0) or (2,0) local topologies
must be clustered into

|E| =
∑
v∈V

δ0(v)≥3

δ0(v)− |{v ∈ V : δ0(v) ≥ 3}|+ 1 (4.2)

components, where this number is computed with respect to the connected com-
ponents with δ0 ≥ 3. If the tree has at least one multifurcation point, all such
obtained clusters of edges will be incident to at least one multifurcation point and
represented by at least two nodes in the reconstructed graph topology. This allows
for another variant of Algorithm 2 for tree-structured topologies: cluster the union
of (1,0) and (2,0) classified points in the obtained number of clusters through (4.2),
and connect each component with δ0 ≥ 3 to all adjacent clusters of edges. This
results in the reconstruction shown in Figure 4.3.

This shows the advantage of including δ1-labels in our classification. Indeed,
these do not contribute much to Algorithm 2, as isolated (δ0 = 2)-clusters im-
ply (δ0 = 2, δ1 = 1)-clusters (in theory) and vice versa. However, if δ1(x) = 0

for each data point x in a particular component of our Rips graph, we directly con-
clude that there is no cycle in the underlying topology of that component (Theorem
4.4.1), and we do not need the additional distance parameter r̃ for this component.

4.5.1 An Example for Cell Trajectory Data

We considered a normalized expression data set X of 4647 manually analyzed
bone marrow cells containing measurements of five surface markers (proteins):
CD34, CD1632, CD117, CD127, and Sca1. These cells are known to differentiate
from long-term hematopoietic stem cells (LT-HSC) into short-term hematopoietic
stem cells (ST-HSC), which can in turn differentiate into either common myeloid
progenitor cells (CMP) or common lymphoid progenitor cells (CLP) [77]. I.e., the

74 CHAPTER 4

(a) The 4647 analyzed bone marrow cells
consist of four cell types that are interconnected

by means of cell differentiation.

(b) PCA plot of the expression data.

(c) LTDA of the expression data. (d) Mapper graph and its induced assignments.

Figure 4.5: A normalized expression data set X visualized through a 2-dimensional PCA
embedding, as well as its ground truth model and cell grouping, along with two different

inferred models. Only our method captures the topology well, and induces a grouping that
correlates well with the ground truth.

topology underlying this data set is that of a geometric realization in R5 of the
graph depicted in Figure 4.5a. No data preprocessing was applied, and the Eu-
clidean distance was used as the original metric. A PCA plot of the data is shown
in Figure 4.5b. Comparing Figure 4.5a and 4.5b, we indeed note the presence of
the Y-structured topology. However, it is clear that identifying this topology would
be a crucial problem in absence of the cell labeling. Hence, our method may serve
as a first step in the context of cell trajectory inference [77, 78], identifying the
branching structure and different stages within a cell differentiation process. Our
method infer (δ0, δ1)-classes in 15.55s (ε = r = 2), and used these to reconstruct
the underlying topology in 5.46s. Note that the present (1,0)- and (3,0)-classes
imply an underlying tree-structured topology, and no additional distance param-

METHODS FROM LOCAL TOPOLOGICAL DATA ANALYSIS 75

eter r̃ was needed for the reconstructing the graph. We inferred the exact same
graph using both complete and McQuitty’s linkage [79] as (hierarchical) cluster-
ing methods in Algorithm 2. However, the labeling induced by using the latter
method, of which the result is shown in Figure 4.5c, correlated slightly better with
the original cell types. The obtained branch-assignments correlate well with the
original assignments, except for, most notably, non-CLP cells near the base of the
ST-HSC→CLP branch being assigned to the branch itself.

We compared our method to the original method [13] using two metrics. For
the Euclidean distances, this took 1h17min, and using the weighted shortest path
distances in the (same) graph R2(X), this took 1h35min. Note that the main rea-
son for the long computation times is that there is no (heuristic) speedup included
in [13, Algorithm1] such as in Algorithm 1. Both methods were unable to capture
the underlying topology, as both resulted in an isolated cycle in both cases. This
is because more than 98% of the data points were marked as branch (non-edge)
points through [13, Algorithm1], and the remaining edge points were unable to
be separated, resulting in one selfloop. We also compared our method with Map-
per (Section 2.6). Experimenting with different filter functions, only the projec-
tion onto the first principal component allowed us to correctly infer the underlying
topology in 11.85s. However, this was a matter of luck, as the assignments induced
by the resulting Mapper graph correlates badly with the original assignments, as
shown in Figure 4.5d.

4.6 Discussion and Conclusion

Applying clustering techniques to study local topologies, and how these affect the
global topology, introduces new possibilities for learning graph-structured topolo-
gies underlying point cloud data sets, as one may even detect cycles without the
need of 1-dimensional homology (Theorem 4.4.1). We combined both LTDA and
reconstruction methods in a simple and intuitive way, leading to a framework (Al-
gorithm 2) for reconstructing the underlying graph based on local topological in-
formation. We furthermore showed how exact knowledge of the underlying de-
grees improves reconstruction methods.

These reconstruction methods are inspired by the fact that correct knowledge
of local topological information guarantees the reconstruction of the correct global
model [13]. This fact is translated into a data setting by means of clustering algo-
rithms and (local) Rips graphs. Indeed, empirically we find other types of graphs
(such as kNN graphs) to be less stable for inferring degrees, i.e., local topologi-
cal information, through spherical neighborhoods, with minimum spanning trees
being the most extreme examples (e.g., one will be able to deduce this from Fig-
ure 6.5 in Chapter 6). Since Rips graphs cannot effectively deal with nonuniform
density (Section 2.4.1), one generally requires more manual input for tuning the

76 CHAPTER 4

Figure 4.6: Local topological information and the model inferred thereof for the same cell
trajectory data set X considered in Section 4.5.1, but where we increased the distance

parameter of the constructed Rips graph from ε = 2 to ε = 4. The inferred local
topological information is now consistent with that of a space/graph with an intrinsic

dimension that is larger than 1 everywhere. Currently, our reconstruction method cannot
effectively deal with such cases, and the whole data is represented by one single (black)

point.

parameters of reconstruction method, especially when the data is accompanied by
noise that makes it more difficult to separate branches. This can be illustrated
through the cell trajectory data set X we considered in Section 4.5.1. As the data
is more sparse along the LT-HSC→ST-HSC and ST-HSC→CLP branches (Fig-
ure 4.5b), we required a distance parameter ε = 2—which is large relative to the
scale of the data—for constructing a Rips graph that captures the connectedness
of the model well. However, increasing ε further may result in distinct regions
being directly connected without passing through the bifurcation location, i.e., the
ST-HSC cells, first. Intuitively, the intrinsic dimension of the graph is now larger
than 1 everywhere, instead of 1 almost everywhere,2 and reconstruction methods
cannot effectively deal with such cases, as shown in Figure 4.6.

To accommodate for the parameter sensitivity of reconstruction methods, they
are ideally applied to more clean and/or processed data, that approximates the
underlying model well. Examples of such data are shown in Figure 4.7. The ad-
vantage of these methods is however that they can directly model cycles, and mark
and group important regions through the used clustering algorithms (unlike the
method we will present in the following chapter). Furthermore, as we will discuss
in more detail in Section 8.2, combining topological signatures obtained through
persistent homology (see e.g. Chapter 6) with topological inference methods [80],

2Although this is intuitively clear, this can also be mathematically formalized. More specifically,
for a measure space (X,Σ, µ), a property P is said to hold almost everywhere if there exists a set
N ∈ Σ with measure µ(N) = 0, such that all x ∈ X\N have the property P . Letting X be a metric
graph, N be the set of nodes of X (Definiton 2.4.7), and P (x) state that the intrinsic dimension near x
equals 1, one easily sees that P holds almost everywhere for sensible choices of Σ and µ.

METHODS FROM LOCAL TOPOLOGICAL DATA ANALYSIS 77

(a) LTDA and underlying graph reconstruction
through Algorithm 2 of earthquake locations
restricted to a small rectangular are on the

Earth. Image from [3].

(b) A graph reconstruction
through [13, Algorithm 1] from GPS traces

tagged ‘Moscow’ from Open-StreetMap
(http://www.openstreetmap.org/).

Image obtained with permission from [13].

Figure 4.7: Two ‘clean’ data sets for which graph reconstruction methods work well.

may further extend the applicability of graph reconstruction methods to more noisy
data with a nonuniform density.

5
Inferring Topological Models through

Forest Representations

This chapter is based on the following publications.

• The Boundary Coefficient: a Vertex Measure for Visualizing and Finding
Structure in Weighted Graphs. In Proceedings of the 15th International
Workshop on Mining and Learning with Graphs (MLG), 2019. [4]

• Robin Vandaele, Yvan Saeys, Tijl De Bie. Mining Topological Structure
in Graphs through Forest Representations. Journal of Machine Learning
Research, 21(215):1–68, 2020. [1]

5.1 Introduction
In the previous chapter, we discussed methods that reconstruct a non-subgraph
model based on local topological information in metric data. In this chapter, we
present a method for inferring subgraph models, i.e., backbones, that generalizes
well to any graph in the sense of Definition 2.4.1, and is not restricted to (lo-
cal) Rips graphs constructed from point cloud data. For this, we will introduce
a vertex measure termed the boundary coefficient, also abbreviated as BC (Sec-
tion 5.2), which—unlike the vertex degree—identifies well which nodes are lo-
cated near the backbone in graphs that either satisfy the small-network model or
not. This coefficient will be used to construct a forest representation, more specif-
ically an f -pine, in Section 5.3. The final backbone will be inferred from the

80 CHAPTER 5

Graph G Forest Representation F of G Mine subgraph from F

(a) High level overview of our introduced method for mining substructures in graphs.

(b) The original graph G. (c) A forest representation F
of G.

(d) A backbone (red) of G
mined through F .

Graph G f -pine CLOF

Metric data X

Refinements (number of leaves, cycles, . . .)

BC/LCC vertex/edge-valued cost g

Proximity graph (Rips, kNN, . . .)

(e) Detailed overview of our method for mining topological subtructures in graph-structured data.
Yellow blocks denote pre- and post-processing steps.

Figure 5.1: Overview of the method proposed in this paper.

f -pine through a graph optimization problem which we term Constrained Leaves
Optimal subForest (CLOF, 5.4). The combined use of the BC and f -pines makes
this method robust, while the use of forest representations makes solving CLOF
computationally efficient. In Section 5.7, we will confirm the effectiveness of our
method by inferring backbones in a variety of graph-structured data, such as social
networks, earthquake locations scattered across the Earth, and high-dimensional
cell trajectory data, the latter of which we will also discuss in more detail in Sec-
tion 5.8.

The overview of the method we present in this chapter is shown in Figure 5.1.

5.2 The Boundary Coefficient

The first step of our method requires us to locate core nodes in our graph. In-
tuitively, these are the nodes that lie close to the backbone of our graph, i.e., its
underlying simplified graph-structured topology (Figure 5.1). In Section 5.2.2 we
present the boundary coefficient (BC), defined as the negative average transmissiv-

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 81

ity (Section 5.2.1) of a node. We discuss important properties of the BC, as well as
its relationship to the ordinary local cluster coefficient (Section 5.2.3). In Section
5.2.4, we point out the differences between the BC and many existing measures
that might be used to determine the core nodes of a graph, that lack important
properties required for identifying such nodes in many practical weighted graphs.
Finally, we present a way to efficiently compute the BC through (sparse) matrix
multiplication in Section 5.2.5.

5.2.1 The Transmissivity of a Node

Given two vectors x,y in the Euclidean space Rn, n ∈ N∗, we know that the angle
α between them satisfies

cosα =
‖x‖2 + ‖y‖2 − ‖x− y‖2

2‖x‖‖y‖
.

As all of the terms in the fraction are expressed as (Euclidean) distances (be-
tween pairs of the triple of vectors (x,y,0)), we can straightforwardly generalize
the concept of angle to arbitrary metric spaces (X, d). Furthermore, a positively
weighted graph G = (V,E) can be converted to a metric space (V, d), where for
u, v ∈ V , d(u, v) denotes the length of the shortest (weighted) path from u to v in
G. This extends the definition of angle in Euclidean spaces to graphs as well.

Definition 5.2.1. Let G = (V,E) be an undirected, positively weighted graph.
Suppose that u, v, w ∈ V, u 6= v 6= w, belong to the same connected component
of V . We define the (cosine of the) angle ûvw as

cos ûvw :=

(
d(u, v)2 + d(v, w)2 − d(u,w)2

2d(u, v)d(v, w)

)
,

where d denotes the pairwise shortest distance metric on G. The transmissivity
T (u, v, w) of v for u and w is defined as

T (u, v, w) := − cos ûvw .

The transmissivity T (u, v, w) of v for u and w has a meaningful interpretation
even when the graph is not embedded in a Euclidean space. T (u, v, w) will be high
if the cost of going first straight from u to v, and then straight from v to w, does
not differ a lot from the cost of going straight from u to w. Here, by going straight
we mean taking the shortest path, and hence, by the cost of the weighted length
of this path, i.e., the sum of the weights of its included edges. Moreover, if going
through v is the only possibility to go from u to w, then T (u, v, w) = 1 (note that
the reverse implication does not necessarily hold). Vice versa, T (u, v, w) will be
low if it is much more costly to travel from u to w through v, than to go straight
from u to w, and exactly −1 if u = w.

82 CHAPTER 5

Furthermore, it is important to note that the weights ω of a graphG do not have
to satisfy the triangle inequality inG. Thus, we may have ω({u, v})+ω({v, w}) <
ω({u,w}) for {u, v}, {v, w}, {u,w} ∈ E. The shortest path metric d will always
naturally satisfy the triangle inequality, which is needed to generalize the (Eu-
clidean) angle to graphs.

5.2.2 The Boundary Coefficient as the Average Transmissivity

The boundary coefficient (BC) of a node v is defined as its negative transmissivity
averaged over the pairs of neighbors of v. As illustrated by Fig. 5.2 and Fig. 5.3,
this is a measure for how close vertices are near the ‘boundary’ of the graph (hence
the name), and by this, whether the nodes are close or far from the graph’s core.

Definition 5.2.2. Let G = (V,E) be an undirected, positively weighted graph,
without selfloops. For every v ∈ V we defineN (v) ⊆ V to be the set of neighbors
of v inG. For every v ∈ V with degree δ(v) = |N (v)| > 0, we define its boundary
coefficient (BC) as

BC(v) :=
−1

δ(v)2

∑
u,w∈N (v)

T (u, v, w) .

The geometric interpretation of the BC applies to any graph, including those
that satisfy the small-world network model. For this, observe that in this model,
hubs will be transmissive for many other nodes in the graph. A concrete example
of this for the Karate network will be provided in Section 5.7.

v BC = 0.21

q

BC = 0.69

Figure 5.2: Geometric interpretation of the boundary coefficient: a point v lying further
from the boundary has many more pairs of neighbors defining a large angle, than a point q
lying close to the boundary. The dashed line represents the shortest path—not necessarily

an edge—between two nodes. The boundary coefficients are computed using only the
drawn connections and their Euclidean lengths.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 83

(a) The boundary coefficients
for a graph with an

underlying disk-shaped
topology.

(b) The boundary coefficients
for a graph with an

underlying C-shaped
topology.

(c) The boundary coefficients
for a graph with an

underlying Y-shaped topology.

Figure 5.3: The boundary coefficients for various Rips graphsR10(X) built from 2D point
cloud data sets X . Weights of the edges equal the Euclidean distance between their

endpoints. The BC can handle fully weighted networks, curvature, as well and outliers,
which are separated from the major core through boundary nodes.

5.2.3 Properties of the Boundary Coefficient

The BC is closely connected to the well-known local cluster coefficient (LCC)
[70]. For every node v ∈ V with degree δ(v) > 1, it is defined as

LCC(v) :=
1

δ(v)(δ(v)− 1)

∑
u 6=w∈N (v)

1{u,w}∈E ,

whereN (v) denotes the set of neighbors of v in V , and 1{u,w}∈E = 1 if {u,w} ∈
E and 1{u,w}∈E = 0 otherwise. Hence, LCC(v) is the number of closed wedges
adjacent to v, divided by the number of (all) wedges adjacent to v. For nodes v
with δ(v) = 1, LCC(v) is either undefined, or (commonly) defined as 0.

As is the case with the ordinary LCC, for a graph G = (V,E), the BC of a
vertex v ∈ V is an averaged value over triples adjacent to v. In the case of the
LCC, the assignment to each triple (u, v, w) is a ‘hard’ 0-1 assignment. In the
unweighted case, i.e., where each edge has weight 1, the assigned value to the
triple (u, v, w) in the averaged sum of BC(v) equals

−T (u, v, w) = cos ûvw =

1
2 if {u,w} ∈ E ,

−1 if {u,w} /∈ E ∧ u 6= w ,

1 if u = w .

(5.1)

The intuition behind this is as follows. Suppose for {u, v}, {v, w} ∈ E, that
(u, v, w) forms a closed triangle adjacent to v, i.e., {u,w} ∈ E. Since the graph
is unweighted, each edge of this triangle gets assigned the same distance. Hence,
the triple (u, v, w) is regarded as an equilateral triangle, which has all angles equal
to 60◦. This coincides that with the fact that T (u, v, w) = − 1

2 = − cos 60◦. If
{u,w} /∈ E, we regard the triplet (u, v, w) as a straight line segment, defining a

84 CHAPTER 5

180◦ angle in v. Again, this coincides with the fact T (u, v, w) = 1 = − cos 180◦.
In this case, there may be other shortest paths from u to w in G, but u → v → w

is definitely one of them. If u = w, we regard the triple as two coinciding line
segments defining a 0◦ angle in v. In this case T (u, v, w) = −1 = − cos 0◦.

The explicit relationship between the BC and LCC is as follows.

Proposition 5.2.3. Suppose G = (V,E) is an unweighted graph, i.e., a graph in
which every edge gets a weight equal to 1, without selfloops. Then for every v ∈ V
with δ(v) > 1

BC(v) =
δ(v)− 1

δ(v)

(
3

2
LCC(v)− 1

)
+

1

δ(v)
.

Proof of Proposition 5.2.3. Using the equalities given in (5.1), we have

BC(v) =
1

δ(v)2

(
1

2
|{u,w ∈ N (v) : {u,w} ∈ E}|

− |{u,w ∈ N (v) : {u,w} /∈ E ∧ u 6= w}|+ δ(v)

)
.

Since

|{u,w ∈ N (v) : {u,w} /∈ E ∧ u 6= w}| = δ(v)2 − δ(v)

− |{u,w ∈ N (v) : {u,w} ∈ E}| ,

we find

BC(v) =
3
2 |{u,w ∈ N (v) : {u,w} ∈ E}|+ 2δ(v)− δ(v)2

δ(v)2

=
δ(v)− 1

δ(v)

(
3

2

∑
u,w∈N (v) 1{u,w}∈E

δ(v)(δ(v)− 1)

)
+

2− δ(v)

δ(v)

=
δ(v)− 1

δ(v)

(
3

2
LCC(v)− 1

)
+

1

δ(v)
.

Note that for graphs G = (V,E) without loops, {u, v} ∈ E =⇒ u 6= v.

Corollary 5.2.4. Suppose G = (V,E) is an unweighted graph without selfloops.
Then for every v ∈ V , limδ(v)→∞ BC(v) = 3

2LCC(v)− 1.

Proof. This is an immediate consequence of Proposition 5.2.3.

Proposition 5.2.3 implies that the BC does not fulfill the general versatility re-
quirement, i.e., it does not coincide with the ordinary LCC on unweighted graphs,
as other generalizations of the LCC to weighted graphs do [81]. However, the BC
does appear to be closely related to the LCC: it is nearly an affine transformation of

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 85

the LCC (as given in Corollary 5.2.4). In Section 5.3.2, we show that such trans-
formations result in the same forest representation through f -pines (Proposition
5.3.4).

The fact that the relationship between the BC and the LCC is not an exact
affine transformation, is due to us allowing BC to be well-defined for nodes v with
δ(v) = 1, i.e., allowing u = w in the summation over triples (u, v, w) adjacent
to v. BC(v) = cos ŵvw = 1 for these nodes, which coincides with our idea of
nodes with a high boundary coefficient lying at the boundary of the graph. Any
path that enters a node v with δ(v) = 1 from a node w and wishes to continue, has
no choice than to take a 180◦ turn back to w. Intuitively, the path has reached a
‘dead end’ in v, and hence, reached the boundary of the graph. Furthermore, if F
is a spanning forest of G (Definition 5.3.1), then a leaf of G, i.e., a node v ∈ V for
which δ(v) = 1, will always be a leaf of F as well. In Section 5.3.3, we will use
the BC to obtain a particular spanning forest, in which leaves are exactly meant to
represent boundary nodes of G, i.e., for which the coefficient is high. Hence, for
our method, it makes sense that the BC is both well-defined at leaves, and obtains
its maximal value there.

As is the case for the ordinary LCC, BC(v) is undefined for nodes v with
δ(v) = 0.

Though the BC does not coincide with the ordinary LCC on unweighted graphs,
it does satisfy four other essential properties of generalizations of the LCC to
weighted graphs, as discussed in [81]. One of these, i.e, its applicability to fully
weighted networks, has been illustrated in Figure 5.3. We consider this property
of the boundary coefficient, as well as its weight-scale invariance, continuity, and
robustness to noise [81], far more important for our purpose of identifying core
structure in a wide variety of weighted graphs, than coinciding with the LCC on
unweighted graphs. We state and prove these properties formally below.

Proposition 5.2.5. (Weight-scale invariance, [4]). Let G = (V,E) be an undi-
rected graph without selfloops, with weighting function ω : E → R+. Let ωλ :

E → R : {u, v} 7→ λω({u, v}) for a global scale factor λ > 0. Then for every
v ∈ V , BCλ(v) = BC(v), where BCλ(v) equals the boundary coefficient of v for
the new weighting function ωλ.

Proof. By multiplying each edge weight with a global scale factor λ > 0, the
shortest path distance between any two nodes is also scaled by the same factor λ.
Hence, the stated equality easily follows from Definitions 5.2.1 & 5.2.2.

Lemma 5.2.6. Let G = (V,E) be an undirected graph, with weighting function
ω : E → R+. Suppose that E denotes an additive noise matrix, which defines a
new weighting function ωε : E → R+ : {u, v} 7→ ω({u, v}) + Eu,v . Then the
following statements are valid:

86 CHAPTER 5

1. lim‖E‖∞→0 ‖d − dε‖∞ = 0, where d denote the shortest path metric on V
according to ω, and dε according ωε, where we follow the convention that
d(u, v) − dε(u, v) = 0 if u and v lie in different connected components of
G;

2. for any u, v, w ∈ V belonging to the same connected component of G, with
u 6= v 6= w, limε→0 Tε(u, v, w) = T (u, v, w), where T (u, v, w) denotes
transmissivity of v for u and w according to ω, and Tε(u, v, w) according
to ωε.

Proof. 1. Suppose u, v ∈ V , and P is a shortest path from u to v according to ω
with length d(u, v). Then the length of the same path P according to ωε is bounded
from above by d(u, v) + |E(P)| · ‖E‖∞ ≤ d(u, v) + |E| · ‖E‖∞, where |E(P)|
denotes the number of edges on P . Since the length of the shortest path from u to v
according to ωε is at most the length of P according to ωε, it holds that dε(u, v) ≤
d(u, v) + |E|‖E‖∞. Analogously, we have d(u, v) ≤ d(u, v)ε + |E| · ‖E‖∞, so
that lim‖E‖∞→0 |dε(u, v) − d(u, v)| = 0. As u and v were chosen arbitrarily, the
stated theorem holds.

2. This easily follows from Proposition 5.2.6.1. and Definition 5.2.1.

Proposition 5.2.7. (Continuity). Let G = (V,E) be an undirected graph without
selfloops, with weighting function ω : E → R+. Suppose ωε is a new weighting
function on E that differs in exactly one edge e ∈ E by an additive constant
ε ∈ R, i.e., ωε(e) = ω(e) + ε ∈ R+, and ωε|E\{e} ≡ ω|E\{e}. If BCε denotes
the boundary coefficient function according to the new weighting function ωε, then
limε→0BCε(v) = BC(v) for all v ∈ V with δ(v) > 0.

Proof. This easily follows from Lemma 5.2.6 and Definition 5.2.2.

The problem in the ordinary formulation of the ‘robustness to noise’ property
stated by [81], is that the error-value ∆(E) is not well-defined when a node has a
boundary coefficient of 0. Hence, we consider a slight variant below.

Proposition 5.2.8. (Robustness to noise, [4]). Let G = (V,E) be an undirected
graph, with weighting function ω : E → R+. Suppose that E denotes an additive
noise matrix, which defines a new weighting function ωε : E → R+ : {u, v} 7→
ω({u, v})+Eu,v . If f : R→ R is any continuous function such that f ◦BC(v) 6= 0

for any v ∈ V , then

∆(E) :=
100

|V |
∑
v∈V

∣∣∣∣f ◦ BCε(v)− f ◦ BC(v)

f ◦ BC(v)

∣∣∣∣ −−−−−−→‖E‖∞→0
0 ,

where BCε(v) equals the boundary coefficient of v for the new weighting function
ωε.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 87

Proof. This follows from Lemma 5.2.6 and f being continuous.

Remark 5.2.9. The fact that we consider our variant to robustness of noise an
equally important property for our method for topological data analysis of graph-
structured data, is due to Proposition 5.3.4 stating that BC-pines are invariant
under affine transformations of the BC with a positive scaling factor. The BC may
always be mapped to an interval excluding 0 using such continuous transforma-
tion.

Note that the theoretical rate of convergence of ∆(E) in Theorem 5.2.8 de-
pends on |E| (see the proof of Lemma 5.2.6.1.), a consequence of allowing arbi-
trary long paths (in terms of number of edges) between the endpoints of a triple
adjacent to a node, to compute the BC.

5.2.4 Comparing the Boundary Coefficient to other Measures

Certain other vertex measures that might be used to identify core nodes, including
the ordinary LCC, already existed before we introduced the BC [4]. It turns out that
the LCC is particularly useful to our method for inferring backbones in a variety
of unweighted graphs (Section 5.7).

However, we found its generalizations to weighted graphs—an extensive sum-
mary of these is given by [81])—as well as other existing measures trying to quan-
tify the coreness of a node, such as graph centrality measures [82–84], to be insuf-

(a) Apart from lacking
scalability (taking more than
24 minutes to compute on a

complete graph on 250
vertices using the brainwaver

library in R), the local
efficiency is not applicable to
fully weighted networks. By
mapping every node to the
same value, it is unable to

detect the true core nodes of
this network.

(b) The presence of only a
small amount of outliers

makes it difficult for Onella’s
generalized local cluster

coefficient—one of the many
vertex measures generalizing
the local cluster coefficient to

weighted networks—to
identify the core nodes near
the underlying C-structured

topology of this network.

(c) Betweenness centrality,
measuring how many shortest
paths go through a particular
node, does not perform well

when the true underlying
topology is curved. Shortest

paths will always take
shortcuts when available,
shifting them from the true

core nodes of our underlying
Y-structured topology.

Figure 5.4: Various possible existing ‘core’ measures for the Rips graphs in Figure 5.3.
None of them capture the true core nodes of the graph well.

88 CHAPTER 5

ficient for many of our practical examples (Figure 5.4). These were not designed
for the purpose of identifying or visualizing a global core structure within a wide
variety of graph-structured data sets. As such, they lack important properties of
the boundary coefficient, such as scalability, applicability to fully weighted net-
works (compare Figure 5.4a to 5.3a), robustness to outliers (compare Figure 5.4b
to 5.3b), and the ability to deal with nonlinear substructures (compare Figure 5.4c
to 5.3c).

In summary, the crucial differences between the BC, the LCC and many of its
generalizations [81], and standard global centrality measures such as eccentricity
[83] or betweenness [84], as well as the main reasons why the BC outperforms
these measures for a wide variety of applications, are that for a node v ∈ V :

• The assignment −T (u, v, w) to a triple (u, v, w) in the sum of BC(v) may
attain different values over triples where {u,w} /∈ E (i.e., it is not always 0,
such as with LCC, Onella’s generalized LCC, . . .).

• The assignment−T (u, v, w) to a triple (u, v, w) in the sum of BC(v) may be
low even if {u,w} ∈ E and—if weighted—the three corresponding weights
are relatively high (this is not the case with LCC, Onella’s generalized LCC,
. . .).

• The scope of the BC is local: it does not take into account the shortest paths
from v to all other nodes (as is often the case with standard centrality mea-
sures, such as betweenness). Hence, the BC allows us to locate boundary
nodes even in the presence of complex, long, or curving underlying topolo-
gies, and is less affected by outliers.

5.2.5 Computation of the Boundary Coefficient

In this section, we give an important result for computing the BC. First, we intro-
duce some new definitions.

Definition 5.2.10. Let G = (V,E) be an undirected, positively weighted graph,
and D the matrix of pairwise shortest path distances between the nodes of G.
Let |E(P)| denote the unweighted length of a path P . For k ∈ N, we define the
hop-k-approximation of D as the matrixHk(D) = (Hk(D)u,v)u,v∈V , where

Hk(D)u,v :=

{
Du,v if there exists a path P from u to v with |E(P)| ≤ k ,
0 otherwise ,

It is easy to see that increasing k leads to a better approximation of D (hence
the name ‘hop-k-approximation’). This is formalized through the following propo-
sition.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 89

Proposition 5.2.11. LetG = (V,E) be a connected, undirected, positively weighted
graph, and D the matrix of pairwise shortest path distances between the nodes of
G. Then the following statements are valid:

1. H0(D) = (0)u,v∈V ;

2. Hdiamunw(G)(D) = D ;

3. for any k, l ∈ N, k < l =⇒ ‖D −Hl(D)‖∞ ≤ ‖D −Hk(D)‖∞ ;

where diamunw(G) denotes the unweighted diameter of G.

Proof. 1. If u can be reached from v in 0 steps, then u = v, which implies that
Du,v = 0.

2. For any nodes u, v ∈ V , v can be reached from u within diamunw(G) steps.
3. This is clear from the definition ofHk(D).

For a disconnected graph G, Hk(D) will never be equal to D for any k ∈ N.
Du,v is either undefined or defined to be +∞ if u and v lie in different connected
components of G. However, Hk(D)u,v is always well-defined, and will be equal
to 0 if there is no path between u and v. This will show to be convenient for
computing the BC (Theorem 5.2.13).

Notation 5.2.12. For any z ∈ Z, we define the mapping

·�
z

:
⋃

n,m∈N
Rn×m →

⋃
n,m∈N

Rn×m : A 7→ A�
z

,

with

A�
z

u,v :=

{
Azu,v if z ≥ 0 ∨Au,v 6= 0 ,

0 otherwise .

Hence, ·�z

denotes the pointwise application of the ·z-operation on the elements
of a given matrix for which this is well-defined. If Azu,v would not be well-defined
(i.e., if z < 0 and Azu,v = 0), then this entry gets mapped to 0. For G = (V,E)

an undirected, positively weighted graph with pairwise distance matrix D, and
k ∈ N, we defineH�

z

k (D) := Hk(D)�
z

.

Theorem 5.2.13. Let G = (V = {v1, . . . , vn}, E) be an undirected, positively
weighted graph, without selfloops. Let D denote the matrix of pairwise shortest

90 CHAPTER 5

path distances between the nodes of G. If δ(v) > 0 for all v ∈ V , thenBC(v1)
...

BC(vn)

 =

1

δ(v1)2

...
1

δ(vn)2

� [(∑
u∈V
H1(D)u

)
�

(∑
u∈V
H�

−1

1 (D)u

)

− 1

2
diag

(
H�

−1

1 (D)H�
2

2 (D)H�
−1

1 (D)
)]

,

(5.2)

where A � B denotes the pointwise multiplication between matrices A and B of
the same dimensions.

Proof. For v ∈ V , with δ(v) > 0, we have

δ(v)2BC(v) = −
∑

u,w∈N (v)

T (u, v, w) =
∑

u,w∈N (v)

(
D�

2

u,v +D�
2

v,w −D�
2

u,w

2Du,vDv,w

)

=
∑

u,w∈N (v)

Du,v

2Dv,w
+

∑
u,w∈N (v)

Dv,w

2Du,v
−

∑
u,w∈N (v)

D�
2

u,w

2Du,vDv,w
.

The first two summations are equal by a change of variables. Hence, we find

δ(v)2BC(v) =
∑

u,w∈N (v)

Du,v

Dv,w
−

∑
u,w∈N (v)

D�
2

u,w

2Du,vDv,w
.

=
∑

u∈N (v)

Du,v

∑
w∈N (v)

1

Dv,w
− 1

2

∑
u,w∈N (v)

1

Du,v
D�

2

u,w

1

Dv,w

=
∑
u∈V
H1(D)u,v

∑
u∈V
H�

−1

1 (D)u,v

− 1

2

∑
u,w∈V

H�
−1

1 (D)u,vH�
2

2 (D)u,wH�
−1

1 (D)v,w

=
∑
u∈V
H1(D)u,v

∑
u∈V
H�

−1

1 (D)u,v

− 1

2
diag

(
H�

−1

1 (D)H�
2

2 (D)H�
−1

1 (D)
)
v
,

which concludes the proof.

Note that both the left hand side and right hand side in (5.2) are undefined for
nodes v ∈ V with δ(v) = 0. We regard such nodes simultaneously as boundary
nodes, as well as core nodes within their own component.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 91

Input: weighted graph G
Output: vector of boundary coefficients BC

1 hop1 = spam(hop k approx(G, k=1)) #compute hop-1-approximation
2 hop2 = spam(hop k approx(G, k=2)) #compute hop-2-approximation
3 BC = (apply.spam(hop1, 1, sum) * apply.spam((1 / hop1), 1, sum)

- diag((1 / hop1) %*% hop2ˆ2 %*% (1 / hop1)) / 2)
/ (degree(G)ˆ2) #compute boundary coefficients

4 return(BC)
Algorithm 3: Computing the boundary coefficients through sparse matrices.
‘spam’ converts matrices to sparse matrix format. ‘apply.spam(A, 1, f)’ ap-
plies the function f to each row of the sparse matrix A. The operations ‘*’
and ‘ˆ2’ denote element-wise multiplication, whereas ‘%*%’ denotes matrix
multiplication. ‘1 / A’ returns the element-wise inverse of a sparse matrix A.
‘diag(A)’ returns the diagonal of matrix A.

It follows that the BC may be computed using pairwise Dijkstra’s algorithm
with early termination, and (sparse) matrix multiplications. Pseudocode for an
algorithm computing the BC is provided in Algorithm 3.

Theorem 5.2.14. LetG be an undirected, positively weighted graph, with n nodes
and m edges. The boundary coefficients of all nodes in V can be determined in
O(n(m+ n1.374)) time using Algorithm 3.

Proof. Obtaining the hop-k-approximations can be doneO(n(m+n log n)) time
through Dijkstra’s algorithm. The matrix operations can be done in O(n2.374)

time, which is the computational cost of matrix multiplication [85].

Remark 5.2.15. The computational cost stated in Theorem 5.2.14 is worst-case,
since it does not account for the potential sparsity ofHk(D), k ∈ {1, 2}.

We conclude that the BC is a powerful measure for locating nodes near the
backbone of a graph, while admitting an efficient way for computation. In the next
section, we show how the BC leads to effective forest presentations for topological
data analysis of graphs.

5.3 Forest Representations of Graphs through f-Pines
In this section, we introduce the intermediate step that represents a given graph
G by means of a (spanning) forest of G, as shown in Figure 5.1. This step will
use the concept of the f -pine of a graph [4], which we present in Section 5.3.1.
We will discuss a variety of its properties in Section 5.3.2. Finally, in Section
5.3.3 we illustrate how the boundary coefficient can be used to deduce a forest
representation, from which we may efficiently infer backbones.

92 CHAPTER 5

5.3.1 The f-Pine of a Graph

Given a graph G = (V,E) and a real-valued function f : V → R, we want to find
a spanning forest with leaves marking higher values of f .

Definition 5.3.1. Let G = (V,E) be a graph. A spanning forest F of G is a
subgraph ofG that contains all vertices ofG, such that each connected component
of G is also a connected component of F , and F contains no cycles.

Definition 5.3.2. Let G = (V,E) be a graph, and f : V → R. A spanning forest
F of G is called an f -pine1 in G, if

F ∈ arg min

{∑
v∈V

δF ′(v)f(v) : F ′is a spanning forest of G

}
, (5.3)

where δF ′(v) denotes the degree of v in the subgraph F ′ of G.

The intuition behind the naming is that an f -pine corresponds to trees having
many ‘needles’ that ‘stick out and point’ towards (locally) high values of f (Figure
5.1c). Note that the number of edges in F is fixed through the number of nodes
and components of G.

5.3.2 Properties and Computation of the f -Pine

Looking at Definition 5.3.2, an f -pine of a graph G is a spanning forest of G
that prefers high-degree nodes where f attains a low value. More specifically, an
f -pine attaches every node u to a node v where f reaches a local minimum.

Proposition 5.3.3. LetG = (V,E) be a graph, f : V → R, and F an f -pine inG.
For every u ∈ V with δG(u) > 0, there exists v ∈ arg min{f(w) : w ∈ NG(u)}
such that {u, v} ∈ E(F).

Proof. Assume u ∈ V with δG(u) > 0. If {u, v} /∈ E(T) for every v ∈
arg min{f(w) : w ∈ NG(u)}, then choose such v. LetP = (u = x0, x1, . . . , xk =

v) be the unique path from u to v in T . Since {u, x1} ∈ E(T), f(x1) > f(v),
and we can replace {u, x1} by {u, v} to obtain a tree attaining a lower cost as
expressed by (5.3).

The intuition behind the proposition above is that the building blocks of an
f -pine are several large star graphs that result from pulling every node towards a
node where f attains a local minimum. Furthermore, Definition 5.3.2 implies that

1The term ‘pine’ may not be ideal if G is disconnected, as there will be multiple ‘pines’. In this
case, the term ‘vine’ may be more appropriate. However, the main emphasize of the term ‘pine’ is on
‘many leaves’ (needles) and ‘few branches’, and not on the number of components.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 93

the centers of these star graphs will be connected through nodes where f attains a
low value on average as well.

It turns out that an f -pine is invariant to affine transformations of f with a
positive scaling factor. Hence, we may apply such transformation to f—retaining
its robustness properties—without effecting the resulting f -pine. Furthermore, we
may also easily compare f -pines for different functions f (e.g., graph centrality,
core, or transitivity measures), even if the corresponding function values take on a
different scale.

Proposition 5.3.4. Let G = (V,E) be a graph, f : V → R, and F an f -pine in
G. If g = af + b for some a ∈ R+, b ∈ R, F is also a g-pine in G.

Proof. We have∑
v∈V

δF (v)g(v) = a
∑
v∈V

δF (v)f(v) + b
∑
v∈V

δF (v)

= a
∑
v∈V

δF (v)f(v) + 2b(|V | − β0(G)),

where β0(G) denotes the number of connected components of G. This follows
from:

• the sum of degrees over all vertices of a graph is twice its number of edges;

• the number of edges in any forest graph containing n vertices, is n minus its
number of connected components;

• by Definition 5.3.1, the number of connected components of a graph equals
the number of connected components of a spanning forest of that graph.

As a > 0 and the second term in the right hand side is independent of F , mini-
mization of the left hand side over all spanning forests is equivalent to minimizing∑
v∈V δF (v)f(v).

We can efficiently find an f -pine by finding a minimum spanning tree after
reweighing the edges in G with the summed value f attains at their endpoints.

Proposition 5.3.5. Let G = (V,E) be a graph, and f : V → R. Finding an
f -pine in G is equivalent to finding a minimum spanning tree for each connected
component in G, where each edge {u, v} is assigned to have weight f(u) + f(v).

Proof. It holds that∑
v∈V

δF (v)f(v) =
∑

{u,v}∈E(F)

(f(u) + f(v)),

where E(F) denotes the edges in the subgraph F of G.

94 CHAPTER 5

Theorem 5.3.6. Let G be a graph with n nodes and m edges, and f : V → R.
Then an f -pine of G can be determined in O(α(m,n)m) time using Algorithm 4.
Here α is the classical functional inverse of the Ackermann function, which for all
practical purposes may be considered a constant no greater than 4 [49].

Proof. The stated complexity is that of computing the regular minimum spanning
forest [86]. Reweighing the edges can be done in O(m) time.

Input: graph G, vertex-valued cost function f on G
Output: an f -pine of G

1 new weights = f [E(G)[,1]] + f [E(G)[,2]]
2 pine = mst(G, weights=new weights)
3 return(pine)
Algorithm 4: Computing the f -pine. ‘mst’ is a function that computes the
minimum spanning of a graph. The used weights follow from the result in
Proposition 5.3.5.

We are now prepared to show how the BC (Section 5.2) and f -pines work
together to provide effective forest representations for topological data analysis of
graphs.

5.3.3 The BC-pine of a Graph

Proposition 5.3.3 states that an f -pine connects nodes to its local minima. Hence,
if f is a ‘core’ measure identifying nodes close to the underlying core structure
of the graph, then an f -pine is the result of interconnecting star graphs through
the core of the given graph. This is the exact purpose for which we designed the
boundary coefficient, taking on low values near the core structure of a graph, and
high values near the boundary nodes of the graph. Three example BC-pines are
illustrated in Figure 5.5.

An important property of the BC-pine is displayed on Figure 5.5b. As the BC
is able to separate outliers from the main core structure through boundary nodes
where the BC attains locally higher values by design, the BC-pine avoids passing
through outliers to reach one (true) core region from another. This would increase
the cost of the pine according to (5.3), as it would include too many boundary
nodes on either side of the outlier node.

[4] showed that by iteratively ‘pruning’ the BC-pine, i.e., discarding its leaves,
we retract our pine towards the topological core underlying the graph. However,
if the original graph has a very complex or even no ground-truth underlying topol-
ogy, revealing a low complexity topology by means of this ‘top-down’ method
may be difficult, discarding (too) many nodes. Furthermore, even in graphs with
a simple underlying topology, the presence of outliers may require us to prune

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 95

(a) The BC-pine for a graph
with an underlying

disk-shaped topology.

(b) The BC-pine for a graph
with an underlying C-shaped

topology.

(c) The BC-pine for a graph
with an underlying Y-shaped

topology.

Figure 5.5: The BC-pines (with edges in red) for the three example graphs shown in Figure
5.3. Note that by Proposition 5.3.3, a BC-pine will result in a star graph that connects all

nodes to a global minimum in a complete graph, such as for the graph on the left.

many times to remove these connections (Figure 5.5b), resulting in our backbone
retracting from the true underlying leaves as well. Hence, we are clearly in need
of an approach that allows us to identify interesting substructures in forest graphs,
spreading out across the entire graph, while the resulting complexity remains easy
to tune and control. This leads us to the following section, introducing a ‘bottom-
up’ method for identifying our backbone.

5.4 Constrained Leaves Optimal subForest (CLOF)

In this section, we will introduce a novel theoretically founded and well-posed
problem for the purpose of locating interesting substructures in forest graphs. We
will show that solving this problem in the BC-pine leads to an effective method for
topological inference in graphs.

We will consider two variants of this problem, one where the cost of the struc-
ture will be determined by an edge-valued function, and one where its cost will be
determined by a vertex-valued function.

Definition 5.4.1. (CLOF). Let G = (V,E) be a graph, and suppose f is a
real-valued function, associating a positive cost to either each vertex or each
edge of G (i.e., the domain of f , denoted Dom(f), is either equal to V or to
E). For a subgraph H = (V (H), E(H)) of G, we define its cost f(H) :=∑
α∈Dom(f)∩V (H)∩E(H) f(α). The Constrained Leaves Optimal subForest prob-

lem (CLOF) is stated as follows.

Given k ∈ N≥2, find a subforest F in G with at most k leaves, maximizing f(F) .
(5.4)

Proposition 5.4.2. CLOF is NP-hard.

96 CHAPTER 5

Proof. For an edge-valued cost function and k = 2 leaves, the stated problem is
equivalent to the NP-hard longest path problem [87].

Though CLOF is NP-hard in general, we are actually not interested in its solu-
tion for arbitrary graphs. Such solutions may just not be topological meaningful.
An example of this would be the longest path in the graph shown in Figure 3.3,
which would ‘wiggle’ through the entire graph without reflecting its ‘straight’ lin-
ear topology. This is one of the main reasons we choose for a forest representation
as an intermediate step. In this way, we can design our forest such that these so-
lutions are indeed meaningful as well as robust. Furthermore, as we will show in
this section, CLOF is efficiently solvable for forest graphs in practice.

In Section 5.4.1 we will derive an efficient solution to CLOF for tree graphs,
which will lead us to an efficient solution for forest graphs in Section 5.4.2.

5.4.1 Solving CLOF in Tree Graphs

We start by showing that for tree graphs, CLOF is equivalent to a monotone sub-
modular set function maximization problem subject to a cardinality constraint.

Theorem 5.4.3. Let T = (V,E) be a tree graph and f a real-valued function
associating a positive cost to either each vertex or each edge of T . Then (5.4) is
equivalent to a monotone submodular set function maximization problem subject
to a cardinality constraint [88].

Proof of Theorem 5.4.3. First observe that for any set of leaves L = {l1, . . . , lk}
of T , there is a unique subtree TL of T that contains exactly the same set as leaves.
Hence, if V ⊇ L is the set of all leaves of T , we may define f̃ : 2L → R+ :

L 7→ f(TL), where f(TL) is the cost of the subtree TL as defined in Definition
5.4.1. Suppose now that L ⊆ L′ (L, and take any l ∈ L\{L′}. Observe
that TL is a subtree of TL′ , for which the unique path from l to TL includes the
unique path from l to T ′L. Hence, f̃(L ∪ {l}) − f̃(L) ≥ f̃(L′ ∪ {l}) − f̃(L′),
i.e., f̃ is a submodular set function on L. Furthermore f̃ is clearly monotone, as
L ⊆ L′ ⊆ L =⇒ f̃(L) ≤ f̃(L′). Finally, by definition of f̃ , (5.4) is equivalent
to maximizing f̃ subject to the cardinality constrained given by k.

The general problem of maximizing a monotone submodular function subject
to a cardinality constraint is NP-hard, but admits a 1 − 1/e approximation algo-
rithm [88]. However, the interestingness of Theorem 5.4.3 lies in the fact that
(5.4) is equivalent to a nontrivial monotone submodular set function maximization
problem, for which we are able to actually provide an exact solution in polynomial
time.

Theorem 5.4.4. (A greedy solution for CLOF). Let T = (V,E) be a tree graph
and f a real-valued function associating a positive cost to either each vertex or

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 97

each edge of T . Given k ∈ N≥2, the following algorithm finds a subtree T ′ in T
that maximizes f(T ′) over all subtrees T ′ in T with at most k leaves.

1. Let T ′ be the longest path (according to f) between two leaves in T .

2. While T ′ 6= T and T ′ has less than k leaves, add the longest path (according
to f) from the remaining leaves of T to T ′.

Proof. We will first assume that f is an edge-valued function. The proof goes by
induction on the number of leaves k. The claim is trivially valid for k = 2 leaves
(the base case), or if k is at least the number of leaves in T . Suppose now that the
claim is valid for k − 1 leaves, 2 < k < |{v ∈ V : δT (v) = 1}|, and that the
greedy algorithm iteratively added the paths P1, . . . , Pk, in this order, resulting in
the subtree T kgr. Suppose an optimal subtree T kopt with at most k leaves achieves
a cost strictly higher than the cost of T kgr. Note that both T kopt and T kgr exactly
contain k leaves. By the induction hypothesis, the subtree T k−1gr consisting of the
paths P1, . . . , Pk−1, is the optimal subtree of T with k−1 leaves. Hence, for every
subset of size k−1 of the k leaves {l1, . . . , lk} of T kopt, the cost of the tree induced
by this subset is at most the cost of T k−1gr . As, by assumption, the cost of T kopt is
strictly higher than the cost of T kgr, this implies that for every 1 ≤ i ≤ k, the cost
of the path from li to the tree induced by the leaves {l1, . . . , li−1, li+1, . . . , lk}
is strictly higher than the cost of Pk, which we will denote by f(Pk). We now
consider two possible cases.

1. There exists a leaf li of T kopt, such that the path P that connects li to the
tree induced by the leaves {l1, . . . , li−1, li+1, . . . , lk} is edge-disjoint from
T k−1gr .

The endpoint of P different from li is a multifurcation point m of T kopt. If
m ∈ V (T k−1gr), then since f(P) > f(Pk), the algorithm would have chosen
to add P instead of Pk to obtain T kgr, a contradiction, so thatm /∈ V (T k−1gr).
Let Q be the unique path from m to T k−1gr . If P is edge-disjoint from Q,
then P +Q would have been chosen instead of Pk by the greedy algorithm,
so that P and Q partially overlap. Now let lj be any leaf in T kopt different
from li. The path R from m to lj in T kopt is now both edge- and vertex-
disjoint from T k−1gr (see Figure 5.6a for a sketch of this case). Furthermore
f(R + Q) > f(R) > f(Pk), and the greedy algorithm would have chosen
to add the path R+Q instead of Pk, a contradiction.

2. For every leaf li of T kopt, the path P that connects li to the tree induced by
the leaves {l1, . . . , li−1, li+1, . . . , lk} contains edges from T k−1gr .

Consider an arbitrary leaf li of T kopt, and let vi be the point closest to li on
the first edge ei on the path from li to the tree induced by the set of leaves
{l1, . . . , li−1, li+1, . . . , lk}, that is also contained in E(T k−1gr). Note that

98 CHAPTER 5

possibly li = vi. Now let l′i be any leaf of T k−1gr that is reachable from vi
after removing ei from in T k−1gr . If li 6= lj are both leaves of T kopt, then
l′i 6= l′j . To see this, observe that for li 6= lj , by definition of vi, we have
vi 6= vj , and that the path from vi to vj in T kopt must go through both ei and
ej . As this path is unique in T , it is also fully contained in T k−1gr . Hence,
the path vi → vj → l′j is the unique path from vi to l′j in T k−1gr , and passes
through ei. Hence, l′j is not reachable from vi after removing ei from T k−1gr .
As such, we obtain an injection li 7→ l′i of the k leaves in T kopt to the k − 1

leaves in T k−1gr , a contradiction. Note that this case is simply not possible,
independent of the used cost function. We provided a sketch for the closest
possible case in Figure 5.6b.

Since both cases lead to a contradiction, we conclude that T kopt cannot achieve a
cost strictly higher than T kgr. This implies that T kgr is an exact solution to (5.4).

For f a vertex-valued function, the proof goes analogous to the proof of Theo-
rem 5.4.4. However, the increase in cost of adding a new path P to the current tree
is now the sum of the cost over all vertices in P , minus the cost of the connecting
node. The only resulting change we need to apply in the proof of Theorem 5.4.4,
is that instead of writing ‘f(R+Q) > f(R) > f(Pk)’ in the first considered case,
we now write ‘f(R + Q) > f(Pk)’, as f(R) may not be well-defined according
to this convention.

Remark 5.4.5. Due to a greedy algorithm resulting in the optimal subtree accord-
ing to (5.4) for tree graphs, we only need to conduct the algorithm once to get all
solutions up to the given value k ∈ N≥2. By storing the included vertices or edges
for each iteration, we can quickly obtain the corresponding subgraph and analyze
the results for different number of leaves (see also Algorithm 5 for the pseudocode

R
Q

P

P
k

m
li

lj

T k
opt

T k
gr

(a) Sketch for the first case in the proof of
Theorem 5.4.4. The cost of Q+R must be
bounded from above by the cost of Pk due
to the definition of the greedy algorithm.

ei e j

vi

vj

li

lj

l′j

l′i

T k
opt

T k
gr

(b) Sketch for the second case in the proof
of Theorem 5.4.4. There is a systematically
defined injection from the leaves of Tkopt to

the leaves of Tkgr .

Figure 5.6: Sketches for the different cases in the proof of Theorem 5.4.4.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 99

of the corresponding algorithm). Storing the cost up to a certain number of leaves
turns out to be useful in practice as well. It may serve as a tool for tuning the
number of leaves, as we will discuss in Section 5.5.

Theorem 5.4.6. Let T = (V,E) be a tree graph with n nodes (and n− 1 edges),
and f a real-valued function associating a positive cost to either each vertex or
each edge of T . Then for given k ∈ N≥2, an exact solution to (5.4) can be com-
puted inO(nmin(k, l)l) time using Algorithm 5, where l = |{v ∈ V : δ(v) = 1}|,
i.e., l denotes the number of leaves in T .

Proof. The advantage of working with tree (or forest) graphs, is that the path be-
tween a pair of nodes is always unique. The pairwise distance matrix Df between
all leaves and all nodes in T , according to f , can be obtained in O(n · l) time by
using a bread-first-search for every leaf. For each of the no more than min(k, l)

iterations of the algorithm described in Theorem 5.4.4, we can add the new path in
O(n · l) time. This is clear for the first iteration: search for the maximal entry of
Df and add the corresponding path to the current (empty) structure. After the first
path has been added, each consecutive leaf to be added can also be determined in
O(n · l) time, after which the path can be added in O(n) time.

The following result shows to be very useful for practical applications, as we
will discuss in Section 5.5. First, we need another definition.

Definition 5.4.7. Let G = (V,E) be a tree graph, and suppose f is a real-valued
function, associating a cost to either each vertex or each edge of G. We say that

Input: tree T , positive cost function f , upper bound k ≥ 2 on leaves
(standard∞)

Output: A list L such that the subgraph of T induced by the nodes in
L[1:j] equals the solution to CLOF for j ≤ k.

1 L = list(NULL, longest path(T , cost=f))
#the solution for k ∈ {0, 1} is the empty graph by convention
#the solution for k = 2 is the longest path according to f

2 current leaves = 2 #number of leaves in the current solution
3 while current leaves < k & L != T do
4 v = which.max(distances(T , leaves(T), L), cost=f)[1]

#determine furthest leaf from current solution according to f
5 current leaves += 1
6 L[[current leaves]] = path(from=L, to=v) #update the current solution
7 end
8 return(L)
Algorithm 5: Constrained Leaves Optimal subForest (CLOF) in trees. The
function ‘distances(G, U , V)’ returns the distances between the nodes in U
and V of a graph G.

100 CHAPTER 5

f is constant on leaves of G, if either f is constant on {{u, v} ∈ E : δ(u) =

1 ∨ δ(v) = 1} if f is edge-valued, or f is constant on {v ∈ V : δ(v) = 1} if f is
vertex-valued.

Theorem 5.4.8. Let T = (V,E) be a tree graph with |E| > 1, and suppose f is a
real-valued function, associating a positive cost to either each vertex or each edge
of T . If f is constant on leaves of T , then a solution to (5.4) for the subgraph T ′ of
T that results from discarding all leaves of T , i.e., by pruning T , can be converted
to a solution to (5.4) for T in linear time.

5.4.2 Solving CLOF in Forest Graphs

The main problem for solving (5.4) for forest graphs is that the greedy approach
described in Theorem 5.4.4, will not work for forest graphs. E.g., consider the
union of a linear graph L and a bifurcating tree T (Figure 5.7). Suppose f is an
edge-valued cost function such that f(L) = 10, and f(B) = 4 for each of the
three branches B connecting the bifurcation point to a leaf in T . The longest path
(according to f) in the union of these graphs is L. However the maximal subforest
with at most 3 leaves is T , which does not contain L.

Nevertheless, we are able to straightforwardly apply the algorithm solving
(5.4) for tree graphs, to each separate connected component of the forest. From
this, a solution for forest graphs is easily derived as follows.

Theorem 5.4.9. Let F = (V,E) be a forest graph with n nodes, and suppose
f is a real-valued function, associating a positive cost to either each vertex or
each edge of F . Given k ∈ N≥2, an exact solution to (5.4) can be computed in

O
(
n+ β0(F)(min(k, lc)lcnc + l

β0(F)
c)

)
time using Algorithm 6, where β0(F)

is the number of connected components in F , and lc and nc, respectively, are the
maximal number of leaves and nodes included in a connected component of F .

Proof. The components of F can be determined in O(n) time. The complex-
ity term O(β0(F) min(k, lc)lcnc) comes from applying Algorithm 5 to each con-
nected component of F . After this, we can iterate over all possible combinations(
k1, . . . , kβ0(F)

)
of leaves for each connected component, to obtain the overall

L

10

T4

4

4

Figure 5.7: A greedy approach will always start from the path L, which cannot be extended
to a forest containing three leaves. However, the optimal subforest with three leaves is T .

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 101

best corresponding sum of total costs, in O
(
β0(F)l

β0(F)
c

)
time. Note that the

total cost from 2 up to min(k, lc) for each component may also be stored during
Algorithm 5, and does not need to be recomputed.

We conclude that CLOF is a graph optimization problem of high theoretical
interest. It induces a nontrivial monotone submodular set function maximization
problem that can be efficiently solved for forest graphs. Nevertheless, its practical
value remains unclear until this point. It turns out that CLOF provides an effective
way for inferring backbones in graphs through forest presentations. Hence, in
the next section, we finally bring together the boundary coefficient, f -pines, and
CLOF, for topological data analysis of graphs.

Input: forest F , positive cost function f , number of leaves k.
Output: A subgraph of F corresponding to the solution of CLOF.

1 treeSols = lapply(components(F), function(T) Algorithm5(T, f , k))
#apply Algorithm 5 to each connected component of F
#return a list of all solutions (each solution is a list itself)

2 currentCost = -Inf #cost of the current best solution in F
3 for 0 ≤ l1, . . . , lβ0(F) ≤ k do
4 if(sum(l1, . . . , lβ0(F)) > k) continue #skip if number of leaves is > k
5 thisCost = sum(cost(treeSols[[1]][1:l1]), . . . ,

cost(treeSols[[β0(G)]][1:lβ0(F)]))
#evaluate the cost of the current potential solution for f
#the cost of each subtree can be stored during the execution
#of Algorithm 5 for fast evaluation

6 if thisCost > currentCost then
7 currentCost = thisCost
8 bestSol = subgraph(F , c(treeSols[[1]][1:l1], . . . ,

treeSols[[β0(F)]][1:lβ0(F)]))
#update the current optimal solution
#the solution is determined as the subgraph in F
#induced by all partial solutions

9 end
10 end
11 return(bestSol)

Algorithm 6: Constrained Leaves Optimal subForest (CLOF) in forests.

5.5 f-Pines for Topological Data Analysis of Graph-
Structured Data

We are now fully prepared to present our new method for topological data analysis
of graph-structured data, the schematic overview of which is given in Figure 5.1e.

102 CHAPTER 5

1. In case of point cloud data, we need to represent the underlying topology
through a graph. This is usually done by means of a well-known proximity
graph, such as the Rips graph or k-nearest neighbor (kNN) graph.

2. Based on the core measure f , we build an f -pine F in G (Definition 5.3.2)
using the minimum spanning tree algorithm (Proposition 5.3.5). In case
of weighted graphs where each weight represents a notion of distance be-
tween vertices, i.e., higher weights denote more distant nodes, we use the
boundary coefficient (BC) as core measure (Definition 5.2.2). Its superior
effectiveness over existing core measure for locating core structure near the
underlying backbone of a graph, has been discussed in Sections 5.2.4, and
qualitatively and quantitatively demonstrated in [4]. For unweighted graphs,
we use the ordinary local cluster coefficient (LCC), due to its close relation
to the boundary coefficient (Proposition 5.2.3, Corollary 5.2.4 & Proposition
5.3.4), and the extensive amount of research that has already been performed
on both its theoretical and computational aspects [70, 89].

3. We solve CLOF for a well-chosen cost function g on either the vertices
or edges in F (Section 5.5.1). We solve (5.4) for either a given number
of leaves k ∈ N≥2 of interest, or a (possibly infinite) upper bound on the
expected number of leaves.

4. Further analysis may be required to result in the final backbone topology.
E.g., in the case of an unknown number of leaves where an upper bound
was provided, visual inspection or an elbow locating method may be used
to infer the number of leaves, which we discuss in Section 5.5.3 (see also
Remark 5.4.5). A further step may be required to identify cycles that are
missing a representation in the forest-structured backbone, which we discuss
in Section 5.5.4.

5.5.1 Vertex Betweenness as Cost Function for CLOF

To effectively mine topological substructures through CLOF in forest representa-
tions, we need a function g defined on either the vertices or edges of the represen-
tations to optimize in terms of (5.4). We will mainly use the vertex betweenness,
which equals how many shortest paths go through a particular node. Some other
interesting options will be discussed in Section 5.5.2, in which we also discuss
why we prefer the vertex betweenness over these.

The intuition for using this measure is as follows. By Proposition 5.3.3, many
(boundary) nodes are not located on the backbone, but attached to it by means of a
local minimum. To reach one (boundary) node from another, we must first travel
to the backbone, then from one location on the backbone to another location, and
thereafter leave the backbone to connect to the other node. Hence, nodes on the

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 103

Figure 5.8: Optimal subgraph with 3 leaves in a pruned BC-pine according to the vertex
betweenness (edges in red). Nodes with high betweenness represent important nodes for

accessing many others, due to the uniqueness of paths between nodes in a forest.

backbone represent important nodes through which a lot of ‘traffic’ flows in the
pine. The only possibility to reach distant locations from each other is to pass
through these, resulting in nodes with a high betweenness.

The effectiveness of using vertex betweenness for TDA of graph-structured
topologies through forest representations and CLOF rests on the following prop-
erties.

• Though the betweenness is tedious to compute in large graphs, it becomes a
lot easier in forest graphs. The reason for this is that there is one unique path
between each pair of nodes lying within the same connected component.
This also implies that the forest can be treated as an unweighted graph for
computing the vertex betweenness.

• Not only is the vertex betweenness constant on leaves (Definition 5.4.7),
making it a lot more efficient to solve CLOF by prepruning the forest repre-
sentation (Theorems 5.4.8 & 5.4.6), it also equals 0 on leaves. This implies
that a solution to (5.4) in the pruned forest representation equals a solution
to (5.4) in the original representation.

• Contrary to other interesting vertex/edge-valued functions (Appendix 5.5.2),
the vertex betweenness also accounts for the global topological structure of
the forest. Hence, given an effective forest representation, the relation be-
tween the vertex betweenness and the backbone substructure goes in both di-
rections. This means that nodes with a high vertex betweenness correspond
to nodes inducing the backbone substructure in the forest representation, and

104 CHAPTER 5

vice versa (Figure 5.8).

We emphasize that the same measure, in this case the betweenness centrality,
might only be come topologically meaningful for identifying backbone structures
in graphs through a forest representation. This can be seen by comparing Figures
5.4c &. 5.8.

5.5.2 Other Cost Functions for CLOF

Above, we discussed the usefulness of betweenness centrality as vertex-valued
cost function g used for identifying a subforest by means of (5.4) for the purpose
of topological data analysis of graph-structured dat. Here, we discuss some other
interesting choices.

The original edge weights As our backbone is meant to span the entire under-
lying topology of our given graph seen as a (shortest path) metric space, we may
consider a longest or multiple longest paths in our f -pine to make up the back-
bone. E.g., the longest path shown in Figure 5.9a identifies the correct underlying
model, apart from the location of its leaves, chosen to be the furthest points in the
local noise around the true leaves.

(a) Optimal subgraph with 2 leaves in a
BC-pine according to the original edge
weights (vertices in red). A single edge
weight is however not representative for

whether the corresponding edge is
important for inclusion in the backbone
or not, as it is not based on the resulting

f -pine. Using our current
implementation, the algorithm

described in Theorem 5.4.6 takes 56s to
execute for the resulting BC-pine with
477 nodes, with no upper bound on k.

(b) Optimal subgraph with 2 leaves in a
pruned BC-pine according to the vertex

degree (edges in red). High degree nodes
represent important nodes that should be
included in the backbone, according to

Theorem 5.4.8. The algorithm described in
Theorem 5.4.6 now takes 0.1s to execute with

no upper bound on k, a significant
improvement compared to using the original

edge weights as cost. This illustrates the
power of Theorem 5.4.8 when working with

pines.

Figure 5.9: Examples of solutions to (5.4) for cost functions other than vertex betweenness.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 105

In terms of performance, this method is affected by the presence of outliers.
E.g., the linear backbone in the pine shown in Figure 5.9a is of similar length as the
path in the pine that takes a turn to pass pass through the centered outlier. Though
we got lucky in this case, we note that such ‘interbranching regions of outliers’
are often present in many practical examples, such as in cell trajectory data, as
discussed by [9].

In terms of scalability, note that our f -pine generally has many leaves due to
Theorem 5.3.3. If we take a look at the case where our original graph is connected,
i.e., where the f -pine F is a tree graph, then this implies that the number of leaves l
in F may be of order n, where n is the number of nodes in F . If one fully grows the
pine by through Algorithm 5, and consequently estimates an appropriate number of
leaves k as discussed in Section 5.5.3, Theorem 5.4.6 implies that this computation
may be close to cubic in n. Its memory usage will be close to squared in n, due
to storing the pairwise distance matrix between leaves and all other nodes. Hence,
apart from often not having a meaningful interpretation (Figure 5.9a), allowing
the inclusion of any leaf of the pine makes our current implementation for solving
(5.4) difficult to scale to larger data sets.

The degree of a vertex By Proposition 5.3.3, (locally) high degree nodes repre-
sent local minima of f in an f -pine F . Given f is a core measure where low values
indicate core nodes, these are exactly the nodes where we want our backbone to
pass through. Hence, we may use the vertex-valued degree function g ≡ δF for
optimizing (5.4). The result for g ≡ δF is less affected by outliers due to their low
density in the original graph.

This cost function g is constant on leaves by definition. Hence, we may apply
Theorem 5.4.8 to first prune F , often leading to a significant reduction of the graph
size due to Proposition 5.3.3. In terms of Theorem 5.4.6, this implies that both
terms l and n decrease significantly, leading to a much better computation time, as
well as storage cost (which is O(l · n)).

Figure 5.9b shows the resulting solution of (5.4) in a pruned BC-pine. High
degree nodes correspond to core nodes in the backbone, but not necessarily con-
versely. Though extending the two leaves of the linear backbone by connecting
each one of them to an arbitrarily chosen neighboring leaf results in the optimal
solution of (5.4) in the original pine (Theorem 5.4.8), we do not conduct this step
as this will again introduce randomness to the choice of leaves.

5.5.3 Estimating the Number of Leaves

Solving CLOF requires one parameter as input, namely the number k of leaves
to be included in the backbone. For the purpose of topological data analysis of
graphs, this parameter is ideally inferred from the data itself. As discussed in

106 CHAPTER 5

(a) Optimal subgraph with 4 leaves in a
(pruned) BC-pine using vertex

betweenness. Edges and nodes are colored
according to their closeness to 1 of the 4

branches.

(b) Tracking the relative cost of the subtree,
i.e., the cost of the subtree divided by the
cost of the pine, displays an ‘elbow’ at

k = 4 leaves.

Figure 5.10: Extracting the optimal result to (5.4) for a tuned number of leaves k = 4 in a
BC-pine using vertex betweenness as cost. The pine was obtained for a Rips graph (ε = 8)

on a 2D point cloud data set with an underlying X-shaped topology.

Remark 5.4.5, the fact that CLOF can be solved through a greedy algorithm admits
a convenient way to perform this estimate. We will consider the case where our
original graph G is connected, i.e., the resulting pine is a tree graph T . In case of
disconnected graphs, our current approach is to estimate the number of leaves for
each component separately.

As the cost of the subtree increases with each iteration of the algorithm de-
scribed in Theorem 5.4.4, we can track the increase in cost according to the added
number of leaves. Initially, the increase in cost is high when we add true branches
to our current subtree. When all true branches are added, we start connecting our
subtree to surrounding noise or outliers, and the increase in cost drops. This is
illustrated in Figure 5.10, which also shows that an ‘elbow’ inference method may
be used to tune the number of leaves. This may be done either visually, or by a
using an automated procedure, such as minimizing the second-order finite differ-
ences of the function shown in Figure 5.10b. Note that we can easily extract any
solution with fewer leaves from the current solution (Remark 5.4.5)

5.5.4 Identifying Missing Cycles

As by Definition 5.3.1 a spanning forest may never include a cycle, we are unable
to use any of its subgraphs for representing the underlying topology of a graph
if the true underlying model contains cycles. However, as we will illustrate in
this section, identifying a simplified underlying forest-structured topology can be
highly beneficial for identifying cycles missing in the backbone representation of
the underlying topology. We emphasize that though the approach discussed in this
section is still experimental, it leads to effective results in practice.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 107

Consider the forest-structured backbone B we constructed throughout a point
cloud data set X of 807 observations representing Pikachu in the Euclidean plane,
by means of our method for TDA of graph-structured data sets (Figure 5.11a). We
used a Rips graph G with ε = 3.5 as a graph modeling the underlying topology of
Pikachu.

Figure 5.11b shows four different persistence diagrams resulting from D (Sec-
tion 2.5.2). One for the metric space (X, deuclidean), one for (X, dG) where dG
denotes the shortest path metric on the Rips graph G, one that results from ap-
proximating the diagram for (X, dG) through the method described by [50], and
finally one for (V (B), dG).

The diagram for the original point cloud data (Figure 5.11b, Top Left) displays
many long persisting cycles, as well as some cycles corresponding to topological
noise (holes with a low persistence). The diagram for (X, dG) (Figure 5.11b, Top
Right) does not include the original large cycles with a large birth value anymore.
These cycles are never born due to infinite distances between nodes in different
connected components of G. However, the topological noise with a low birth
value remains. A small amount of topological noise also remains in the approxi-
mated diagram for (X, dG) (Figure 5.11b, Bottom Left). However, the diagram for
(V (B), dG) (Figure 5.11b, Bottom Right) also disposes of the topological noise,
and what remains is exactly one point (H1) for each one of the eight ‘gaps’ that
are still present in B. One for each of Pikachu’s two cheeks, ears, and eyes, one
for its lip, and one for its tongue. These gaps are characterized by two nodes of B
lying close to each other in the original graph G, i.e., according to dG, but not in
B, i.e., according to dB .

Hence, the application of forest-structured backbones to topological data anal-
ysis goes in both directions. On the one hand, the forest-structured backbone B
makes the computation of persistent homology more efficient and reduces topo-
logical noise. On the other hand, persistent homology itself provides a tool for
identifying the missing cycles in the backbone.

Furthermore, depending on the used implementation, the computation of per-
sistent homology also allows one to locate a cycle that represents the hole corre-
sponding to each one of the points (H1) in the diagram [90]. This allows one to
locate the cycles that are missing a representation within the backbone topology.
These cycles are shown in Figure 5.11a. Note that however, the cycle is computed
to be underlying the metric space (V (B), dG), and might not correspond to an
actual subgraph of G.

108 CHAPTER 5

(a) A forest-structured backbone graph B (edges and nodes in red) for a point cloud data
set X resembling Pikachu. Persistent homology (Figure 5.11b) allows one to identify cycles

that should be represented in the backbone B (edges in black).

(b) Persistence diagrams for various metric spaces. (Top Left) A diagram for
(X, deuclidean). (Top Right) A diagram for (X, dG). (Bottom Left) An approximated

diagram for (X, dG) using |V (B)| points. (Bottom Right) A diagram for (V (B), dG).

Figure 5.11: Compared to the standard approaches to persistent homology, our forest
structured backbone inferred through solving CLOF in the BC-pine allows for a more

effective and efficient approach to identify cycles in Pikachu.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 109

5.6 Backbone Inference as a Facility Location Prob-
lem in Networks

In this section, we discuss how we can regard our method for backbone inference
as a facility location problem in networks, and discuss how it differs from the
existing approaches in this context.

The general setting of Facility Location Problems in Networks [91] is:

“given a graph G, a collection F of subgraphs of G,
and a cost function f : F → R,

optimize f(F) subject to F ∈ F .”

Note that the term ‘facility’ in our context refers to ‘backbone’. Both the infer-
ence of f -pines (Section 5.3) and solving CLOF (Section 5.4), can immediately
be seen as location problems in networks according to this formulation. A more
commonly known example of subgraph inferred through a facility location prob-
lem is the minimum spanning tree (MST). Here, F is the set of spanning trees of
G (forests if G is disconnected), and f maps a tree onto the sum of the weight
of its included edges, which is the cost to be minimized. Steiner trees generalize
this concept. They minimize the same cost function as minimum spanning trees,
but are only required to cover a given set of nodes, called terminals. Finding a
minimum spanning tree can be done in linear time [86], whereas finding a Steiner
tree is an NP-hard problem [92]. In Section 5.7, we show that neither facility
is effective for inferring backbones modeling the underlying topology of a graph
well.

Existing facility location problems come with a variety of issues that prevent
them to effectively identify and locate backbones in graphs. These issues, summa-
rized below, are the main reasons why we introduced the forest representation as
an intermediate step for mining topological substructures, as we overcome all of
these by designing such representation of our graph.

Computational complexity Many facility location problems in networks are
NP-hard for general graphs [91]. Certain formulations even lead to NP-hard prob-
lems when the original graph is a tree graph [95]. In contrast to this, we presented
effective and efficient algorithms that provide an exact solution to our introduced
facility locations problems, which are identifying an f -pine and solving CLOF in
forest representations (Section 5.4).

Sensitive to outliers Outliers are harmful when either the constraint F [96] or
the cost f [97] specifies that all nodes in the original graph should lie close to
the facility. Furthermore, facilities may ‘pass through’ outliers to reach one region

110 CHAPTER 5

(a) An approximated Steiner
tree [93] in red, which we
constructed through three
terminal nodes/medoids

selected by a partitioning
around medoids (PAM)
algorithm (orange). The

selection of these medoids is
regarded as a facility location

problem in metric
spaces [94], and is highly

biased towards dense regions.

(b) A subgraph (red) obtained
by iteratively choosing

farthest points, and
connecting them by the

shortest path between them
and the current tree structure.

These paths always take
‘shortcuts’ when available,
shifting them away from the
true core in the presence of

curvature. Furthermore,
outliers are especially

harmful when connecting to
farthest points (Section 5.7).

(c) The output (red) of our
method presented in Figure
5.1e, where we replaced the

BC-pine as a forest
representation by the ordinary

minimum spanning tree
(MST). The selected leaves
during CLOF are shown in

orange. Subgraphs
minimizing the maximum

edge weight, such as the MST,
are biased towards including
low-weight edges, leading to

‘wiggled’ results.

Figure 5.12: Subgraphs mined from an original graph G (black), (c) with and (a-b)
without intermediate forest representation. Comparing these results with Figure 5.1d,

(a-b) illustrate the usefulness of an intermediate forest representation for mining
topological substructures in graphs, whereas (c) illustrates the importance of designing an

effective representation for this purpose, both the subject of this paper. Note that all
methods may be regarded as a combination of selecting important nodes and constructing

a subgraph through these. We will discuss these methods in detail in Section 5.7.

from another, shifting the facility from the true backbone of the graph. Our method
overcomes these issues by marking outliers as leaves in our forest representations.

Sensitive to density To overcome the sensitivity to outliers, the constraint or cost
may be postulated in terms of the average/mean distance of the facility to all other
nodes [98]. However, such approach tends to fail revealing important structure
in case of a non-uniform density across the underlying topology (Figure 5.12a).
In contrast to this, our method effectively infers backbones that extend across the
entire original graph, while remaining near the core of the graph (Figure 5.1d).

Not or too topologically constrained Facility location problems are mainly
considered in topics such as routing, logistics, and dispatching [99]. In these sce-
narios, rather than representing the topological model underlying the graph, the
objective of the facility is to reach all nodes of the original graph as close as possi-
ble, while maintaining a low cost of the facility. These facility location problems

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 111

are insufficient for inferring topological models underlying graphs. There may not
be any constraints on the topological complexity of the facility (e.g., in terms of the
number of leaves or multifurcations), allowing for an arbitrary complex backbone
that fails to provide insight into the underlying structure. E.g., the only topological
restriction on the facility may simply be that the facility is a tree [98]. In other
cases, the facility is topologically too constrained. In particular, facility location
problems may also search for a specific path [100], which is not suited to capture
the underlying topology in many practical examples.

Steiner trees allow some control over the topological complexity of the final
facility through the number of terminals that are specified [101]. However, the
presence of outliers or non-uniform density may be harmful when selecting these
terminals in an unsupervised manner (Figure 5.12a). Furthermore, the topological
complexity, such as the number of leaves, of the resulting (approximated) Steiner
tree is often not consistent with the number of terminals (Figure 5.12a and Section
5.7).

In contrast to these methods, our objective is to reveal the underlying topology
of a graph—the cost of which does not matter to us—in a robust and effective
way. For this reason, we are able to provide a method for tuning the topological
complexity of our backbone in a data- and scale-independent way (Section 5.5.3).

Topological bias Many facilities may just not be meaningful representations for
the underlying topology. E.g., a trivial example is the longest path through a graph
(if existing), which may ‘wiggle’ through the entire graph without reflecting the
true underlying topology, even if this is linear. Furthermore, other facilities may
only be meaningful in the absence of outliers (as also discussed above), in the ab-
sence of curvature (Figure 5.12b), or may be biased to include mostly low-weight
edges due to the minimization of a sum or maximum of the edge weights of the
facility. Extreme examples of this are the MST and its subgraphs, which ‘wiggle’
through the entire graph (Figure 5.12c).

5.7 Experiments: Inferring Backbones in a Variety
of Graphs

In this section, we show that our method is applicable to a wide variety of graphs
arising from different fields of science. For our applications, we will focus on
topological data analysis, visualization, and graph simplifications. Note that graph
simplifications recently showed to increase the performance of existing graph em-
bedding methods [102]. Our method will show to be applicable to a wide variety
of data sets, from social networks, to high-dimensional point cloud data.

We will present the ten different data sets on which we will conduct our exper-

112 CHAPTER 5

iments in Section 5.7.1. In Section 5.7.2, we will discuss the baseline methods we
will use to verify the effectiveness of our newly introduced method on these data
sets. In Section 5.7.3, we qualitatively discuss our obtained results. Section 5.7.4
considers the introduction and results of our quantitative metrics used to measure
the performance of our method. In Section 5.8, we will also conduct a separate
large scale experiment on 333 cell trajectory data sets, using a domain specific
baseline and set of quantitative measures.

5.7.1 Summary of the used Data Sets

We will consider various types graphs to analyze the performance of our method.

Swiss Roll (SR) The Swiss Roll is a commonly used manifold for analyzing
the performance of nonlinear dimensionality reductions [103]. We generated a
synthetic data set of 1000 points lying on such manifold. A Rips graph with 47 013

edges (ε = 0.75) was constructed from this data for analysis through our method.

Karate Network (K) Zachary’s karate club is a well-known social network of a
karate club, studied by Wayne W. Zachary for a period of three years from 1970 to
1972 [12]. The network consists of 34 members of a karate club. Each one of the
78 edges between pairs of members denotes an interaction outside the club. During
the study a conflict arose between the—under pseudonyms known—administrator
“John A” and instructor “Mr. Hi”, which led to the split of the club into two. Half
of the members formed a new club around Mr. Hi, whereas members from the
other part either found a new instructor or gave up karate. This splits the network
into two ground-truth communities. Furthermore, each edge is weighted with the
the number of common activities the club members took part of. We mapped each
edge weight to its inverse, as higher weights corresponded to more distant nodes
when we introduced the BC [4].

Harry Potter Network (HP) We consider an unweighted network G displaying
221 relationships between 63 characters from the Harry Potter novels. The orig-
inal graph can be found at github.com/hzjken/character-network,
and has edges representing sentiment relationships between characters. The orig-
inal edges represented either a hostile or friendly relationship. However, we only
considered edges denoting friendly relationships between characters, as to detect
a natural flow in the network.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 113

Game of Thrones Network (GoT) We consider an unweighted network G de-
fined on 208 characters of the Game of Thrones saga2. This graph is obtained from
https://shiring.github.io/networks/2017/05/15/got_final.
Each one of the 326 edges between two nodes denotes either a (undirected) ‘mother’,
‘father’, or ‘spouse’ relationship.

Co-authorship Networks: KDD & NeurIPS We consider two more challeng-
ing graphs, displaying co-authorship relations for two different machine learning
and data mining conferences: KDD (Knowledge Discovery and Data Mining, 5749

nodes & 19 715 edges), and NeurIPS (Neural Information Processing Systems,
6525 nodes & 15 770 edges). The data used to construct this graph is publicly
available on aminer.org/citation. We only considered the largest con-
nected components of these graphs for analysis. Each edge is weighted by the
inverse of the number of papers co-authored by the corresponding two authors.
Hence, low weights imply more closely connected authors.

Earthquake Locations (EQ) We obtained a data set containing information on
80 549 earthquakes ranging between the years 1950 and 2017. This data is freely
accessible from USGS Earthquake Search. The topology underlying such a data
set was already analyzed by [13] and [3] (see also Figure 4.7a). However, con-
trary to their followed procedure, we do not restrict ourselves to a particular small
rectangular domain with a low amount of noise, do not apply any noise filter-
ing in advance, and are able to obtain a topological simplification through a kNN
graph. A random sample of 5000 earthquake locations was taken, from which we
constructed an undirected 10NN graph with 31 129 edges using the Great circle
(geographic) distances between location coordinates for analysis. These distances
where also used as weights of resulting edges.

Cell Trajectories We will first demonstrate the effectiveness of our method for
cell trajectory inference or visualization by means of a synthetic cell trajectory
data set of 556 cells in a 3475-dimensional gene expression space (SC). This data
represents a snapshot of these cells at a specific point during a cell differentiation
process. Different stages in the differentiation process correspond to differentially
expressed genes. Hence, the ground-truth underlying topology of the point cloud
gene expression data set is the (embedding of the) differentiation network. A kNN
graph (k = 10; 4646 edges) will be used to analyze the underlying topology of this

2Both the HP and GoT network depict relationships among individuals within ‘societies’. These
societies are ‘good’ and ‘bad’ in the HP network, whereas they are the houses in the GoT network.
Hence, these graphs fall under the category of graphs that are studied in social sciences. Although
one might argue whether these graphs can be considered ‘real-world’ graphs, we believe these are
examples to which many readers can relate, as to confirm the effectiveness of our method for these
types of graphs.

114 CHAPTER 5

data. We will conduct a similar experiment on a kNN graph (k = 5; 1543 edges)
constructed from a real cell trajectory data of 355 cells embedded into a 3397-
dimensional gene expression space (RC1), as well as on a kNN graph (k = 10;
974 edges) constructed from a second real cell trajectory data set of 154 cells in
a 1770-dimensional gene expression space (RC2). We will use the latter data set
to show how a dimensionality reduction can significantly improve our obtained
results. We will use Euclidean distances to construct these graphs, and for the
corresponding edge weights.

5.7.2 Summary of the Baseline Methods

We will evaluate the performance of our method by comparing our results to those
obtained through three different baselines, chosen to address the following ques-
tions (Figure 5.12).

1. Why do we need intermediate forest representations for backbone inference?

2. Why are our introduced pines effective forest representations?

Similar to how we can specify the number of leaves to be selected through
CLOF, each of these baseline methods will require a number of ‘important’ points
to be selected. For comparison, we will specify each baseline method to select the
same number of nodes (componentwise) as the number of leaves selected through
our own method. The different baselines we will consider are summarized below.

Facility Location + Steiner Tree (FacilitySteiner) We will use this baseline
will to investigate the applicability of Steiner trees to our problem. First, we use
an intermediate step based on facility location in metric spaces. We start by select-
ing k medoids through a partitioning around medoids (PAM) algorithm [94]. PAM
is a clustering algorithm reminiscent to the ordinary k-means algorithm [104], but
chooses data points as centers (medoids) and can be used with arbitrary distances.
Once these medoids have been selected, we pass them to an algorithm for approx-
imating a Steiner tree through these nodes, as described by [93]. The result of this
method is illustrated in Figure 5.12a.

Farthest Point Sample (FarthestPoint) Our second baseline method is inspired
by the algorithm for solving CLOF in tree graphs (Theorem 5.4.4), which includes
a farthest point sampling according to a user-defined cost function. Instead, we
apply a similar procedure to the original graph. We start with either the center
of the graph (if we only wish to select one node), or the longest shortest path
between two nodes of the graph (measured according to the original distances).
Consecutively, we connect the next farthest point to the current tree by means of

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 115

the shortest path between them, until a prespecified number of points has been
selected. The result of this method is illustrated in Figure 5.12b.

CLOF in the Regular Minimum Spanning Forest (CLOFinMSF) Our third
baseline method is also inspired by our algorithm for solving CLOF in tree graphs.
However, this time we solve CLOF in the regular minimum spanning forest (MSF)
constructed from the original graph. The purpose of this baseline is to illustrate the
effectiveness of representing graphs through BC/LCC-pines for mining topologi-
cal substructures through CLOF. The result of this method is illustrated in Figure
5.12c.

5.7.3 Qualitative Analysis of the Results

Swiss Roll Figure 5.13 shows our considered point cloud data X lying on a
‘Swiss Roll’. Figures 5.14a-5.14d show the Rips graph constructed G from this
data, as well as the backbones obtained through our various procedures. The 2D
embedding of X was obtained through an Isomap embedding of X based on G
[103].

Various observations can be made from Figure 5.14. First, FacilitySteiner per-
forms well in terms of centering the backbone and its smoothness (Figure 5.14a).
However, it is unable to fully extend to the true ‘outside’ of the backbone, as the

Figure 5.13: 3D point cloud data X lying on a ‘Swiss Roll’. Points are colored according
to the first coordinate of the 2D Isomap embedding of X based on G. The backbone

obtained through our method curls all the way around the core of the manifold.

116 CHAPTER 5

(a) The linear backbone from FacilitySteiner. (b) The linear backbone from FarthestPoint.

(c) The linear backbone from CLOFinMSF. (d) A linear backbone from the BC-pine.

Figure 5.14: Various backbones (black) through a ‘Swiss Roll’-shaped point cloud data
set. Only through the BC-pine, we are able to infer a smooth and centered backbone that

extends to the true leaves of the linear-structured model that underlies the data.

selection of medoids is not analogous to the selection of leaves through CLOF. Far-
thestPoint performs better in terms of fully extending to the true underlying leaves
(Figure 5.14b). However, the resulting backbone crosses the topology diagonally
instead of through its center, as it searches for the maximal shortest path between
two nodes. CLOFinMSF performs well in approximating a vast majority of the
nodes in G, as it ‘wiggles’ through the entire graph. The result of CLOFinMSF is
however far from smooth, and it also does not extend to the true underlying leaf
on the left (Figure 5.14c). In contrast, our newly introduced method of mining the
backbone through solving CLOF in a BC-pine performs well in terms of center-
ing the backbone, while also fully extending it to the true underlying leaves of G
(Figure 5.14d).

Karate Network Figure 5.15a shows the original Karate Network, the BC-pine,
as well as a linear backbone mined from this BC-pine. Figure 5.15b displays the
backbone where nodes are colored according to their ground-truth community.
Given the ground-truth separation of two communities, a linear backbone fits our
network well. Furthermore, this separation of the two communities is preserved
by our backbone (Figure 5.15b). We further remark that both John A (A), as well
as Mr. Hi (H), achieve a very low BC (Figure 5.15a), which coincides with these
nodes being highly transmissive nodes in the ground-truth model.

Harry Potter Network Figure 5.16 shows the original Harry Potter Network
G, an LCC-pine in G, a forest-structured backbone B mined from this LCC-pine,
and a representative cycle obtained through persistent homology of (V (B), dG)

(Figure 5.17). It turns out that only our newly proposed method and FacilityS-
teiner were able to actually capture Harry Potter—the main protagonist—within

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 117

(a) A linear backbone (red edges) mined from the
BC-pine (black edges) constructed from the karate

network (grey edges).

(b) The backbone linearly separates
the two ground-truth communities

defined by the main characters: John
A (A) and Mr. Hi (H).

Figure 5.15: Our method identifies a linear backbone in the Karate network, consistent
with the ground-truth separation of the network into two different communities.

Figure 5.16: A backbone (red edges + red vertex borders) mined from the LCC-pine (blue
edges) constructed from the Harry Potter network (grey edges). Persistent homology of the
metric space induced by the original metric in G on the nodes of the backbone can be used

to find a representative cycle missing in the backbone (orange edges). Layout provided
through a force-directed layout algorithm.

118 CHAPTER 5

the major component of the forest-structured backbone.
The other smaller components correspond to special cases. We let the back-

bone component of the single isolated edge of “Riddles” simply be itself (note that
both vertices have betweenness 0 in any spanning forest of the graph). The com-
ponent in the LCC-pine corresponding to the triangle of “Dursleys”, is pruned to
a single node (Theorem 5.4.8), which is chosen as the representation of this com-
ponent. Note that we also did this to obtain a representation of Pikachu’s nose in
Figure 5.11a. However, unlike for the component representing this nose, all nodes
in the triangle of “Dursleys” have an LCC of 1. Hence, there is no meaningful
interpretation to the LCC-pine having chosen Vernon Dursley as the inner node of
the corresponding linear component consisting of these three nodes in the pine.

Connoisseurs of the saga may be surprised by Harry Potter and Sirius Black
being quite distant from Albus Dumbledore, according to the linear backbone com-
ponent representing the major component of G, first needing to pass through Lord
Voldemort. This is because of the lack of ability to include cycles through a
(sub)forest representation of our original graph. However, as can be seen from
Figure 5.16, this linear component (red edges) goes all the way around through
the corresponding component. Its leaves are actually very close to each other ac-
cording to dG. As discussed in Section 5.5.4, persistent homology allows us to
discover that a cycle is missing from our backbone representation (Figure 5.17).
Furthermore, Figure 5.16 also displays the representative cycle corresponding to
the single identified hole in the underlying topology (orange edges), placing Harry
much closer to Dumbledore in the underlying topology of the graph.

Figure 5.17: The persistence diagram of (B, dG) in the Harry Potter Network reveals the
presence of one cycle (H1) missing in the forest-structured backbone representation. Note
that the multiplicity of the top left point (H0) equals three, i.e., the number of connected

components in B according to dG.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 119

Game of Thrones Network Figure 5.18 shows the original Game of Thrones
Network G, an LCC-pine in G, a forest-structured backbone B mined from this
LCC-pine, and the union of the representative cycles for the two most persistent
holes obtained through persistent homology of (V (B), dG). Nodes are colored
according to their ground-truth community, i.e., the family they belong to.

We obtained a backboneB with 10 leaves using ‘standardized’ vertex between-
ness as cost function. I.e., the betweenness for each node was divided by the total
cost of its corresponding connected component. Note that the cost of the smaller
component in the backbone is relatively low according to its sum of (original) be-
tweenness centralities, as it contains much fewer nodes than the larger component.
Using non-standardized betweenness, one would either need to further increase

Figure 5.18: A forest-structured backbone with 10 leaves (red edges) mined from the
LCC-pine constructed from the Game of Thrones network (grey edges). Nodes are colored

according to their ground-truth community, i.e., the House they belong to. White nodes
correspond to members that are unassigned to any house. Persistent homology of the

metric space induced by the original metric in G on the nodes of the backbone is used to
identify cycles missing in the backbone (orange edges). Layout provided through the

Fruchterman-Reingold layout algorithm.

120 CHAPTER 5

the number of leaves for the smaller component to be represented in the backbone,
or manually specify the number of leaves for each component.

Our backbone B illustrates well how the ground-truth communities make up
the entire topology of our graph. E.g., there is a branch corresponding to House
Tyrell, to House Greyjoy, to House Martell, to House Targaryen, Not only
is the backbone able to separate the communities well, but it also is able to infer
how different communities are connected. E.g, House Stark, House Lannister, the
Boltons and further on House Frey, are all connected through Sansa Stark. Eddark
Stark (often referred to as Ned Stark), connects Sansa Stark (and through her the
Lannisters, Boltons, and House Frey) to a branch of ‘older’ Starks, to House Tully,
and to House Targaryen through Jon Snow.

There are again some obvious ‘gaps’ in our backbone B. E.g., Sansa Stark
immediately connects to a branch of Lannisters through Tyrion Lannister, but to
reach the other cluster of Lannisters, she must first travel through the Boltons, and
then through House Frey, making it apparent that these groups of Lannisters form
seperated communities. Another obvious gap is present in House Baratheon, as we
first need to travel through House Lannister, House Stark, and House Targaryen be-
fore reconnecting this community. Though some smaller gaps seem to be present
as well (and may also be identified using persistent homology), the ones discussed
above correspond to the two most persistent holes one obtains through persistent
homology of the metric space (V (B), dG) (Section 5.5.4). The union of the two
corresponding representative cycles are shown in Figure 5.18 as well. Note that
these cycles overlap through a path between Jaime Lannister and Sansa Stark.

KDD & NeurIPS Co-authorship Network We first applied our method to con-
struct a tree-structured backbone with 5 leaves in the KDD co-authorship network.
The resulting tree graph is shown in Figure 5.19.

To verify that the cores of our tree representations, i.e., the BC-pines, indeed
correspond to meaningful core structures in the original graphs, we studied various
measures of our network when moving deeper into the backbone by pruning leaves
of the trees, namely:

• the fraction of authors still included in the subtree;

• the average number of citations of the authors still included in the subtree;

• the average year of the first publication in the considered conference across
al authors still included in the subtree.

For comparison, we compared this to the same measures for the tree representa-
tions corresponding to our baselines. This equals the regular MST for CLOFin-
MSF, which is the solution to (5.4) for the maximal possible number of points
(leaves) that can be selected through the algorithm in the MST (Theorem 5.4.4).

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 121

Figure 5.19: A tree-structured backbone for the KDD co-authorship network with 5 leaves.
Nodes and edges are colored according to their closeness to one of the 6 resulting

branches. Layout provided through a tree layout algorithm.

Since FacilitySteiner and FarthestPoint do not make use of an intermediate for-
est representation for inferring a backbone, we analogously consider the trees that
result from selecting the maximal number of nodes during the algorithm. For Fa-
cilitySteiner, this equals the Steiner tree induced by all nodes, and hence, also the
regular MST. For FarthestPoint, we consider the tree that results from continuing
the sampling until all nodes all included. We will refer to this tree as the FPS tree.

The obtained metrics according to the number of pruning iterations are shown
in Figure 5.20. By iteratively pruning leaves, we note that the BC-pine retracts
much faster to a core structure than the regular MST, discarding the majority of
the nodes after the first iteration, a consequence of Proposition 5.3.3. The FPS tree
quickly discards of many nodes as well. However, the BC-pine retracts towards a
core structure marking authors with a high number of citations, and who have been
present very early in the considered conference. This is exactly what we expect
from the core structure of the original graph.

Note that through a similar analysis, we showed the effectiveness of the BC
over the LCC even in non-metric weighted graphs [4].

122 CHAPTER 5

Figure 5.20: Various measures after iteratively pruning the regular MST (red), the FPS
tree (green), and the BC-pine (blue). (Left) Fraction of original graph size. (Middle)

Average number of (KDD) citations. (Right) Average year of first published (KDD) paper.

We applied the exact same method to construct a tree-structured backbone with

Figure 5.21: A tree-structured backbone for the NeurIPS co-authorship network with 5
leaves. Nodes and edges are colored according to their closeness to one of the 6 branches.

Layout provided through a tree layout algorithm.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 123

Figure 5.22: Various measures after iteratively pruning the regular MST (red), the FPS
tree (green), and the BC-pine (blue), for the NeurIPS network. (Left) Fraction of original
graph size. (Middle) Average number of (NeurIPS) citations. (Right) Average year of first

published (NeurIPS) paper.

5 leaves in the NeurIPS co-authorshop network. The resulting tree graph is shown
in Figure 5.21.

As we did for the KDD network, we verified that the cores of our tree rep-
resentations, i.e., the BC-pines, indeed correspond to meaningful core structures
(Figure 5.22). We observe that our method provides consistent results, as again,
the BC-pine retract towards a core structure marking authors with a high number
of citations, and who have been present very early in the considered conference.

Earthquake Locations Figure 5.23 shows the result of constructing a forest-
structured backbone for our graph representing the earthquake locations through
the three baseline methods, and our newly introduced method. Each method was
specified to select 35 nodes.

FacilitySteiner is again unable to extend across the entire underlying topology,
leaving large patches unrepresented. The resulting backbone also only contains
23 leaves. The backbone resulting from FarthestPoint connects to many outliers,
prone to be selected through this method. Furthermore, the backbone also passes
through outliers, as shortest paths in the original graph will take any ‘shortcut’
available. The backbone also only contains 26 leaves. This is due to leaves added
at one iteration being connected to other leaves in further iterations. In contrast,
both backbones obtained through CLOF exactly contain 35 leaves as specified.
Both extend well across the entire underlying topology, while avoiding outliers.
Note that the regular MST avoids connecting through outliers through multiple
edges as the corresponding weights are usually high, whereas the BC-pine avoids
connecting through these as they are separated from the true core by means of
boundary nodes. The main difference between the backbones obtained through
CLOF is their size: through the BC-pine, we approximate the entire underlying
topology of the graph with less than three times the nodes than through the regular

124 CHAPTER 5

Figure 5.23: Backbones (red) derived from earthquakes scattered across the Earth using
various methods. (Bottom Right) A representative cycle for the most persisting hole in

(B, dG) identified through topological persistence is overlayed in orange. Only through
the BC-pine, we are able to infer a backbone that passes smoothly through the entire

graph, while avoiding outliers. We quantitatively verify this in Section 5.7.4

MST (Table 5.2). This is again a consequence of CLOFinMSF resulting in a very
‘wiggled’ backbone.

Figure 5.24 shows the persistence diagram of (V (B), dG)—B being the back-
bone derived through our newly introduced method—which indicates that there are

Figure 5.24: The persistence diagram of (B, dG) reveals the presence of many small,
medium, as well as larger cycles missing from the forest-structured backbone B derived

through our newly introduced method.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 125

many small, medium, as well as larger cycles missing from the forest-structured
backbone. Figure 5.23 (Bottom Right) also displays a cycle representing the most
persisting hole, spanning the entire Earth.

Cell Trajectories Figures 5.25 & Figures 5.26 visualize our obtained results for
the first two cell trajectory networks discussed in Section 5.7.1, as well as the
known ground-truth underlying topologies (Figures 5.25e & 5.26b). The point
cloud data, as well as the obtained kNN graphs and the resulting backbones, are vi-
sualized on multidimensional scaling plots using Pearson correlations as distances
between cells.

It should be noted that even though the constructed proximity graph may in-
correctly connect different parts of one or multiple branches, our method is well
able to both correctly identify and locate the present linear topology. E.g., Figure
5.25d shows that even though the kNN graph forms a cyclic structure through the
entire data, our method is able to correctly identify and locate the ground-truth lin-
ear underlying topology. In contrast, each one of our baseline methods incorrectly
connects the two underlying leaves (Figures 5.25a-5.25c).

Even without CLOF to infer topologies from our pine, Figure 5.25g & 5.26d
show that the BC-pine visualizes the ground-truth topologies present in the data
well through the Fruchterman-Reingold layout algorithm [105]. For comparison,
we also illustrated the regular minimum spanning tree (MST) of the graphs (Figure
5.25f & 5.26c), from which it is a lot more difficult to visually deduce the ground-
truth underlying topologies. Furthermore, it can not be deduced from the visual-
ization in Figure 5.25f that two groups of cells are actually connected through the
incorrect region (Figure 5.25c).

As our method is specifically developed for topological data analysis of graphs,
it is important that the ground-truth underlying topology of our point cloud data
corresponds to the underlying topology of our graph used to represent this data.
This is generally a very difficult task, especially for high-dimensional data sets
that commonly suffer from the curse of dimensionality. E.g., the Euclidean dis-
tance measure and the concept of closest neighbors become much less meaningful
in high-dimensional spaces [106]. This may lead to a low quality representation
of the data’s underlying topology through a kNN graph. Though our method was
able to infer the topology of the underlying cell trajectory network in our previous
examples, we do note that the stated observation already applies to the constructed
proximity graphs. Their quality for representing the underlying topology is af-
fected by interconnections between different parts of branches (Figure 5.25d) or
‘hubs’ that connect to many other points (Figure 5.26a). The latter is a typical
problem occurring in kNN graphs constructed from high-dimensional data [107].

We continue with our third cell trajectory data set, which is an extreme example
of how the curse of dimensionality may affect our results. Figure 5.27a visualizes

126 CHAPTER 5

(a) A linear backbone
(blue) mined through

FacilitySteiner.

(b) A linear backbone
(blue) mined through

FarthestPoint.

(c) A linear backbone
(blue) mined through

CLOFinMSF.

(d) A linear backbone
(blue) mined from the

BC-pine.

(e) The ground-truth
underlying topology of X .

One group of cells (1)
evolves to another (2)

through a linear
differentiation process.

(f) Visualizing the MST of G using the Fruchterman-Reingold
layout algorithm.

(g) Visualizing the BC-pine of G using the Fruchterman-Reingold layout algorithm, with
the edges of the found linear backbone in blue.

Figure 5.25: The BC-pine allows one to both visualize and infer the underlying topology
from a synthetic high-dimensional gene expression data set through a 10NN graph G.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 127

(a) A bifurcating backbone (blue) is mined from the
BC-pine (black edges) constructed from a 5NN graph
G (grey edges) of real gene expression data X .

(b) The ground-truth underlying
topology of X . Layout provided
through a tree layout algorithm.

(c) Visualizing the MST of G using the Fruchterman-Reingold layout algorithm.

(d) Visualizing the BC-pine of G using the Fruchterman-Reingold layout algorithm, with
the edges of the found bifurcating backbone in blue.

Figure 5.26: The BC-pine allows one to both visualize and infer the underlying topology
from a real high-dimensional gene expression data set through a 5NN graph G.

128 CHAPTER 5

(a) A single node backbone (blue) is mined
from the BC-pine (red edges) constructed
from a 10NN graph G (grey edges) of real

gene expression data X .

(b) A bifurcating backbone (blue) is mined
from the BC-pine (red edges) constructed
from a 10NN graph G̃ (grey edges) of a

3-dimensional embedding of X into
diffusion map coordinates.

(c) The ground-truth
underlying topology of X .

(d) Visualizing the MST of G̃ using the
Fruchterman-Reingold layout algorithm.

(e) Visualizing the BC-pine of G̃ using the Fruchterman-Reingold layout algorithm, with the
edges of the found bifurcating backbone in blue.

Figure 5.27: The BC-pine allows one to both visualize and infer the underlying topology
from a real high-dimensional gene expression data set through a 10NN graph G̃.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 129

the point cloud data set X using diffusion map coordinates, as well as the BC-pine
of a 10NN graph G constructed from X using Euclidean distances in the original
high-dimensional space. The inferred backbone B, also shown in Figure 5.27a,
is a single node. This is because a data point v is the closest neighbor of 147
out of the 153 other data points. In the 10NN graph constructed from the high-
dimensional data, every one of these 153 data points is connected to v, and the
obtained BC-pine is a star graph as in Figure 5.5a. Making use of Theorem 5.4.8,
pruning discards all of these 153 nodes, and what remains is the single node v.

Clearly, Figure 5.27a shows that the underlying topology of G is not a truthful
representation of the underlying ground-truth topology of X . However, as com-
monly used in cell trajectory inference tools [9], a dimensionality reduction may
serve as a first step for reducing the amount of noise and improving the quality of
our representation.

Figure 5.27b visualizes the point cloud data set X using the same (first two)
diffusion map coordinates, but this time the BC-pine of a 10NN graph G̃ con-
structed from the first three diffusion coordinates of this embedding. The underly-
ing topology of G̃ is now a much better reflection of the underlying ground-truth
topology of X (Figure 5.27c), and is successfully mined through solving CLOF in
the BC-pine. Again, comparing Figures 5.27d & 5.27e, we note that the BC-pine
serves as a tool for graph visualization as well.

5.7.4 Quantitative Analysis of the Results

As to evaluate the performance of our method, ideally one would have access to a
ground-truth underlying graph-structured topology. However, not only is it diffi-
cult to assess whether there exists a homeomorphic mapping from one (geometric
realization of a) graph to another [108], more often than not we do not have access
to a ground-truth model (Section 3.4).

Nevertheless, in Section 5.7.4.1 we will introduce general metrics allowing us
to support and interpret our obtained results, which we will summarize in Section
5.7.4.2.

Furthermore, we will conduct a separate large scale cell trajectory inference
experiment in Section 5.8. The knowledge of ground-truth topologies as well as
the recent development of quantitative metrics for comparing different cell trajec-
tory inference tools [9], allows us to objectively measure the performance of our
method for this purpose.

5.7.4.1 Introducing General Quantitative Metrics

We will consider a variety of metrics that allow us to meaningfully interpret how
well our inferred forest-structured backbone B models the underlying topology

130 CHAPTER 5

of a graph G. All these metrics will have an intuitive meaning, and are mostly
inspired by easily interpretable concepts from simple linear regression.

Model size The relative size of B compared to G should be small. The reason
for this is that we want to ‘explain’ the entire graphG through only a few landmark
nodes. Hence, one may measure n%, the percentage of nodes fromG still included
in the resulting backbone. Similarly, one may considering m%, the percentage of
nodes from G still included in the resulting backbone. However, in case of forest-
structured backbones, there is an explicit relation between the original size number
of nodes in G, n%, and m%, so that this latter quantity is redundant.

Goodness of fit Although we prefer a simple model, we still want to fit our data
sufficiently well (compare Figure 3.3 to Figure 5.28a). Therefore, we may consider
the metric

R(B) := 1−
∑
v∈V (G) dG(v,B)∑
v∈V (G) dG(v, CG)

,

where dG(v,B) denotes the distance of v to its closest node in B, and dG(v, CG)

denotes the distance of v to its closest node in the center CG of G, defined as

CG :=

{
u ∈ V (G) : (∀v ∈ [u]G)

(
max
w∈[u]G

dG(u,w) ≤ max
w∈[u]G

dG(v, w)

)}
,

i.e., the set of nodes u with minimum eccentricity in their respective connected
component [u]G of G. Inspired by the coefficient of determination in linear regres-
sion, we consider this metric to be a measure for how much of the ‘variance’ in our
graphG is explained by the modelB. However, we choose to not consider squared
distance as in the usual definition of this coefficient, to lessen the effect of outliers.
As we do not assume G to reside in any vector space, there is no definition of an
‘average’ node. Hence, our notion of ‘mean’ is fulfilled by the ‘center’ in graphs.

Topological complexity The linear backbone B in Figure 3.3 fits the graph G
well. In this case, it captures the ground-truth topology of G, which was con-
structed from a noisy point cloud X sampled from a line segment. Apart from a
single point, it is the ‘simplest’ graph-structured topological model that may oc-
cur. It has a straightforward geometric realization without any singularities, being
the line segment [0, 1]. Clearly—and as our good friend Occam would agree—
topological less complex models like these are preferred over topologically more
complex models. E.g., Figure 5.28b shows another possible backbone in G, which
approximates G nearly equally well (and smooth, see also the next metric), but
clearly the extra branches are redundant. Various terms quantifying the topological

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 131

(a) A graph G (nodes in blue) and a subgraph B2 (red) of G which models G in the ‘wrong direction’.

(b) A graph G (nodes in blue) and a subgraph B3 (red) of G which incorrectly represents the underlying
topology of G.

(c) A graph G (nodes in blue) and a subgraph B1 (red) of G that ‘wiggles’ through the entire graph G.

Figure 5.28: Various examples of ‘bad’ backbones.

complexity of the backbone, such as its number of leaves, cycles, and/or multifur-
cations, can be considered. We will consider the number of leaves, which can be
directly controlled through CLOF.

Smoothness We want our backbone B to pass ‘smoothly’ through our graph,
instead of ‘wiggling’ through many nodes. The intuition behind this is similar to
preventing overfitting in linear regression (compare Figure 3.3 to Figure 5.28c). To
this end, we compute the projection GB of G on B, by connecting each node of G

132 CHAPTER 5

Figure 5.29: The projection GB (red) of the graph G on the backbone B, displayed in
Figure 3.3.

through its shortest path to B. Figure 5.29 illustrates as an example the projection
GB of the graph G on its backbone B shown in Figure 5.29. We then compute the
ratio σ := dG(u,v)

dGB
(u,v) , where u and v are the most distant nodes in G. Hence, σ(B)

denotes how well the distance between the two furthest points in G is preserved
through B. Note that trivially σ(B) = 1 if B was obtained through FarthestPoint.
Furthermore, σ is ‘penalized’, i.e., further from 1, when centering our backbone
and preventing it from passing through outliers. However, this is exactly what we
want. E.g., Figure 5.30 shows a backbone B that is the (not necessarily longest)
shortest path between two points. We see that instead of being centered in the main
core of the graph, it passes through outliers to reach one destination from another.

Figure 5.30: A graph H (nodes in blue) and a subgraph B4 (red) of H which passes
through outliers instead of being centered in H .

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 133

Commute time preservation A good backbone B should capture the geomet-
rical properties, and hence, preserve the metric of the original graph G well. Un-
fortunately, this is one the most difficult qualities of a forest-structured backbone
B to assess. Missing cycles may result in failing to preserve the original metric,
whereas in the case of curvature and outliers, we actually wish to not preserve the
original metric as close as possible. To this end, we consider the correlation coract

between the average commute times of the original graph G and the projection of
G on GB [109]. These commute times are based on a Markov-chain model of ran-
dom walk through the graph, which have shown to effectively deal with outliers in
graphs [110]. Note that however, this metric does not account for the fact that we
cannot include cycles in a forest-structured backbone.

5.7.4.2 Quantitative Summary of our Results

Table 5.1 summarizes the settings in terms of leaves we used to obtain the back-
bones for the graphs discussed in Section 5.7.3 through our method. Each of our
baselines also requires a number of nodes to be selected per component, for which
we used the kcomp-row of Table 5.1.

SR K HP GoT NeurIPS KDD EQ SC RC1 RC2
kmax 10 10 50
kspec 10 5 5 35
kcomp 2 2 2-2-0 8-2 5 5 35 2 3 3

Table 5.1: Input and output summary to obtain a forest-structured backbone through BCB.
kmax: upper bound on the total number of leaves for solving CLOF to increase efficiency

(blank if not specified). kspec: the specified number of leaves to be selected once the
subforest had been fully grown or up until the maximum number of leaves (blank if

estimated through minimizing second-order finite differences). kcomp: the number of
resulting leaves for each connected component (0 meaning a backbone component

consisting of one node).

Table 5.2 summarizes the network sizes for each graph G (n = |V (G)|,
m = |E(G)|), runtimes, and our quantitative results for the metrics introduced
in Section 5.7.4.1. All these results were obtained using non-optimized R code
on a machine equipped with an Intel® Core™ i7 processor at 2.6GHz and 8GB of
RAM. Note that the specified runtimes in Table 5.2 for our method are those when
given the (possibly infinite) upper bounds kmax from Table 5.1. The runtimes for
the baselines are those when specified to exactly select kcomp nodes. We observe
that our method scales well to graphs with thousands of nodes.

Our method also scales well according to the topological complexity, whether
given or bounded by a number of leaves. In contrast, FacilitySteiner is signifi-
cantly slower when selecting more medoids in higher order graphs, taking 8.6min
for the earthquakes data. Since the placement of medoids through FacilitySteiner

134 CHAPTER 5

time n% R σ coract kcomp

Swiss Roll (SR) FacilitySteiner 4.19s 1.0% 0.69 0.997 0.48 2

n = 1000
FartherstPoint 4.71s 2.1% 0.88 1 0.49 2

m = 47 013
CLOFinMSF 2.66s 28% 0.93 0.62 0.16 2

ClOFinBC-pine 3.41s 2.3% 0.89 0.97 0.49 2

Karate (K) FacilitySteiner 0.046s 12% 0.40 1 0.35 2

n = 34
FarthestPoint 0.005s 21% 0.48 1 0.36 2

m = 78
CLOFinMSF 0.31s 26% 0.54 0.90 0.39 2

ClOFinBC-pine 0.018s 12% 0.44 0.95 0.39 2

Harry Potter (HP) FacilitySteiner 0.029s 10% 0.50 1 0.96 2-2-0

n = 63
FarthestPoint 0.007s 16% 0.53 1 0.96 2-2-0

m = 221
CLOFinMSF 0.067s 16% 0.53 1 0.96 2-2-0

ClOFinLCC-pine 0.23s 21% 0.56 1 0.96 2-2-0

GoT FacilitySteiner 0.22s 17% 0.72 1 0.93 7-2

n = 208
FarthestPoint 0.026s 29% 0.76 1 0.90 8-2

m = 326
CLOFinMSF 0.13s 26% 0.78 0.95 0.90 8-2

ClOFinLCC-pine 0.40s 29% 0.81 1 0.91 8-2

KDD FacilitySteiner 20s 0.19% 0.22 0.94 0.13 3

n = 5747
FarthestPoint 11s 0.77% 0.21 1 0.14 5

m = 19 751
CLOFinMSF 4.5s 3.3% 0.32 0.55 0.12 5

ClOFinBC-pine 32s 0.87% 0.31 0.87 0.16 5

NeurIPS FacilitySteiner 20s 0.19% 0.14 1 0.15 3

n = 6252
FarthestPoint 12s 0.72% 0.18 1 0.16 5

m = 15 770
CLOFinMSF 5s 1.9% 0.23 0.95 0.12 5

ClOFinBC-pine 30s 0.88% 0.26 0.84 0.14 5

Earthquakes (EQ) FacilitySteiner 8.6min 8.4% 0.96 0.81 0.56 23

n = 5000
FarthestPoint 14s 9.6% 0.97 1 0.59 26

m = 31 146
CLOFinMSF 14s 54% 0.99 0.69 0.28 35

ClOFinBC-pine 24s 16% 0.99 0.79 0.58 35

Synth. cells (SC) FacilitySteiner 0.16s 1.6% 0.59 0.9994 0.52 2

n = 556
FarthestPoint 0.14s 2.2% 0.59 1 0.48 2

m = 4636
CLOFinMSF 0.034s 7.9% 0.82 0.56 0.50 2

ClOFinBC-pine 0.49s 5.2% 0.81 0.53 0.65 2

Real cells 1 (RC1) FacilitySteiner 0.073s 2.3% 0.50 1 0.67 2

n = 355
FarthestPoint 0.05s 4.2% 0.59 1 0.68 3

m = 1543
CLOFinMSF 0.052s 9.6% 0.67 0.52 0.64 3

ClOFinBC-pine 0.15s 5.4% 0.64 0.78 0.67 3

Real cells 2 (RC2) FacilitySteiner 0.048s 6.5% 0.60 1 0.67 2

n = 154
FarthestPoint 0.017s 11% 0.67 1 0.69 3

m = 974
CLOFinMSF 0.029s 34% 0.83 0.60 0.46 3

ClOFinBC-pine 0.38s 11% 0.73 0.81 0.68 3

Table 5.2: Quantitative summary of our experimental results. Our method for mining
backbones in graphs through forest representations is marked in blue.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 135

is density based, it also struggles to identify important regions that make up the
topology, even when specified to select the correct number of nodes to do so (Fig-
ure 5.12a). Clear examples of this are the bifurcating real cell trajectory data sets,
for which FacilitySteiner infers a linear trajectory. Furthermore, unlike Farthest-
Point and the backbones constructed through CLOF, there is no straightforward
way to extract the result for a lower number of selections through the output of
FacilitySteiner. One needs to rerun the entire algorithm for this, making it difficult
to tune the resulting topological complexity through FacilitySteiner.

Overall, not a single metric is able to fully quantify the global performance of
each method on its own. Note that we did not mark ‘winning’ values, as extremes
may also indicate a bad performance (e.g., σ is always 1 for FarthestPoint). How-
ever, we note that these metrics strongly support our observations up until now.
E.g, CLOFinMSF often results in the best approximation of the original graph
(high R), at the cost of including many more nodes (high n%), and ‘wiggling’
through all of them (low σ). In contrast, our method provides a backbone that ap-
proximates the original graph nearly as well (sometimes even better), using much
fewer nodes in order to do so. This is most notably the case with the Swiss Roll
(n% = 2.3%,R = 0.89 with our method vs. n% = 28%,R = 0.93 with CLOFin-
MSF), the KDD network (n% = 0.87%, R = 0.31 vs. n% = 3.3%, R = 0.32),
the NeurIPS network (n% = 0.88%, R = 0.26 vs. n% = 1.9% and R = 0.23),
and the earthquakes (n% = 16%, R = 0.99 vs. n% = 54%, R = 0.99). Our
method also results in a consistent smoothing for the co-authorship graphs, unlike
CLOFinMSF (respectively, σ = 0.87 (KDD), σ = 0.84 (NeurIPS) vs. σ = 0.55

(KDD), σ = 0.95 (NeurIPS)).

FacilitySteiner and FarthestPoint often result in smaller (low n%) and smoother
(high σ) backbones, however, at the cost of providing worse approximations (low
R) of the original graphs. This can be either due to failing to span the entire graph
(FacilitySteiner), or failing to center the resulting backbone in the graph (Farthest-
Point).

All methods perform similarly well in terms of preserving the average com-
mute times. The most notable exceptions are where either CLOFinMSF performs
worse, such as the Swiss Roll (coract = 0.49 with our method vs. coract = 0.16

with CLOFinMSF), the earthquakes (coract = 0.58 vs. coract = 0.28), and the sec-
ond real gene expression data set (coract = 0.68 vs. coract = 0.46), or where our
method performs better, i.e., for the synthetic cells (coract = 0.65 vs. a maximum
of 0.52 for the other methods).

The main networks contradicting the observations above, are the unweighted
networks (HP & GoT). Here, our method actually results in the best approximation
of the original graph (R equals 0.56 and 0.81, respectively), while remaining a
smooth approximation (σ equals 1 twice) that well preserves the average commute
times (coract equals 0.96 and 0.91, respectively). Furthermore, our method appears

136 CHAPTER 5

to provide the least smooth approximation for the synthetic cell trajectory data set
at first sight (σ = 0.53). However, through Figures 5.25a-5.25d, we have shown
that our method was the only method capable of identifying the true underlying
topology. The longest shortest path in the original graph—used for computing
σ—incorrectly connects the two underlying leaves (Figure 5.25b), which explains
this result.

5.8 Backbone Inference for Cell Trajectory Inference

The results we obtained through our newly introduced method, in this section ab-
breviated to BCB (Boundary Coefficients to Backbone), on the cell trajectory data
sets in Section 5.7.3, lead to a new cell trajectory inference method.

1. start from a (high-dimensional) expression data set X;

2. use a dimensionality reduction method to reduce the (high-dimensional)
noise in X;

3. construct a kNN graph G from the lower dimensional representation of X;

4. construct the BC-pine in G;

5. identify the underlying topology from the pine by means of (5.4).

Contrary to many of the existing cell trajectory inference tools [9], we do not
require the data to be represented in a vector space, can infer more complex topolo-
gies than linear, bifurcating, or connected ones, and do not preprocess the data
through a clustering method.

We will evaluate this new method on a combination of 227 synthetic and 106
real gene expression data sets, all of which (including those above) may be ob-
tained from https://zenodo.org/record/1443566#.Xab5deYza02.
The number of cells (observations) ranged from 59 to 13 281, while the number of
genes (features) ranged from 373 to 23 658. The underlying ground-truth topolo-
gies consisted of a mix of linear structures, bifurcating, tree graphs, forest graphs,
as well as general graphs, i.e., with cycles. We will also evaluate our method for
various kNN graphs k ∈ {5, 10, 15, 20, 25} constructed from each of these con-
sidered cell trajectory data sets, to evaluate the sensitivity of our method to the
choice of this parameter.

We will compare our new cell trajectory inference method to Slingshot [63],
which is the top ranked method for cell trajectory inference in terms of accuracy
in [9], who developed a wrapper to provide a common input and output model
that allows one to compare different cell trajectory inference methods. Slingshot

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 137

requires a clustering of the cells into groups to start with, builds a minimum span-
ning tree on these clusters, and refines the such obtained tree by means of principal
curves [111]. Note that the clustering method required for being able to compare
Slingshot to other cell trajectory inference methods has been provided by [9].

Each of our 333 considered data sets described in Section 5.7.1 was embed-
ded in a 20-dimensional space using diffusion maps with Pearson correlations
and standard settings in R. Consecutively, we estimated the intrinsic dimension
d, 3 ≤ d ≤ 20, of our data using an inference method based on the eigen-
multipliers of the embedding. We implemented the same inference method as the
wrapper for Slingshot developed by [9]. The code for this wrapper can be found
on https://github.com/dynverse. We evaluated our method over mul-
tiple values k ∈ {5, 10, 15, 20, 25} for building kNN graphs from our diffusion
coordinates, using the Euclidean distance between points. The resulting proxim-
ity graph was used to construct a BC-pine, from which we mined the underlying
topology using CLOF. A number of leaves l, 2 ≤ l ≤ 30, was estimated for each
connected component in our BC-pine, by minimizing the second-order finite dif-
ferences of the function mapping the number of leaves to the corresponding vertex
betweenness cost, as discussed in Section 5.5.3.

We used the four metrics suggested in [9] to quantify the quality of our inferred
trajectories, which we summarize below. For full details on the exact computation
of these metrics, we refer to [9].

• The correlation between geodesic distances, measuring if the positioning of
cells is similar in the ground-truth and inferred trajectory.

• The Hamming-Ipsen-Mikhailov (HIM) metric, measuring the similarity of
the weighted adjacency matrices of the ground-truth and inferred trajectory.

• The F1 score between branch assignments, measuring the similarity be-
tween the assignment to branches in the ground-truth and inferred trajectory.

• The correlation between important features, measuring if the same differen-
tially expressed features are in the ground-truth and inferred trajectory.

All these metrics lie within [0, 1]. Higher values correspond to better perfor-
mances. We also evaluated the computational cost of our approach in terms of
runtime (in seconds) and storage (in GB). Figure 5.31 visualizes the performance
for each considered metric, as well as for various choices of k(NN graphs), through
cumulative distribution plots.

We first note that the overall performance of our cell trajectory inference method
is stable when it comes to the choice of k. In terms of the obtained results, our
method turns out to be comparable to Slingshot. We especially note an increase
in performance when it comes to the correlation between geodesic distances. Fur-
thermore, our method scales at least as well as Slingshot in terms of runtime, which

138 CHAPTER 5

Figure 5.31: Various metrics for evaluating BCB as a cell trajectory inference tool, with
and without the number of leaves as prior, sorted according to performance for each
method. Our method shows to be comparable to the state-of-the-art for cell trajectory

inference for all considered metrics. However, unlike Slingshot, our method allows to pass
the number of leaves to the CLOF-algorithm, increasing the overall performance.

is mostly affected by the choice of k, i.e., the density ofH2(D) (Theorem 5.2.13).
In terms of storage, our method does scale worse. However, it turns out this is due
to computing and storing the entire Pearson correlation matrix for the embedding.
Given the dimensionality reduction, our method scales better in terms of memory
than Slingshot, through implementing 5.2.13 by means of sparse matrices (Algo-
rithm 3), and cleverly making use of Theorem 5.4.8.

Slingshot does seem to perform better when it comes to the HIM-metric. Inves-
tigating this further, the HIM and F1 scores are mostly affected by the prediction
of how many leaves are present in the underlying topology. Figure 5.32 shows

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 139

Figure 5.32: Distribution of the number of leaves across our 333 cell trajectory data sets.

the distribution of the number of leaves across our 333 cell trajectory data sets
described in Section 5.7.1. Note that a trajectory with less than two leaves must
include a cycle. The distribution of the (true) number of leaves across our cell
trajectory data sets in Figure 5.32 shows that the cumulative plots in Figure 5.31
may be greatly affected by the performance on linear and bifurcating topologies,
making up the majority of the trajectories. Especially on bifurcating topologies,
Slingshot seems to provide a better estimate on the number of leaves (Figure 5.33).

We also evaluated the performance of our method when we know the true
number of leaves in our network (Figure 5.31). In case of less than two leaves, e.g.,
which may be the case if the ground-truth topology is a cycle, we still estimated
the number of leaves as above. Note that Slingshot does not allow one to input the
number of leaves as prior.

We observe that the performance of our method now increases in terms of all
three of the HIM metric, F1 score, and correlation between important features,
most significantly for the latter two. The lack of change in the correlation between
geodesic distances may be explained by this metric not being affected that much
by shorter branches. These branches are often excluded from our original inferred
trajectory, as our estimate based on minimizing second-order-finite differences was
generally too low (Figures 5.32 & 5.33).

The results summarized in this section show how our newly introduced opti-
mization problem constraining the number of leaves (5.4) leads to a highly effec-
tive cell trajectory inference tool. If prior knowledge on the number of leaves in the
ground-truth model is available, BCB outperforms Slingshot—the until now most
accurately ranked state-of-the-art method for cell trajectory inference—in terms
of the metrics introduced by [9]. Without this prior knowledge, BCB is compara-
ble to Slingshot by using our currently heuristic (elbow) estimator (Section 5.5.3).
Slingshot is however unable to take the number of leaves as input. Hence, un-
like Slingshot, BCB allows one to incorporate effective and independent machine
learning models for estimating the number of leaves. This may eventually lead to
a new best performing CTI method, even when no prior knowledge is available.
Yet, in the following chapter, we will show that (and why) accurately predicting
these leaves may be difficult based solely on topological information.

140 CHAPTER 5

Figure 5.33: Normalized confusion matrices showing the true vs. the predicted number of
leaves. Note that all methods output a trajectory with at least two leaves. In the case of 11

gene expression data sets, the number of neighbors k = 5 was too low to represent the
connectedness of the true model through a neighborhood graph, resulting in fragmented
backbones with many leaves (ranging from 17 to 104). These predictions were discarded

from the corresponding confusion matrix for visualization purposes.

INFERRING TOPOLOGICAL MODELS THROUGH FOREST REPRESENTATIONS 141

5.9 Discussion and Conclusion
Investigating and visualizing simplified graph-structured topologies in data is a
core problem in many fields of science. We provided an effective method for back-
bone inference, by introducing a simple but crucial intermediate step that showed
to be highly beneficial throughout this entire paper. That is, designing a forest
representation from which we may efficiently, robustly, and meaningfully mine
topological substructures.

We introduced the boundary coefficient (BC) to locate core topological struc-
tures well in many complex graphs. Contrary to existing vertex measures, this
coefficient is specifically designed for this purpose. Hence, the BC overcomes
many difficulties faced with when dealing with this problem, such as applicability
to complete networks, robustness to outliers, and the ability to deal with non-
uniform branch lengths and curvature. Along with this, we provided extensive
theoretical results concerning the computation of the BC, its robustness, as well as
its relation to the ordinary local cluster coefficient. We showed that together, the
BC and our introduced concept of f -pines, provide effective forest representations
in which many concepts of graph theory, such as longest paths and betweenness
centrality, become both efficiently computable, and topologically meaningful.

Our newly introduced graph-optimization problem termed Constrained Leaves
Optimal subForest (CLOF) led to various interesting theoretical results. CLOF
induces a nontrivial monotone submodular set function maximization problem
subject to a cardinality constraint on tree graphs, for which a greedy approach
provides an exact solution in polynomial time. We furthermore illustrated the
importance of this problem, as well as the effectiveness of its solution, for min-
ing substructures through forest representations. All together, we provided a new
method for topological data analysis of graph-structured data. We qualitatively
and quantitatively demonstrated that our method leads to effective graph-structured
models—balancing their size, goodness of fit, smoothness, and average commute
time preservation—in many types of synthetic and real world data sets. These
may be given weighted or unweighted graphs, point cloud data sets embedded in
(non-)Euclidean metric spaces, or high-dimensional data sets.

There is no single best method when it comes to extracting the backbone from
a network. There will be cases where our approach will not be the best one as
well. Examples are when the connectedness of our graph does coincide with the
connectedness of its model, or in case of metric data, when the used proximity
graph is not a truthful representation of the underlying model (Figure 5.27a). Nev-
ertheless, our results convincingly show that we provided a very promising method
across a broad spectrum of realistic applications.

6
Topological Signatures through Graph

Approximations

This chapter is based on the following paper.

• Robin Vandaele, Bastian Rieck, Yvan Saeys, and Tijl De Bie. Stable Topo-
logical Signatures for Quantifying Patterns through Graph Approximations
of Metric Trees. Submitted to Pattern Recognition Letters, 2020. (Under
revision)

6.1 Introduction

In the previous chapter we presented a method for inferring topological subgraph
models, i.e., backbones in graphs. We showed how this led to a new CTI method,
competitive with the state-of-the-art. However, we observed that CTI methods
struggle to correctly infer the number of leaves, or that even high-ranked methods
do not perform well on many data sets.

In this chapter, we introduce topological signatures that allow us to investi-
gate these issues further. These signatures are obtained through 0-dimensional
persistence of arbitrary graph approximations. The term ‘approximations’ is to be
loosely interpreted, in the sense that we are given some graph that is meant to cap-
ture topological information of the data at hand. This can be a Rips graph, kNN
graph, minimum spanning tree, or any type of neighborhood graph constructed

144 CHAPTER 6

from the data. Furthermore, this may also be the result of a (graph) model infer-
ence method such as the Mapper algorithm or one of the CTI methods we discussed
in the previous chapter.

In Section 6.2, we illustrate why it may be practically more useful to guarantee
that topological signatures are preserved well, rather than the (inferred) topolo-
gies. In Section 6.3, we discuss topological persistence through sublevel filtrations
of graph approximations, and why an arbitrarily good preservation of both dis-
tances and functional values cannot guarantee an arbitrarily good approximation
of the ground truth topological signatures. Note that this idea has been previously
illustrated for Rips graphs [112], and we generalize this to any given graph. We
also present and prove a new stability result for metric trees. Next, in Section 6.4
we use this to study and compare topological signatures for cell trajectory data
sets, from which we will be able to conclude the presence of the issues mentioned
above. Hence, in this chapter we present the use of our signatures in an exploratory
data analysis setting, rather than for solely topological inference. Furthermore, we
will discuss how we may regard these signatures as a method for quality control
specifically in the field of CTI.

6.2 On Preserving Topology vs. Geometry

Recall our example in Section 2.3 that stated a coffee mug and a donut are topo-
logically equivalent. Nevertheless, they are clearly geometrically distinct. The
concept of an isometry between spaces is strictly stronger than the concept of a
homeomorphism between spaces. One may therefore think that one should at least
guarantee that we are able to correctly provide all topological information, be-
fore we can provide additional geometric information. However, this is generally
untrue. An example to illustrate this is shown in Figure 6.1.

Figure 6.1 shows two different point cloud data sets. One of them is sampled
from a ground truth ‘H-structured’ model, whereas the other is sampled from an
‘X-structured’ model. The middle branch of the H-structured model is so short,
that without displaying the ground truth models, it becomes nearly impossible to
visually distinguish the underlying models of the point clouds. Naturally, the same
holds algorithmically. E.g., in [13], the authors require that the metric distortion is
bounded by a function of the shortest branch length of the underlying topology to
guarantee its correct reconstruction (Chapter 4).

Although the answer to both questions “are the underlying models homeo-
morphic” and “are the underlying models isometric” is either yes or no, the latter
question admits some form of quantization that expresses to which extent the an-
swer is true, in terms of the Gromov-Hausdorff distance. This means that even
though our inferred model may be topologically completely incorrect, it can be
geometrically arbitrarily close to our correct model [6].

TOPOLOGICAL SIGNATURES THROUGH GRAPH APPROXIMATIONS 145

Figure 6.1: Point cloud data sets sample from (Left) an H-structured and (Right) an
X-structured topology. The ground truth models are shown in red. As the middle branch of
the H-structured topology is short relative to the amount of noise in the data, its underlying

topology becomes difficult to distinguish from an X-structured topology. The purpose of
this section is to theoretically and practically quantify that these patterns are similar.

In this chapter we will not present a formal model inference method as in
Chapters 4 & 5. We will study topological signatures of metric trees, obtained
through graph approximations, that are exactly preserved well whenever the ge-
ometry of the model is preserved well through the approximation in terms of the
Gromov-Hausdorff distance. Even if topological inference from these signatures
may remain difficult, these allow us to provide a powerful quantization whether
two (underlying) models, such as those in Figure 6.1, are indeed similar.

6.3 Topological Persistence through Graph Approx-
imations

Fig. 6.2b shows that ‘regular’ (0-dimensional) persistent homology (Section 2.5.2.2)
of the point cloud data set X shown in Fig. 6.2a misses out on capturing any topo-
logical information other than the underlying model being connected. We can
however equip X with a function f that expresses how far a point is from the
data center. To this end, we first constructed a 10NN graph G from X , and then
computed its negative eccentricity function f = −EG, where

EG := max
x∈X

dG(·, x).

After rescaling both f and the shortest path distance metric dG on G to [0, 1], the
Rips based signature presented by [113] for the metric space (X, dG) equipped

146 CHAPTER 6

(a) A 10NN graph G of X , and its negative
eccentricity function −EG.

(b) The Rips based signature for X (using
the Euclidean distance metric).

(c) The Rips based signature for(
X, dG

max dG
,CG

)
[113].

(d) The persistence diagram obtained
through G and EG (Th. 6.3.3).

Figure 6.2: (0-dimensional) Rips based signatures for a point cloud data set X , and a
custom defined filtration on a 10NN graph G constructed from X . The lower and upper

limits of the diagram axes are defined through the first and last ‘time’ a simplex is added to
the complex, respectively.

with resulting normalized centrality function

CG :=
Emax
G − EG(·)
Emax
G − Emin

G

,

which more formally equals the (0-dimensional) persistence diagram computed
from the filtration (

VR0
t (F̄t(CG))

)
t∈R ,

(both the Rips graph as well as the subset of data points on which is constructed are
indexed by the same time parameter t) now captures some additional structural in-
formation. The three ‘leaves’ present in the topology underlying X correspond to
the three most elevated points in the diagram (Fig. 6.2c). However, the components
representing these leaves merge quickly before reaching the center of bifurcation,
due to the addition of higher weight edges at later times t. In contrast to this,
(0-dimensional) persistent homology of the sublevel filtration(

F̄t(CG) := G[{v ∈ V (G) : CG(v) ≤ t}]
)
t∈R

TOPOLOGICAL SIGNATURES THROUGH GRAPH APPROXIMATIONS 147

easily identifies the presence of three leaves. Here, G[U] denotes the subgraph of
G induced by the set of nodes U ⊆ V (G).

The purpose of this section is to provide a more formal theoretical foundation
for last this type of persistence through such graph approximations. In Section
6.3.1, we will illustrate the concept of stability through graph approximations, and
discuss the main obstacles for introducing an immediate stability result. In Section
6.3.2, we prove a new stability result for metric trees.

6.3.1 Stability through Graph Approximations

In this section, we introduce our first theorem, leading to our novel stability result
in Section 6.3.2. We also discuss the necessity to split this result into two main
parts (Th. 6.3.1 & 6.3.3).

The following theorem states that for any correspondenceC between the points
in a metric space (X, dX) and nodes in a graph G, and functions f : X → R,
g : V (G) → R, one may bound the bottleneck distance between the diagrams for
f and g by a value m = max{a, b}, measuring how well f and g preserve the
connectivity in their respective sublevel filtrations under C.

Theorem 6.3.1. Let (X, dX) be a connected metric space, G a graph, f : X → R
a tame function, and g : V (G) → R. Let a, b > 0, and suppose C ⊆ X × V (G)

is a correspondence with the following properties:

• if x ∼ y in {z ∈ X : f(z) ≤ t} and (x, u), (y, v) ∈ C, then u ∼ v in
G[w ∈ V (G) : g(w) ≤ t+ a],

• if u ∼ v in G[w ∈ V (G) : g(w) ≤ t] and (x, u), (y, v) ∈ C, then u ∼ v in
{z ∈ X : f(z) ≤ t+ b},

where · ∼ · denotes that two points are connected in their respective (not nec-
essarily topological) space, and G[U] denotes the subgraph of G induced by the
nodes U ⊆ V (G). Then

db
(
Dgm0

(
F̄(f)

)
,Dgm0

(
F̄(g)

))
≤ max{a, b} .

Proof. Our proof will use the concept of merge tree (Section 2.7). Note that the
merge tree Tf is immediately defined. However, the nodes in G generally do not
compose a connected topological space (e.g., for the metric dG). We therefore
take |G| to be any geometric realization of G, defined through a set of functions
ψ : V (G)→ Rd, and a smooth curve ϕe : [ae, be]→ Rd for each edge e ∈ E(G),
and extend g to |G| through linear interpolation, i.e.,

|g| := |G| → R : y = ϕe(t) 7→
be − t
be − ae

g
(
ψ−1(ae)

)
+

t− ae
be − ae

g
(
ψ−1(be)

)
.

148 CHAPTER 6

For the rest of the proof, we will identify nodes v ∈ V (G) with their images
ψ(v) ∈ |G|. It holds that Dgm0

(
F̄(g)

)
= Dgm0

(
F̄(|g|)

)
[36, 114]. Now let

Tf and T|g| be the merge trees of f and |g|, respectively. Note that their elements
(points) are equivalent classes. Furthermore, w.l.o.g. we may assume that the
topology on a merge tree Th is induced by the metric

dTh
([(x, t)]Th

, [(x′, t′)]Th
)

= 2 min
{
t̃ ≥ max{t, t′} :

[(
x, t̃
)]
Th

=
[(
x′, t̃

)]
Th

}
− t− t′.

Let µ := max{a, b}, and consider the mapping

αµ : Tf → T|g| : [(x, t)]Tf
7→ [(y, t+ µ)]T|g| ,

where y is any node of G such that (x, y) ∈ C. Suppose [(x, t)]Tf
= [(x′, t′)]Tf

for some x, x′ ∈ X and t, t′ ∈ R. As in Section 2.7, it follows that t = t′, with (by
definition) t ≥ max{f(x), f(x′)}, and (x, t) and (x′, t) are connected in f

−1
(t).

Then necessarily x and x′ are connected in F̄t(f). To see this, observe that if (x, t)

and (x′, t) are connected trough the path P × {t} in f
−1

(t), with P ⊆ X , then P
connects x and x′ in F̄t(f). If now y, y′ ∈ V (G) are such that (x, y), (x′, y′) ∈
C, then by assumption y and y′ are connected in G[w ∈ V (G) : g(w) ≤ t+ µ],
and hence, in F̄t+µ(|g|). This shows that [(y, t+ µ)]T|g| = [(y′, t+ µ)]T|g| , so
that αµ is well-defined. Now take [(x, t)]Tf

, [(x′, t′)]Tf
∈ Tf , and suppose that

(x, y), (x′, y′) ∈ C. By our assumption, it holds that[(
x, t̃
)]
Tf

=
[(
x′, t̃

)]
Tf

=⇒
[(
y, t̃+ µ

)]
T|g|

=
[(
y′, t̃+ µ

)]
T|g|

.

Hence, we find that

dT|g|
(
αµ([(x, t)]Tf

), αµ([(x′, t′)]Tf
)
)

= dT|g|
(
[(y, t+ µ)]T|g| , [(y

′, t′ + µ)]T|g|
)

= 2 min
{
t̃ ≥ max{t, t′}+ µ :

[(
y, t̃
)]
T|g|

=
[(
y′, t̃

)]
T|g|

}
− t− t′ − 2µ

≤ 2 min
{
t̃ ≥ max{t, t′} :

[(
x, t̃
)]
Tf

=
[(
x′, t̃

)]
Tf

}
+ 2µ− t− t′ − 2µ

= dTf

(
[(x, t)]Tf

, [(x′, t′)]Tf

)
,

so that αµ is continuous.
Now consider the mapping

βµ : T|g| → Tf : [(ϕe(s), t)]T|g| 7→ [(x, t+ µ)]Tf
,

where x is any point of X such that (x, arg minv∈e g(v)) ∈ C. Suppose that
[(ϕe(s), t)]T|g| = [(ϕe′(s

′), t′)]T|g| for e, e′ ∈ E(G), s ∈ [ae, be], s′ ∈ [ae′ , be′],

TOPOLOGICAL SIGNATURES THROUGH GRAPH APPROXIMATIONS 149

and t, t′ ∈ R. Again, we have t = t′, and ϕe(s) and ϕe′(s
′) are connected

in F̄t(|g|). By definition of g, arg minu∈e g(u) and arg minv∈e′ g(v) are then
connected in G[w ∈ V (G) : g(w) ≤ t]. As before, this shows that βµ is well-
defined. Now take [(ϕe(s), t)]T|g| , [(ϕe′(s

′), t′)]T|g| ∈ T|g|, and suppose that
(x, u := arg minu∈e g(u)), (x′, v := arg minv∈e′ g(v)) ∈ C. Observe that ϕe(s)
and u, resp. ϕe′(s′) and v, are necessarily connected in F̄max{t,t′}(|g|). Hence,
we find that

dTf

(
βµ([(ϕe(s), t)]T|g|), β

µ([(ϕe′(s
′), t′)]T|g|)

)
= dTf

(
[(x, t+ µ)]Tf

, [(x′, t′ + µ)]Tf

)
= 2 min

{
t̃ ≥ max{t, t′}+ µ :

[(
x, t̃
)]
Tf

=
[(
x′, t̃

)]
Tf

}
− t− t′ − 2µ

≤ 2 min
{
t̃ ≥ max{t, t′} :

[(
u, t̃
)]
T|g|

=
[(
v, t̃
)]
T|g|

}
+ 2µ− t− t′ − 2µ

= 2 min
{
t̃ ≥ max{t, t′} :

[(
ϕe(s), t̃

)]
T|g|

=
[(
ϕe′(s

′), t̃
)]
T|g|

}
− t− t′

= dT|g|
(
[(ϕe(s), t)]T|g| , [(ϕe′(s

′), t′)]T|g|
)
,

so that βµ is also continuous.
Now take any [(x, t)]Tf

∈ Tf . Clearly, it holds that

|̂g|(αµ([(x, t)]Tf
)) = t+ µ = f̂([(x, t)]Tf

) + µ .

Furthermore, for (x, y) ∈ C, we have

βµ
(
αµ
(
[(x, t)]Tf

))
= βµ

(
[(y, t+ µ)]T|g|

)
= [(x, t+ 2µ)]Tf

= ι2µTf

(
[(x, t)]Tf

)
.

Conversely, take [(ϕe(s), t)]T|g| ∈ T|g| with (x, arg minv∈e g(v)) ∈ C. We have

f̂(βµ([(ϕe(s), t)]T|g|)) = t+ µ

= |̂g|([(ϕe(s), t)]T|g|) + µ ,

and,

αµ
(
βµ
(
[(ϕe(s), t)]T|g|

))
= αµ

(
[(x, t+ µ)]Tf

)
=

[(
arg min

v∈e
g(v), t+ 2µ

)]
T|g|

.

Now since ϕe(s) and arg minv∈e g(v) are necessarily connected in F̄t(|g|), and
hence, in F̄t+2µ(|g|), it holds that[(

arg min
v∈e

g(v), t+ 2µ

)]
T|g|

= [(ϕe(s), t+ 2µ)]T|g| = ι2µT|g|
(
[(ϕe(s), t)]T|g|

)
.

It follows that αµ and βµ define continuous µ-compatible maps. The result now
follows from Theorem 2.7.6.

150 CHAPTER 6

Th. 6.3.1 cannot yet be interpreted as a stability result. We must still express
how the distance between the diagrams depends on the closeness of (X, dX) and
G. However, even if (X, dX) and G are arbitrarily close in the sense of an ε-
correspondence C, and f : X → R and g : V (G) → R are arbitrarily well-
preserved under this correspondence, there is generally no guarantee that the dia-
grams are close as well. This is illustrated by two example models and their graph
approximations in Fig. 6.3.

In the first example (Fig. 6.3a), we constructed the fully connected graph G
on a translated sample Y of a continuous linear-structured metric space (X, dX).
Due to the absence of curvature, the metric space (V (G), dG) well-approximates
(X, dX) in the sense of an ε-correspondence (we omit an actual value of ε as we
believe the concept is clear). Since G is fully connected, one connected compo-
nent will be born in the filtration, and it will never die. This is illustrated by the
persistence diagram in Fig. 6.3b, where we defined the filtration through the nega-
tive eccentricity function of G. Both for the ground truth model, as well as for G,
the eccentricity function provides a smooth transition from the (underlying) leaves
towards the center. However, the sublevel filtration for (X, dX) will start at two

(a) The negative eccentricity for the ground truth
(top) and graph approximation (bottom). The graph

connects every pair of nodes.

(b) Persistent homology for the
sublevel filtrations of the negative

eccentricity functions.

(c) Custom defined functions f and g for the ground
truth (top) and Rips graph approximation (bottom),

respectively.

(d) Persistent homology for the
sublevel filtrations of the custom

defined functions.

Figure 6.3: In terms of Th. 6.3.1, these examples show that a (ε-)correspondence can
preserve the metrics and function values of f and g arbitrarily well (in terms of ε), while

simultaneously, max{a, b} can be arbitrarily high.

TOPOLOGICAL SIGNATURES THROUGH GRAPH APPROXIMATIONS 151

connected components, that only merge at the center of X .
The second example (Fig. 6.3c) illustrates a ‘finer’ approximation of (X, dX)

through the Rips graph R0.1(Y) constructed from Y . We now defined a function
f (resp. g) on X (resp. Y) that values -1 at every single point, apart from one point
near the center where it values 1. Again, the filtration for R0.1(Y) starts with one
connected component (including all but one point), that never dies. The filtration
for the ground truth model starts off with two connected components that merge
only at the center as before.

The takeaway of the examples above, is that to ensure stability, we need two
things. First, we need to formalize how well our graph G approximates the topol-
ogy of the underlying space, both through the concept of ε-correspondences, as
well as through a distance measure between nodes connected through an edge.
Given a weighting function ω : E(G) → R+, we will use the maximum weight
ωmax := maxe∈E(G) ω(e) for this purpose. In practice, ωmax will be low if the
data is sufficiently densely sampled and G is a neighborhood graph. Second, the
functions used to define the filtration must be such that if ε and wmax are small,
so are the corresponding constants a and b in Theorem 6.3.1. Inspired by [112,
Lemma 3.3], we will consider Lipschitz functions.

Definition 6.3.2. Let (X, d) be a metric space. A scalar function f : X → R is
called c-Lipschitz if |f(x)− f(y)| ≤ cd(x, y) for all x, y ∈ X .

It easily follows that Lipschitz functions are necessarily continuous.

6.3.2 Stability for Metric Trees

In this Section, we provide two closely related functions to ensure stability for tree-
structured topologies through graph approximations. These will be the (negative)
eccentricity and the normalized centrality, the latter of which is scale-independent.
The true persistence diagrams for these functions are extremely informative for
metric trees. The birth of a component will always occur through a leaf, and its
death through either a multifurcation or the center of the tree (Fig. 6.2d).

Theorem 6.3.3. Let (M, dM) be a metric tree, andG a positively weighted graph
such that there exists an εM-correspondence C between (M, dM) and (G, dG).
Let f : M → R, g : V (G) → R, and εf ∈ R≥0 be such that for all (x, u) ∈ C,
|f(x)− g(u)| ≤ εf , and f is c-Lipschitz. Then

db
(
Dgm0

(
F̄(f)

)
,Dgm0

(
F̄(g)

))
≤ cmax

{εM
2
, wmax

}
+ cεM + εf .

Proof. Take any (x, u), (y, v) ∈ C, let Px,y ⊆M denote the unique path from x

to y inM, and let (u = p0, p1, . . . , pl = v) be a shortest path from u to v in G.
For any 0 ≤ i ≤ l, take qi such that (qi, pi) ∈ C, with q0 = x, ql = y.

152 CHAPTER 6

Suppose first that x ∼ y in {z ∈ M : t ≤ f(z)}. Let mi be the closest point
from qi on Px,y . If for any i, dM(qi,mi) >

3εX
2 , then

dM(x, y) = dM(x,mi) + dM(mi, y)

= dM(x, qi) + dM(qi, y)− 2dM(qi,mi)

< dM(x, qi) + dM(qi, y)− 3εM ≤ dG(u, v)− εM ≤ dM(x, y),

a contradiction. Now since necessarily mi ∈ {z ∈M : t ≤ f(z)},

g(pi) ≥ f(qi)− εf ≥ f(mi)− cdM(mi, qi)− εf ≥ t−
3cεM

2
− εf .

This shows that u ∼ v in G
[{
w ∈ V (G) : t− 3cεM

2 − εf ≤ g(w)
}]

.
Now suppose we have x � y in {z′ ∈ M : t ≤ f(z′)}. If x = y, then

max{g(u), g(v)} < t+εf . as neither u nor v is included in this subgraph, u � v in
G [{w ∈ V (G) : t+ c(wmax + εM) + εf ≤ g(w)}]. If x 6= y, take any z ∈ Px,y
that minimizes f(z) over Px,y . Observe that necessarily f(z) < t. Now let

i := max
{

0 ≤ i < l : Pqi,Px,y ∩ Pz,y = ∅ ∨ z = qi
}
,

where Pqi,Px,y
⊆M denotes the unique path from qi to (its closest point on) Px,y

in M. By definition of i, the path from qi to qi+1 necessarily passes through z.
Hence, it follows that

g(pi) ≤ f(qi) + εf ≤ f(z) + cdM(qi, z) + εf

≤ f(z) + cdM(qi, qi+1) + εf

≤ f(z) + c(wmax + εM) + εf < t+ c(wmax + εM) + εf .

Again u � v in G [{w ∈ V (G) : t+ c(wmax + εM) + εf ≤ g(w)}]. Since con-
tinuous functions on finitely triangulable spaces are tame [40, Proposition 2.3], the
result follows from Theorem 6.3.1.

Remark 6.3.4. The proof of Theorem 6.3.1 suggests that we can obtain even
stronger comparisons by looking at the interleaving distance between the resulting
merge trees, instead of the 0-dimensional persistence diagrams. Indeed, [57, Fig.
3] provides an example of two distinct merge trees for which the corresponding
functions have the exact same persistence diagram. Unfortunately, computing in-
terleaving distances between merge trees is currently a lot more challenging than
computing bottleneck distances between persistence diagrams [115].

Remark 6.3.5. For Rips graphs G = R3δ(X), the bound in Theorem 6.3.3 re-
duces to the bound in [112, Lemma 3.3] for zeroth-order persistent homology,
whenever εM

2 ≤ wmax ≤ 3δ. However, our result applies to any graph, and does
not require that wmax dominates εM

2 . Intuitive examples where this may not be
true include minimum spanning trees.

TOPOLOGICAL SIGNATURES THROUGH GRAPH APPROXIMATIONS 153

Similar to [112, Lemma 3.3], we expect that our result can be generalized to
arbitrary length spaces by bounding εM through a function of the convexity radius
ρ(M) ofM. The convexity radius ρ(M) states that for any open metric ball in
M of radius less than ρ(M), any two points x, y in this ball are connected by a
unique shortest path onM.

The following result can now be derived.

Corollary 6.3.6. Let (M, dM) be a metric tree, andG a positively weighted graph
such that there exists an ε-correspondence C between (M, dM) and (G, dG). Let
EM := maxx∈M dM(·, x) be the eccentricity function, and CM :=

Emax
M −EM(·)
Emax
X −Emin

M
be the normalized centrality function onM (EG and CG are defined analogously).
Then

db
(
Dgm0

(
F̄(−EM)

)
,Dgm0

(
F̄(−EG)

))
≤ max

{ ε
2
, wmax

}
+ 2ε,

and

db
(
Dgm0

(
F̄(CM)

)
,Dgm0

(
F̄ (CG)

))
≤

max
{
ε
2 , wmax

}
+ 5ε

rad(M)
,

where the last inequality holds if CM and CG are well-defined.

Proof. Take x, y ∈ X and suppose (x, u) ∈ C. It holds that

EM(x) = max
z∈M

dM(x, z) ≤ max
w∈V (G)

dG(u,w) + ε = EG(u) + ε.

Analogously, EG(u) ≤ EM(x) + ε, and we may take εEM = εM = ε in Theorem
6.3.3. Furthermore, with z = arg maxz′∈M dM(x, z′) we have

EM(x)− EM(y) = dM(x, z)− max
z′∈M

dM(y, z′) ≤ dM(x, z)− dM(y, z)

≤ dM(x, y).

Analogously, EM(y) − EM(x) ≤ dM(x, y), so that EM is 1-Lipschitz. The sta-
bility result for EG now follows from Theorem 6.3.3.

For the proof of the stability result for the normalized centrality function, we
will use the intermediate diagram

D′ :=

{
Emax
M + (b, d)

Emax
M − Emin

M
: (b, d) ∈ Dgm0

(
F̄(−EG)

)}
,

where the addition is vectorized. Due to our previous result,

db
(
Dgm0

(
F̄(CM)

)
,D′
)
≤

max
{
ε
2 , wmax

}
+ 2ε

rad(M)
.

154 CHAPTER 6

Now take any u ∈ V (G). It holds that

Emax
M − EG(u)

Emax
M − Emin

M
− E

max
G − EG(u)

Emax
G − Emin

G

≤ E
max
M − EG(u)

Emax
M − Emin

M
− E

max
M − EG(u)− ε
Emax
M − Emin

M + 2ε

=
2ε (Emax

M − EG(u)) + ε
(
Emax
M − Emin

M
)(

Emax
M − Emin

M
)2

+ 2ε
(
Emax
M − Emin

M
)

≤
3ε
(
Emax
M − Emin

M + ε
)(

Emax
M − Emin

M
)2

+ 2ε
(
Emax
M − Emin

M
)

=
3ε+ 3ε2

rad(M)

rad(M) + 2ε
≤ 3ε

rad(M)
.

We furthermore find that

Emax
G − EG(u)

Emax
G − Emin

G

− E
max
M − EG(u)

Emax
M − Emin

M
≤ E

max
G − EG(u)

Emax
G − Emin

G

− E
max
G − EG(u)− ε
Emax
G − Emin

G + 2ε

=
2ε (Emax

G − EG(u)) + ε
(
Emax
G − Emin

G

)(
Emax
G − Emin

G

)2
+ 2ε

(
Emax
G − Emin

G

)
≤ 3ε

Emax
G − Emin

G + 2ε

≤ 3ε

Emax
M − Emin

M − 2ε+ 2ε
=

3ε

rad(M)
.

This shows that db
(
D′,Dgm0

(
F̄(CG)

))
≤ 3ε

rad(M) . The result follows by com-
bining the bottleneck matchings.

Illustrating Stability for Metric Trees through a Toy Example To illustrate
how Corollary 6.3.6 can be applied in practice, we considered four tree-structured
topologies embedded in R2, and sampled 600 observations from each of them, by
sampling uniformly from each branch a number of points proportional the length
of this branch. For each of these data sets, we applied a small amount of random 2-
dimensional Gaussian noise, as well as a random rotation, three times. From each
of these twelve resulting data sets, we constructed a Euclidean minimum spanning
tree (MST) [116], and computed the normalized centrality function. The resulting
functions, MSTs, as well as the ground truth models, are shown in Fig. 6.4.

The persistence diagrams obtained for the sublevel filtrations of the normalized
centrality functions are shown in Figure 6.5. Note that there may be overlapping
points. As can be expected, there are many points in the persistence diagrams
for the MSTs near the diagonal. This is a result from the MST not including
any triangles (in the graph theoretical—not the simplicial—sense). Nevertheless,
we observe that the highly elevated points in all our diagrams identify important
structural information of the ground truth models.

TOPOLOGICAL SIGNATURES THROUGH GRAPH APPROXIMATIONS 155

Figure 6.4: Synthetic data sampled from the metric trees in the first column. The samples
and their (MST) normalized centralities are shown in columns 2-4.

Figure 6.6a visualizes the pairwise bottleneck distances between all diagrams.
Figure 6.6b shows a Multi-Dimensional Scaling (MDS) plot of this distance ma-
trix. We see that similar shapes are clustered well together. We also note that the
H-structured topologies are somewhat in the middle of the other topologies. This
is as expected. E.g., the longer the middle branch of the corresponding model is,
the closer this pattern is to a I-pattern. The shorter this branch is, the closer it is to
an X-pattern. This illustrates that topological inference may be difficult depending
on the level of noise relative to the shortest branch length, as also discussed in Sec-
tion 6.2 Nevertheless, in the following Section we will show that these signatures
through graph approximations may serve as a tool for exploratory data analysis,
rather than topological inference, in case of real world cell trajectory data.

156 CHAPTER 6

Figure 6.5: The ground truth and empirical persistence diagrams are computed using the
normalized centrality to define the filtration.

(a) Pairwise bottleneck distances between
all our true and experimental diagrams.
The ground truths are marked by their

corresponding shape.

(b) MDS plot of the pairwise bottleneck
distances. The points corresponding to the
ground truth models are marked by a black

contour.

Figure 6.6: Visualizing the bottleneck distances between the diagrams.

TOPOLOGICAL SIGNATURES THROUGH GRAPH APPROXIMATIONS 157

6.4 Charting Cell Trajectory Data Sets through Topo-
logical Signatures

Cell trajectory inference is overall a very difficult task. Even the top ranked meth-
ods have a low performance on many data sets, and find it difficult to correctly
infer important topological properties such as the number of leaves (Section 5.8).
The purpose of this section is not to propose the use of our signatures (Corollary
6.3.6) as a new topological inference method for this type of data, but rather to use
these to study why this problem is essentially so difficult. To this end, we proceed
with an analysis similar to the one above.

We consider 131 synthetic and 57 real cell trajectory data sets with an under-
lying tree-structured model [65]. The number of cells ranged from 59 to 5018,
and the number of genes from 373 to 23 658. A two-dimensional diffusion map
embedding was computed for each data set, both for visualization purposes, as
well as to reduce the effects of the curse of dimensionality on our neighborhood
graph approximation [107]. A 10NN graph and its normalized centralities were
computed from each embedding.

Fig. 6.7 visualizes all cell trajectory data sets by means of an MDS plot of the
pairwise bottleneck distances we obtained through topological persistence of our
10NN graphs. We illustrate twelve ‘landmark’ embeddings of cell trajectory data
sets, as well as their ground truth models on these embeddings, and their obtained
empirical persistence diagrams in Fig. 6.8.

First, observe that all linear cell trajectories are located near a linear curve on
top of the MDS plot. This means that our chosen data representation does not
artificially create more leaves than truthfully present. However, many nonlinear
trajectories are located near this curve as well. Near the right side of this curve,
this is mainly due to branches being relatively short compared to a main linear
trajectory (e.g., MDS (0, 0.6) in Figure 6.8). These trajectories are indeed theo-
retically close to linear according to our chosen metric. On the left side of this
curve, we find the more noisy data sets, where we fail to provide a good repre-
sentation. Their persistence diagrams represent more ‘blob’-like patterns (Figure
6.8). Below this curve, we find the trajectories where we truthfully manage to
identify additional branches. However, we note that it appears to be difficult to
identify more than three leaves. This explains why cell trajectory inference meth-
ods commonly underestimate the true number of leaves (Section 5.8). Note that
the ‘boomerang’ shape made up by all data sets in Figure 6.7, also coincides with
what we theoretically expect for our chosen metric. We note a continuous trans-
mission of blob-like patterns, towards linear patterns, towards patterns with leaves.
The fact that this shape takes a turn near the right, can be theoretically explained
through the definition of the bottleneck distance. As we only look at the maximal
distances of a matching, the number of ‘high’ distances in such matching does not

158 CHAPTER 6

Figure 6.8: Twelve example data sets and their corresponding empirical persistence
diagram. The coloring corresponds to the ground truth grouping of cells.

matter. Hence, blob-like patterns are as distant from linear patterns as they are
from patterns with leaves, according to this metric.

Finally, we fitted a loess curve (standard settings in R) using the MDS1 co-
ordinate as the independent and the average performance over 45 different cell
trajectory inference methods as the dependent variable. This performance is mea-
sured through the geodesic distance preservation (correlation) metric introduced
by [9] (Section 5.8). Figure 6.7 shows a positive correlation (0.58) between these
variables. Note that the choice of using the MDS1 coordinate is arbitrary in gen-

TOPOLOGICAL SIGNATURES THROUGH GRAPH APPROXIMATIONS 159

eral. However, this choice supports our findings that on the left side of our MDS
plot, we mainly find noisy data sets. Since every cell trajectory inference method
uses a different algorithm or data representation (such as the type of dimensional-
ity reduction or neighborhood graph), this can be seen as a quality measure of the
data itself, independent of our chosen data representation.

6.5 Discussion and Conclusion
We provided a novel foundation for quantifying topological patterns in metric trees
through graph approximations, which led to new stability results. This is often a
more useful concept than guaranteeing a correct topological reconstruction. When
aiming for such reconstructions, this results in very restrictive assumptions, as well
as algorithms that are sensitive to the used parameters and the amount of noise.
In contrast, our results are direct, and independent of unknown properties of the
underlying topology.

We verified the theoretical behavior of our topological signatures—the persis-
tence diagrams from Corollary 6.3.6—on an experimental level. We furthermore
developed novel insights into cell trajectory inference, and provided the first chart-
ing of such data sets that explains some of the difficulties this field is confronted
with. We also provided a new way of quality measurement, that does not require
ground truth knowledge.

Though our stability result currently only holds for metric trees, we opened up
new possibilities to study which functions ensure stability by means of Theorems
6.3.1 & 6.3.3, and Remark 6.3.5. This may lead to further theoretical justification
of recognizing a wider variety of patterns through graph approximations.

7
Topological Object Detection in

Images

This chapter is based on the following publication.

• Robin Vandaele, Guillaume Adrien Nervo, and Olivier Gevaert. Topological
image modification for object detection and topological image processing of
skin lesions. Scientific Reports, 10(1):21061, 2020. [2]

7.1 Introduction

In this chapter, we consider an application of TDA that is rather distinct from our
previous chapters. We will extend the applicability of TDA for real world image
processing and object recognition. Recall that a 2D image can be seen as a real
valued-function defined on a graph, which can be seen as a 1-dimensional abstract
simplical complex (Sections 2.5.1 & 2.5.2.4). Furthermore, for the applications
we consider in this chapter, we will not require including higher dimensional sim-
plices than nodes and edges. Hence, in some sense, we will still conduct topo-
logical inference on graphs in this chapter. However, although mathematically our
inferred objects will be subgraphs, they will represent well-defined 2D areas in the
real-world, i.e., we do not conduct topological inference of graphs in this chapter.

Our current work builds upon the idea that persistent homology can be used to
detect objects in images [21]. However, many real-world images contain outliers,
as well as irrelevant objects, which complicate the use of persistent homology for

162 CHAPTER 7

this purpose. We enclose this gap by introducing Topological Image Modification
(TIM). TIM targets improving Topological Image Processing (TIP)—processing
an image based on the aggregation of its topological information—by filtering out
significant but irrelevant topological information. We consider the use of TIP
for enhancing the ability to identify and segment important objects on images,
increasing the performance of existing models and algorithms for this purpose.

Unlike existing TDA methods for object detection or segmentation, through
TIM and TIP we are able to discard significant but irrelevant objects [21, 117],
which is the main purpose for which we designed this method. Furthermore, al-
though we will consider skin lesion images for illustrating the effectiveness of
our method, we do not require any specific textural assumptions restricted to this
domain [117]. We also mark the relevant objects in images in a robust manner,
rather than producing a parameter sensitive oversegmentation of the entire im-
age [118, 119]. Finally, we may pass our resulting processed image to any seg-
mentation algorithm, and do not target active contour based segmentation methods
in particular [119].

Our case-study will consider skin lesion images [120, 121], ideal for illus-
trating the intuition behind our method. Nevertheless, TIM (and as result, TIP)
generalizes to many types of real-world images through its generic assumptions,
without requiring any supervision [122, 123]. Furthermore, although any existing
method for segmentation or object detection (or that might be modified for this
purpose) [124–129] could lead to a possibly generic method for TIP as a replace-
ment of Algorithm 7 which we introduce in this work, we will make clear that
these are unfit for this purpose in our experiments. To the best of our knowledge,
neither TIM, the concept of TIP, nor the flow ‘TIM→ TIP→ Segmentation’ has
been introduced or studied before.

Figure 7.1 illustrates an example of our proposed approach. The original image
depicts a centered skin lesion (the relevant object of this image). The image also
depicts other irrelevant objects, such as strands of hair and a part of another lesion
connecting to the border of the image. Both the irrelevant and relevant objects,
as well as the border of the image, are all included in the result of the Chan-
Vese segmentation algorithm (an unsupervised segmentation algorithm for single
channel images [124]) on the corresponding grayscale image. However, the same
segmentation algorithm on the topological processed image provides a much better
segmentation, that only includes the relevant object. This processed image was
obtained from the topological information of our topologically modified image. In
the following sections, we describe our approach in more detail.

We discuss the existing difficulties of TDA for object detection in real-world
images in Section 7.2, and introduce topological image modification (TIM) to
overcome these in Section 7.3. Also in Section 7.3, we discuss how image smooth-
ing can be regarded as a destructive way of TIM, and introduce a new and more

TOPOLOGICAL OBJECT DETECTION IN IMAGES 163

Figure 7.1: An overview of how topological image modification and processing improves
the performance of the completely unsupervised Chan-Vese segmentation algorithm [124].

constructive way, i.e, border modification, in Section 7.3. In Section 7.4 We show
how TIM leads to a powerful new method for topological image processing (TIP),
for which we introduce a new algorithm that marks objects in an image consistent
with the (number of) inferred components from its persistence diagram (Algo-
rithm 7). We demonstrate how TIM and TIP effectively improves three differ-
ent generic unsupervised segmentation algorithms in Section 7.5, as well as three
other methods in Section 7.5, through a case-study of the ISIC 2018 skin lesion
images [130, 131].

7.2 Persistent Homology for Object Detection
Consider the 0-dimensional persistence diagram in Figure 2.13 of the image I
shown in Figure 2.12. More formally, this persistence diagram is obtained through
the sublevel filtration of the function

f : ∆1
I → R : σ 7→ max

p∈σ
grayI(p),

defined on the graph ∆1
I that is obtained by connecting all (vertically, horizontally,

and diagonally) neighboring pixels (nodes) in the image, where grayI(p) denotes
the grayscale value

grayI(p) =
1

1000
(299RI(p) + 587GI(p) + 114BI(p)) (7.1)

given to pixel p in the RGB image I . Note that this is just the standard linear color
to grayscale converter implemented in the PIL library in Python.

164 CHAPTER 7

The darker pixels in I making up two different objects in the image, i.e., the
‘1’ and ‘8’ component, correspond to the most persisting components. Hence,
persistent homology is well able to identify that there are two distinct important
objects on this toy image.

We are now going to perform a similar analysis, but on a real world im-
age instead, obtained from the ISIC 2018 data set. This data set can be ob-
tained through https://challenge2018.isic-archive.com/. Figure
7.2 shows a skin lesion image I that contains multiple true objects: strands of hair,
(part of) a non-relevant lesion connecting to the boundary, and a centered lesion:
the object of interest. Since these objects are darker than the skin tissue, they
should correspond to persisting components in the sublevel filtration of I . Again,
we attempt to identify the important objects of I , is through the points in its persis-
tence diagram marking components with a high persistence (Figure 7.2, Middle).
Note that apart from the single component with infinite persistence, which will
always be present for images, we also note two other relatively long persisting
components, with a lifetime above 75. Including the component with infinite per-
sistence, these correspond to three components that are all alive right before the
lowest of their death-times (Figure 7.2, Middle).

This example illustrates the first problems that arises from applying topolog-
ical persistence as a method for object detection in real-world images. Though
topological persistence is stable in terms of noise, it is not robust to outliers. In
the case of images, this means that a single or insignificant cluster of pixels can be
identified as a significant component through persistent homology. This is the case
for the component born at time ∼78 in Figure 7.2 (Right). Furthermore, persistent
homology also identifies true but irrelevant objects, such as the lesion connecting
to (and born through) the border of the image.

Although this example shows that topological persistence is sensitive to out-
liers, it is a well-known and important fact that it is stable under noise (Theorem

Figure 7.2: (Left). Three complexes F̄(grayI)t at different time steps in the original image
I . (Middle). The resulting persistence diagram and lifetimes obtained by rotating the

diagram. (Right). The identified components—those with lifetimes above the thresholds
marked by the red striped line—right before their lowest death-time, as well as their

birth-pixel and value. Ground truth segmentation borders are marked in red on all images.

TOPOLOGICAL OBJECT DETECTION IN IMAGES 165

2.5.18). Intuitively, this means that if there is only a small pixel-wise difference
between two images of the same dimensions, their resulting diagrams will be close
according to the bottleneck distance. This result is furthermore important to our
current work, as our chosen implementation based on the Ripser library in Python
for computing persistence does not allow to track the pixels through which partic-
ular components are born or die [132]. However, if each pixel in our image has a
unique value, we can just match the birth time of a component to the correspond-
ing pixel in the image. Hence, in practice, we apply a small amount of random
noise to our image for this purpose. Due to the stability of persistence diagrams,
this will not affect the performance of our method. Other implementations that do
allow to track birth and death pixels can e.g. be found in the Dionysus 2 library
in Python. Note that Algorithm 7 which we present below requires one of these
methods to match diagram points to birth and death pixels.

7.3 Topological Image Modification

In this section, we introduce topological image modification (TIM): artificially
altering the topological properties of an image, making it significantly more easy to
extract relevant topological information. We will consider two types of topological
image modification methods in this thesis: image smoothing (Section 7.3.1), and
border modification (Section 7.3.2).

7.3.1 Image Smoothing

The first type of method for TIM we consider is image smoothing. Note that
this method has previously been used in conjunction with persistent homology
of images [21]. However, its true potential within the context of TIM remained
unnoticed.

For each pixel p of an image I and k ∈ 2N + 1, we may consider a k × k

square pixel neighborhood Nk(p) centered at p, and restricted to I , i.e., undefined
beyond its borders. We can then define a new image I ′ from I by averaging over
the neighborhood Nk(p) for each pixel p.

Image smoothing destructs topological properties resulting from outliers, de-
creasing their persistence or even preventing their birth. Furthermore, instead of
destructing such insignificant objects, image smoothing may also destruct signif-
icant but irrelevant objects of an image. E.g., by smoothing the strands of hair
in our example image I (Figure 7.2), they blend in with the surrounding tissue
(Figure 7.3).

From the persistence diagram of the smoothed image I ′, we now only deduce
one object in the image with a relatively long finite persistence (Figure 7.3). The
corresponding component, as well as the component with infinite persistence, are

166 CHAPTER 7

Figure 7.3: (Left). Three complexes F̄(grayI′)t at different time steps in the smoothed
image I ′ (k = 25). (Middle). The resulting persistence diagram and lifetimes obtained by
rotating the diagram. (Right). The identified components—those with lifetimes above the
thresholds marked by the red striped line—right before their lowest death-time, as well as
their birth-pixel and value. Ground truth segmentation borders are marked in red on all

images.

also displayed in Figure 7.3. Note that there is no longer a component corre-
sponding to a cluster of outlying pixels. Furthermore, the component with infinite
persistence is now born through a true—although not the relevant—object, instead
of the border.

Remark 7.3.1. The fact that image smoothing can be regarded as a destructive
way of TIM, can also be noted by observing the significant decrease in the number
of points in the diagrams in Figures 7.2 & 7.3 after smoothing the image.

7.3.2 Border Modification

We showed how image smoothing was able to destruct insignificant and irrelevant
topological features in our image. However, depending on the prominence of ir-
relevant objects, image smoothing is insufficient for this purpose. This is shown
in Figure 7.3, where the most persisting component actually corresponds to an
irrelevant object of the image.

In the case of real-world images, some may have borders, some may have ir-
relevant objects, and some may only display the actual objects of interest. Hence,
even with (a possibly different method for) TIM, in a generic setting, it becomes
difficult to guarantee that the most persisting components correspond to the most
important objects of an image, without prior information on their location in the
image. Instead, we apply a simple, intuitive, yet powerful ‘trick’. More specif-
ically, through TIM, we guarantee that the most persisting component does not
correspond to the important object(s) in the image.

Border modification builds upon this idea through the generic property that in
many real-world images, the object(s) of interest do not connect to the border, but
the background does. Note that this is a strictly weaker assumption than assuming
that the object(s) of interest are near the center of the image. More formally, border

TOPOLOGICAL OBJECT DETECTION IN IMAGES 167

Figure 7.4: (Left). Three complexes F̄(grayI′
b
)t at different time steps in the border

modified smoothed image (l = 25). (Top Right). The resulting persistence diagram and
finite lifetimes obtained by rotating the diagram. (Bottom Right). The identified

component—the single component with finite lifetimes above the thresholds marked by the
red striped line—right before its lowest death-time, as well as its birth-pixel and value.

Ground truth segmentation borders are marked in red on all images.

modification constructs a new image Ib from an image I , by ensuring that every
pixel within a distance l of the border of Ib reaches the lowest value, while other
values remain unchanged. Due to the elder rule (Section 2.5.2.1), this ensures that
every object connecting to this border will be born through the border. Hence, all
of these irrelevant components correspond to the single point with infinite lifetime
in the persistence diagram of Ib. As such, we may restrict the analysis of our per-
sistence diagram for identifying objects to the points corresponding to components
with finite persistence. This is illustrated in Figure 7.4.

The advantages of border modification are the following.

• There is no bias towards the single point with infinite death-time in the per-
sistence diagram (there will always be one for any image). This is especially
useful when the birth (pixel) of the corresponding component marks an ir-
relevant or insignificant object (Figure 7.2), or when there are more than
one relevant objects (possibly making up one ‘meta object’) displayed by
the image (Figure 7.5).

• By ensuring relevant objects have finite persistence, we may automatically
infer nontrivial thresholds to mark objects in the image through their death-
times (Algorithm 7).

• By restricting our analysis to the points of the persistence diagram with fi-
nite persistence, any existing outlier detection method can be applied to au-
tomatically infer the number of objects displayed by an image based on their
persistence (Section 7.4).

Remark 7.3.2. Border modification can both be regarded as a constructive and
destructive way for modifying topological features of an image. On the one hand,
we construct a border such that the existence of a corresponding component with

168 CHAPTER 7

infinite persistence is ensured. On the other hand, this process discards all other
points in the diagram corresponding to components born through a pixel of this
border in the original filtration.

7.4 Topological Image Processing
In the previous section, we showed how TIM results in persistence diagrams from
which one may more efficiently extract both significant and relevant topological
features of an image. In this section, we present topological image processing
(TIP), i.e., image processing based on this topological information.

Our first step is to decide how many components are displayed by the image,
through the distribution of the lifetimes. Note that we may restrict the diagram to
only include finite lifetimes by applying topological image (border) modification.

In Section 7.3, we manually decided a threshold τ to identify significant com-
ponents, as those with lifetime greater than τ . Without supervision, any standard
outlier detection tool may be used to select such thresholds. However, we will use
a method previously described by [80]. This method is based the fact that relevant
peaks (of the function defining the filtration) can be extracted from the persistence
diagram if it contains a band of a certain width that does not contain any points,
as shown by [133]. More specifically, we look for the the largest empty region
parallel to the diagonal we can draw into the persistence diagram. To achieve this,
we simply iterate over all lifetimes in decreasing order, and track the difference be-
tween consecutive lifetimes. A threshold is then obtained by taking any τ between
the two lifetimes where the largest of these differences is achieved. Note that our
manually selected threshold in Figure 7.4 suffices this criterion. Furthermore, this
procedure is especially useful in conjunction with TIM. If any consecutive dif-
ference in the ordered lifetimes would be infinite, it would always be selected.
However, in Section 7.3, we showed that this is inefficient for real-world images,
and may lead to irrelevant components. Furthermore, selecting the single compo-
nent with infinite persistence in images is insufficient when multiple objects are of
interest.

Remark 7.4.1. [80] observed that this procedure results in a stable threshold
τ , if the ratio of the width of the largest empty region to the mean width of all
empty regions in the persistence diagram is greater than four. After border mod-
ification, smaller ratios indicate the absence of contrast between components in
images, where it may be difficult to infer the objects trough an automatic pro-
cedure. Though we will not consider this step in our current work, this can be
especially useful in medical applications, to identify the images from which it is
difficult to identify the object(s) of interest (Figure 7.10a).

Once a threshold τ has been selected, we process our images as to increase the

TOPOLOGICAL OBJECT DETECTION IN IMAGES 169

Data: Image I, persistence diagram D of I (infinite persistence is assumed
to mark the border), threshold τ

Result: Binary image J marking objects in I.
1 J, ds = zeros like(I), list()
2 lifetimes = D.death - D.birth #obtain the lifetimes directly from D
3 obj idxs = where(τ < lifetimes <∞)

#identify diagram points marking significant finite lifetimes
4 obj idxs = obj idxs[argsort(D.death[obj idxs]), ‘desc’)]

#sort identified diagram points by decreasing death times
5 for idx in obj idx do
6 b = birth pixel(idx) #identify the image pixel that corresponds to

#the birth time of this diagram point
7 ds.append(death pixel(idx)) #store the image pixel that corresponds to

#the death time of this diagram point
8 C = component(I[I[b] ≤ I < D.death[idx]], b)

#get pixels connected to b right before its death
9 new dval = min(I[intersect(ds, C)], D.death[idx])

#check if C contains death pixels of previous components
10 C = component(I[I[b] ≤ I < new dval], b)

#ensure C does not overlap with previous components
11 J[C] = 1 #mark the component for this diagram point in the output
12 end
13 return J
Algorithm 7: Pseudocode for an algorithm that marks objects in an image
based on its persistence diagram.

contrast between the objects with a lifetime above τ , and the rest (the background)
of the image. For this, observe that if any component with birth-time b and lifetime
L dies through another component, due to the elder rule, the latter component has
birth-time b′ ≤ b and lifetime L′ ≥ L. This means that if any component is
identified to be significant, the component causing its death is as well. This implies
that Algorithm 7 provides a binary image, marking objects of the original image
consistent with the number of inferred components through its diagram.

Finally, we apply multivariate interpolation to fill in the background pixels.
More formally, for every pixel p, we determine the closest pixel p1, . . . , pk, in
each of the k identified components. p is then assigned to an interpolation of the
values of pixels p1, . . . , pk, by means of inverse distance weighting [134]. By
applying this on our topological modified (smoothed) image, we obtain a smooth
transition between our object(s) and the background, as well as between different
parts of the background. Additional smoothing may be required if the result of
Algorithm 7 is applied as a mask to the original image. Our method for TIP is
illustrated through two examples images of skin lesions in Figures 7.5 & 7.6.

170 CHAPTER 7

(a) Original skin lesion image
I1. The ground truth border is

marked in red.

(b) Topologically modified
image I′1b (k = l = 25).

(c) The persistence diagram of
I′1b.

(d) The finite lifetimes are used
to select a threshold.

(e) Components in I′1b right
before their lowest death-time.

(f) The topologically processed
image for I′1b.

Figure 7.5: A first example overview of TIP.

(a) Original skin lesion image
I2. The ground truth border is

marked in red.

(b) Topologically modified
image I′2b (k = l = 25).

(c) The persistence diagram
obtained from I′2b.

(d) The finite lifetimes are used
to select a threshold.

(e) The component in I′2b right
before its death-time.

(f) The topologically processed
image for I′2b.

Figure 7.6: A second example overview of TIP.

TOPOLOGICAL OBJECT DETECTION IN IMAGES 171

When TIP is used as a first step for segmentation, one may wonder why we
conduct our last step. E.g., Figure 7.5e already provides a reasonable segmenta-
tion of the components making up the skin lesion. This is because there is no clear
gradient between the background and the border of the image. In this case, when-
ever we start including any background pixel, we rapidly include the majority of
background pixels, resulting in the death of the relevant components through the
border of the image, guaranteed to be included through TIM. However, when there
is a particular gradient in the background that is darker near the object(s) of inter-
est, such as on the images in Figures 7.6a & 7.6b, the identified component(s) will
generally include many more pixels than those of the actual object (Figure 7.6e),
only marking the area that includes the the object(s) of interest. Nevertheless,
the relevant objects are significantly more highlighted in the topological processed
images (Figures 7.5f & 7.6f).

7.5 Unsupervised Segmentation of ISIC 2018 Skin
Lesion Images

In this section, we qualitatively and quantitatively show how our method effec-
tively improves the performance of three generic unsupervised binary segmenta-
tion models on the ISIC 2018 skin lesion images. In Section 7.5.1 we will discuss
the data and (topological) image processing steps. In Section 7.5.2 we present the
binary segmentation algorithms that we will consider for improvement through
TIM + TIP. In Section 7.5.3 we discuss four metrics that we will use to evaluate
how our method improves binary image segmentation. Finally, our experimental
results will be discussed in Section 7.5.4.

7.5.1 Topological Image Processing of Skin Lesion Images

We consider 2594 skin lesion images from the ISIC 2018 data set. The relevant
object on each image was a skin lesion, for which a ground truth segmentation
was available. We will convert each image to grayscale to construct the scalar fil-
tration function (7.1), after which we apply random normal noise (σ2 = 0.01),
and topologically modify each image through smoothing and border modifica-
tion. Note that the purpose of the addition of noise is not to affect our perfor-
mance, but to identify birth-pixels through Algorithm 7, as discussed in Section
7.2. For each image I with diagonal length ∆(I), we set the smoothing parameter
k ∼ ∆(I)/25 and the border width l ∼ ∆(I)/100, while satisfying the integer
requirements. Topological image processing is then performed on the topologi-
cal modified images. We will evaluate three generic unsupervised segmentation
methods—presented in the following section—on all three of the original image,

172 CHAPTER 7

the smoothed only image (using the same image, prior to border modification and
TIP), as well as the topologically processed image.

7.5.2 Presenting the Binary Segmentation Algorithms

We will consider the following three algorithms straightforwardly lead to binary
segmentations for all three of the original skin lesion images, the smoothed images,
and the topologically processed images.

Chan-Vese Segmentation First, we will consider the Chan-Vese segmentation
algorithm [124]. This is a very generic segmentation algorithm designed to seg-
ment objects without clearly defined boundaries, not particularly targeted towards
skin lesion, or even biased towards darker objects. The algorithm is based on
level sets that are evolved iteratively to minimize an energy function. We used
the standard settings of the algorithm implemented in the SCIKIT-IMAGE library
in Python.

ISODATA Threshold Segmentation Next, we will consider an unsupervised
threshold segmentation where the segmentation is composed by the pixels with
a value below, i.e., darker than a certain threshold. The threshold was selected
based on the ISODATA method [125], using the standard settings of the algorithm
implemented in the SCIKIT-IMAGE library in Python.

Isocontour Segmentation We furthermore consider a segmentation algorithm
based on identifying isovalued contours in the image, i.e., contours in the im-
age where the pixel value remains constant. For this, we use a special case of the
marching cubes algorithm implemented in the SCIKIT-IMAGE library in Python
[126]. The final segmentation is then obtained by filling in the obtained contours—
regarded as polygons in the Euclidean plane—using the OPENCV library. This
method differs from a threshold segmentation, in that the isovalued contours are al-
ways closed (unless they intersect the border of the image), and that lighter patches
enclosed by the contour(s) will also be filled in. The main hyperparameter is the
constant which the isocontours should value to. We will simply consider the mean
value of the image for this purpose.

7.5.3 Metrics for Evaluating Binary Segmentations

Marking pixels included in the segmentation as positives, we will consider the
following metrics for evaluation:

• The Accuracy
TP + TN

TP + TN + FP + FN
∈ [0, 1],

TOPOLOGICAL OBJECT DETECTION IN IMAGES 173

a common validation metric for binary classification.

• The Sørensen-Dice Coefficient [135, 136]

2TP

2TP + FP + FN
∈ [0, 1],

a statistic assessing the similarity of two samples.

• Matthews Correlation Coefficient [137]

TP ∗ TN − FP ∗ FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

∈ [−1, 1],

measuring the correlation between truth and predicted.

• The Inclusion Score (in general machine learning also known as recall)

TP

TP + FN
∈ [0, 1],

assessing how well the predicted encompasses the truth.

7.5.4 Experimental Results

Table 7.1 shows that the average performance for each of the considered metrics,
and each of the considered segmentation methods, before TIP, after smoothing, and
after TIP. Figure 7.7 shows the respective distributions. We consistently observe
strong improvements of the segmentations after TIP, with two exception where the
inclusion score is better with smoothing only for the ISODATA and Isocontour
method. However, as can be deduced from the other metrics, this is accompanied
by a large number of false positives. This is exactly as expected from our method,
as through TIP, we disregard the irrelevant objects in the image.

Figure 7.8a illustrates why the inclusion score most significantly increases for
the Chan-Vese segmentation algorithm after TIP. Without TIP, the algorithm ap-
pears to often segment the inverse of the actual the lesion. Furthermore, note that in
this example, the algorithm did not converge well (after the standard set number of
iterations), even when TIP was applied. This results in a checkerboard-like pattern
(used to initialize the algorithm) surrounding the actual segmentation, and greatly
affects the accuracy, Dice, and Mcc. score. This occurred rather commonly (in
approximately 600 topologically processed images), explaining the bimodality of
the corresponding distributions in Figure 7.7a. Nevertheless, we observe that TIP
successfully fulfills its purpose, identifying the lesion in the image and increasing
its contrast with the background (Figure 7.8a).

Figure 7.8b illustrates how TIP improves (ISODATA) based threshold segmen-
tation. Without TIP, the darkest parts of the image include the irrelevant strands of

174 CHAPTER 7

metric no TIP smooth TIP minimal improvement

Chan-Vese

Acc. 0.643 0.599 0.847 +0.204
Dice 0.346 0.367 0.614 +0.247
Mcc. 0.152 0.156 0.590 +0.434
Inc. 0.420 0.454 0.746 +0.292

ISODATA

Acc. 0.850 0.851 0.875 + 0.024
Dice 0.543 0.587 0.672 +0.085
Mcc. 0.481 0.528 0.657 +0.129
Inc. 0.587 0.660 0.584 -0.076

Isocontour

Acc. 0.680 0.798 0.893 +0.095
Dice 0.439 0.532 0.704 +0.172
Mcc. 0.335 0.492 0.687 +0.195
Inc. 0.757 0.825 0.785 -0.040

Table 7.1: Averaged performances of different segmentation algorithms before TIP, after
smoothing, and after TIP.

(a) Performance distributions of the Chan-Vese segmentation algorithm.

(b) Performance distributions of the ISODATA threshold segmentation algorithm.

(c) Performance distributions of the Isocontour segmentation algorithm.

Figure 7.7: Performance distributions of different segmentations algorithm before TIP,
after smoothing, and after TIP.

TOPOLOGICAL OBJECT DETECTION IN IMAGES 175

(a) The Chan-Vese segmentation algorithm segments the inverse of the relevant object in the
image without TIP, and the correct object with TIP. Note that the algorithm did not converge
well after the standard set number of iterations. Without TIP: Acc. = 0.570, Dice = 0.020,

Mcc. = -0.219, inclusion = 0.039. With TIP: Acc. = 0.938, Dice = 0.767, Mcc = 0.742,
Inclusion = 0.890.

(b) The ISODATA based threshold segmentation algorithm segments many dark strands of
hair along with the lesion when no TIP is applied. These strands are disregarded through

TIP, resulting in a much better final segmentation. Without TIP: Acc. = 0.811, Dice =
0.657, Mcc = 0.571, Inclusion = 0.526. With TIP: Acc. = 0.809, Dice = 0.618, Mcc =

0.588, Inclusion = 0.447.

(c) Isocontours (red) valuing to the image mean capture the lesion on the image much better
after TIP. Without TIP: Acc. = 0.553, Dice = 0.259, Mcc = 0.262, Inclusion = 0.964. With

TIP: Acc. = 0.986, Dice = 0.919, Mcc = 0.913, Inclusion = 0.965.

Figure 7.8: Three examples illustrating how each one of our considered segmentation
algorithms benefits from TIP.

176 CHAPTER 7

hair, and there does not exist any threshold that can be used to include the pixels of
the lesion and only those. However, after TIP, the darkest object on the image is the
lesion itself, as the strands of hair are disregarded. In this case, (ISODATA) based
threshold segmentation does lead to a good result. One may also argue whether
the ‘ground truth’ segmentation is actually better than the provided segmentation
after TIP in this example. Clearly, TIP significantly improves the segmentation.
However, three of the four considered metrics point otherwise (Figure 7.8b).

Finally, Figure 7.8c illustrates how isocontour based segmentation benefits
from TIP. First, after TIP, due to the high contrast between the object and the
background, and the homogeneity of the background, it becomes easy to select an
appropriate value the isocontours should value to, as the mean of the image val-
ues simply suffices. Second, without TIP, there are often many such isocontours,
whereas there are commonly only one or a few (correctly) identified contours after
TIP (Figure 7.8c).

7.6 Improving Other Generic Methods
In this section, we discuss some other generic models for which TIP may result
in an effective increase in performance. Unlike the previous three models, they
will not be quantitatively evaluated on a large scale, as they are not necessarily
binary segmentation methods, or we lack a fair and consistent comparison to the
non-topologically processed images.

Clustering Based Segmentation Superpixel segmentation algorithms use clus-
tering algorithms in the color space to produce oversegmentations (more segments
than necessary), and are generally less effective when straightforwardly applied
for the task of binary segmentation. Different segments (clusters) in the result are
referred to as superpixels. Figures 7.9a & 7.9b show the result of a k-means clus-
tering based superpixel segmentation algorithm [127], to segment a skin lesion
image in 20 different superpixels, before and after TIP. Only after TIP, we observe
clear superpixels belonging to the lesion, and only to the lesion. Hence, TIP pro-
vides a promising approach towards constructing effective cluster-based (binary)
segmentation algorithms.

Edge Detection Edge detection methods searches for linear segments that cor-
respond to edges and borders in an image. They differ from segmentation methods
in that they do not target the output of well-defined (2D) areas. Figures 7.9c &
7.9d show the result of Roberts’ cross operator for edge detection [128], on a skin
lesion image before and after TIP. Before TIP, we infer some strands of hair (Fig-
ure 7.9c), or even no edges are clearly deduced (Figure 7.9d). After TIP, we infer
many edges characterizing the lesion, and only those.

TOPOLOGICAL OBJECT DETECTION IN IMAGES 177

(a) A k-means superpixel segmentation algorithm marks clear segments belonging to the lesion only
after TIP (first example).

(b) A k-means superpixel segmentation algorithm marks clear segments belonging to the lesion only
after TIP (second example).

(c) Roberts’ cross operator for edge detection marks edges characterizing the lesion only after TIP
(first example).

(d) Roberts’ cross operator for edge detection marks edges characterizing the lesion only after TIP
(second example).

(e) Two example images where Algorithm 7 is used to initialize the active contour model to provide an
effective segmentation of the lesion (interior of the blue line). The initialization (red line) of the first

example is the boundary of the convex hull of the mask in Figure 7.6.

Figure 7.9: Examples of three other generic and unsupervised models to which TIP
provides an effective method to improve their results.

178 CHAPTER 7

Active Contour Segmentation The active contour model is a method to fit open
or closed splines, referred to as snakes, to lines or edges in an image [129]. It is
based on the minimization of an energy function, similarly to the Chan-Vese seg-
mentation algorithm. Unlike the previous two examples, this method does lead to a
straightforward binary segmentation, by taking the interior of the resulting snake.
It requires an initial estimate surrounding the object of interest, making it difficult
to apply to the original (skin lesion) images in a consistent and effective way, with-
out additional supervision. However, through TIM and TIP, we are able to provide
both an effective initialization and segmentation. More specifically, as discussed
in Section 7.4, Algorithm 7 does not provide a straightforward segmentation of the
objects, rather it marks a surrounding area of the object of interest, containing no
other significant objects. Hence, we can use the areas marked by Algorithm 7 to
initialize the active contour segmentation algorithm. Figure 7.9e shows the result
of this method, where we used the boundary of the convex hull of this area as
the initialization, leading to effective segmentations of the topologically processed
images.

7.7 Discussion and Conclusion

We introduced topological image modification (TIM) as a method for enhancing
the ability to extract both relevant and significant topological information from an
image. Although image smoothing has been applied in conjunction with persistent
homology of images before, its true potential as a destructive topological image
modifier has not been studied in detail. Furthermore, we introduced a powerful
new method for TIM, i.e., border modification, sensible on three different levels.
First, we discard all bias towards the single component with infinite persistence.
Second, we may automatically and consistently separate objects from the back-
ground through their finite death-times (Algorithm 7). Third, any outlier detection
method to automatically infer the number of components through the persistence
diagram of the image becomes well-defined.

We introduced the concept of, as well as a new method for topological image
processing (TIP). We showed how this method significantly increased the perfor-
mance of six different generic and unsupervised models and algorithms through a
wide variety of of skin lesion images from ISIC 2018. Furthermore, this increase
in performance was extensively quantified on all 2594 skin lesion images, for the
three algorithms that led to a straightforward binary segmentation method before
and after TIP. Though this is a very domain-specific application, our method for
TIP is very generic, resting on the assumptions that outliers can be destructed
through smoothing the image, and that the relevant object(s) are away from the
border of the image.

In any of the shown examples, we observe that our method of TIP fulfills its

TOPOLOGICAL OBJECT DETECTION IN IMAGES 179

(a) (Left) The original lesion image. (Right)
Topologically processed image.

(b) (Left) The original lesion image. (Right)
Topologically processed image.

Figure 7.10: Two example images where our current version of TIM + TIP does not
capture the full relevant object and only the relevant object.

purpose, correctly identifying the relevant objects in the image and increasing their
contrast with the background. Interestingly, none of the segmentation methods we
considered, showed to be effective for the task of skin lesion segmentation prior
to TIP. Furthermore, even in conjunction with TIP, these methods maintained their
genericity. Naturally, these methods can be further improved for the particular task
of skin lesion segmentation, by trading off their genericity with their performance.
E.g., though the ground truth lesions always connected, none of our considered
segmentation algorithms necessarily outputs connected segmentations. Their re-
sults may be post-processed to accommodate for this restriction.

Since we only considered unsupervised models in our experiments, it may be
unrealistic to expect similar performances as the state-of-the-art supervised mod-
els, such as convolutional neural networks [122, 123]. Rather, we evaluated our
work in an unsupervised context to show that TDA using TIM and TIP improves
the task of skin lesion segmentation using generic unsupervised segmentation al-
gorithms. It is left to investigate how TIP may enhance the ability to learn in a
supervised setting, e.g., as an additional channel to a convolutional neural network
based model, or through combined architectures, for either segmentation or clas-
sification problems [117].

As with any method, there are some limitations to our method, both for skin
lesion images, as well as for more general applications. We assumed that the
relevant objects of our image were darker than the surrounding background, i.e.,
they have a lower pixel value. In applications where they are actually lighter, one
can easily apply our method by constructing the superlevel filtration instead of
the sublevel filtration, capturing topological information equivalent to the sublevel
filtration of the image after negating its pixel values.

A more difficult problem is when there is little to no contrast between our
object of interest and the background (Figure 7.10a). We argue that any learning
model, unsupervised or supervised, will find it challenging to correctly identify
objects in such images. However, we may automatically recognize these particular
types of images based on their persistence diagrams, as stated in Remark 7.4.1.

Another difficulty is when more prominent but irrelevant objects are separated

180 CHAPTER 7

from the boundary of the image. E.g, in Figure 7.10b, many irrelevant objects,
such as the corners of the image, the strands of hair, and the ruler, are destructed in
our topologically processed image. However, the surgical marker surrounding the
lesion still remain. A different function defining the filtration on the image than
the customary grayscale (7.1), possibly nonlinear in the color channels, that e.g.
accounts less or not for the purple colors of the image, may be more appropriate
in this case.

The fact that death times commonly occur after the full lesion has been in-
cluded, prevents us from using persistence diagrams of the topologically modified
images for a direct segmentation algorithm. However, in practice, a gradient be-
tween the lesion and the background of the image that results in such ‘late’ death-
time may also indicate a region of inflammation around the lesion (Figure 7.6).
Unfortunately, these regions are often disregarded in the ‘ground truth’ (Figure
7.6a), and further exploration of this interesting property is required.

Our method works well on images displaying one or few objects of interest
on a uniform, noisy, or textured background. This makes skin lesion images an
ideal application. For images fully composed of many objects (e.g., a street, cars,
houses, trees, . . .), other types of models may be more applicable.

8
Concluding Remarks and Future Work

In this chapter, we conclude upon our work (Section 8.1), and discuss further direc-
tions for and applications of topological inference in graphs and images (Section
8.2). Finally, we discuss our work in the broader context of machine learning and
real-world applications in Section 8.3.

8.1 Conclusion

In this thesis, we thoroughly illustrated that simple graph-structured models occur
naturally in many real-world graphs. However, this does not necessarily imply that
many graphs are the (causal) result of these models. This makes it difficult to math-
ematically formalize the concept of topological models in graphs, as discussed in
Chapter 3. Yet, we presented a variety of methods for effectively inferring these
models across a broad spectrum of realistic applications.

In Chapter 4, we showed how local topological data analysis (LTDA) can pro-
vide local topological characterizations of metric data approaching metric graphs,
in terms of degrees. Furthermore, we showed that one may also practically deduce
the presence of cycles without the need of 1-dimensional persistent homology. By
both storing and using this topological information, we were able provide effective
reconstructions of metric graph models by means of clustering algorithms. These
methods are inspired by the fact that exact knowledge of the degrees of all points
in the theoretical model, or even less specific whether they are different from 2 or
not, allows one to exactly reconstruct the model. Due to this reason, for metric

182 CHAPTER 8

graph reconstruction methods to work well, local topological information needs to
be inferred correctly near every data point. Therefore, they are ideally applied to
more clean and/or processed data, that approximates the underlying model well.
The advantage of these methods is that they can directly model cycles, and mark
important regions through the used clustering algorithms.

In Chapter 5, we introduced a completely different approach towards topo-
logical inference in graphs. Here, we inferred topological subgraph models, called
backbones, based on the assumption that in real-world graphs ‘noise’ and ‘outliers’
surround the actual topological model underlying the graphs. Unlike reconstruc-
tion methods, these assumptions apply to the empirical data, rather than the ground
truth model. Hence, our method for backbone inference satisfies much better gen-
eralization and robustness properties. In contrast to the degree of a node, our
introduced boundary coefficient (BC) captures the coreness of a node well in both
the small-world network model, as well as the non-small-world network model.
This coefficient allowed us to construct effective forest-representations, i.e., f -
pines, for inferring backbones through the Constrained Leaves Optimal subForest
(CLOF) problem. We qualitatively and quantitatively confirmed its effectiveness
for many types of graphs, ranging from social networks, to earthquake locations
scattered across the Earth, and high-dimensional cell trajectory data.

In Section 5.8 we showed that even high-ranked state-of-the-art approaches in
the field of cell trajectory inference (CTI) struggle to infer trajectories in many
examples. They often fail to capture the geometry of the model, or predict the
number of leaves correctly. In Chapter 6 we developed topological signatures ac-
companied by theoretical justification, that allow their use to study and quantify
this particular problem in more detail. We furthermore showed that these signa-
tures correlate well with the performance of current CTI methods, and as such
provide a new way of performing data quality control within this field.

Finally, in Chapter 7 we applied TDA for a different kind of graph-structured
data, this being images. We showed that although 0-dimensional persistent ho-
mology can be used for object detection in images, a direct approach towards this
lacks robustness properties. We therefore introduced topological image modifi-
cation (TIM) to enhance the ability to extract both significant as well as relevant
topological information from real-world images. This information was then con-
secutively used for topological image processing (TIP) to increase the contrast be-
tween important objects and irrelevant objects or the background of the image. We
furthermore qualitatively and quantitatively evaluated how TIM and TIP improve
a wide variety of image segmentation methods in an unsupervised setting.

CONCLUDING REMARKS AND FUTURE WORK 183

8.2 Future Work

In this section, we discuss a variety of interesting research topics that arise from
the results and observations in this thesis. We will subdivide these according to
chapter(s) and topic.

Formalizing Topological Models in Graphs As mentioned in Section 3.5, how
to mathematically formalize the concept of topological models in graphs is one of
the most important open problems resulting from this thesis. E.g., one might for-
malize these through random graphs for different ‘classes’ of graphs separately. As
discussed in Section 3.4.2, these classes could specify whether the graphs are given
or derived from point cloud data, whether there is a causal relationship between
them and the model, whether they satisfy the small-world network model, or how
nodes in the model relate to the nodes they represent. Furthermore, these classes
often largely overlap (although not necessarily completely). E.g., proximity graphs
derived from low-dimensional point cloud generally do not satisfy the small-world
network model. However, whether such a finite classification of formalized topo-
logical models in graphs is even possible without limiting their applicability, is an
open problem. Furthermore, even though we pointed out the difficulties for pro-
viding a universal formalization of topological models in graphs, we showed that
there do exist methods that may effectively infer such models in graphs that would
be distinct according to such classification. This makes studying how to formalize
these models that more interesting.

Topological Libraries [Chapters 4 & 6] As discussed above, LTDA and the
graph reconstruction methods derived thereof area ideally applied to clean, pro-
cessed data, or data with a low underlying complexity of the model. Accompa-
nied with a (number of leaves) inference method [80], the signatures introduced in
Chapter 6 may provide some additional robustness to these methods. More specif-
ically, one would not require to introduce an inner radius r′ parameter anymore.
Furthermore, one could develop a topological library of possible ground truth lo-
cal topological signatures to match empirical local neighborhoods. One may even
just perform these matchings to the persistence diagram of a line topology to iden-
tify edge and non-edge points, which is (theoretically) sufficient to reconstruct the
global model. The restriction to constructing (local) Rips graphs will then not be
required for inferring local topologies. Indeed, instabilities in terms of the number
of connected components in punctuated neighborhoods of different type of prox-
imity graphs may then be identified through points close to the diagonal of the
diagram, e.g., as in Figure 6.5.

Figure 8.1 illustrates of how this may work in practice. First, we construct
a topological library L containing one persistence diagram D (Figure 8.1b), ob-

184 CHAPTER 8

(a) A possible ground truth local topological
model and its normalized centrality are used to
construct a topological library containing one

diagram.

(b) The single persistence diagram D
in the topological library L, which

captures a local linear model.

(c) A Rips graph G constructed from a point
cloud data set Pikachu. Each node v is mapped

to the bottleneck distance between the
persstence diagram of the sublevel filtration of

the normalized centrality function on
G[B̄dunw

G
(v, 3)] and the diagram in the
topological library.

(d) The local signature obtained from
the node and its neighborhood shown

in blue on Figure 8.1c.

Figure 8.1: Within the context of LTDA, topological libraries may provide a more robust
way to discover edges, leaves, multifurcations, and isolated points, with better

generalization properties.

tained from the sublevel filtration of the normalized centrality function on a linear
metric graph (Figure 8.1a). Note that the resulting signature is independent of the
length or any curvature of the ground truth model of which it is computed. More
precisely, it always equals the set {(0,∞), (0, 1)} ∪ {(x, x) : x ∈ R}. In Fig-
ure 8.1c we consider the same Rips graph G constructed from the metric graph
representing Pikachu in Section 5.5.4. For every node v ∈ V (G), we consider

CONCLUDING REMARKS AND FUTURE WORK 185

a neighborhood Bdunw
G

(v, r) = B̄dunw
G

(v, r − 1). The local signature of v, which
is the persistence diagram obtained through the sublevel filtration of the normal-
ized centrality function on G[B̄dunw

G
(v, r − 1)], is then matched to D through the

bottleneck distance. An example of such signature for the node v marked in blue
in Figure 8.1c is shown in Figure 8.1d. By mapping each node v to the such ob-
tained bottleneck distance, we are able to identify nodes representing edges (low
bottleneck distance) and nodes representing non-edges (high bottleneck distance),
as shown in Figure 8.1c.

Nevertheless, further exploration how to decrease the sensitivity of to the choice
of the (outer) radius r under a non-uniform amount of noise may still be required.
This can e.g. be noted from the thicker lower parts of Pikachu’s eyes in Figure
8.1c, which for the chosen radius represent ‘blobs’ rather than edges.

Scalability of the Boundary Coefficient [Chapter 5] Our method for infer-
ring backbones shows to scale well to thousands of nodes. At first sight, this
may not be enough for many practical applications, such as large network em-
bedding [102, 138]. Nevertheless, there are many practical examples, such as cell
trajectory data, where identifying the underlying topology for graphs of this order
remains an important problem. Furthermore, our method may scale to larger order
graphs by optimizing or even parallelizing our current implementation to com-
pute boundary coefficients, the most expensive part of our method. Algorithms for
approximating these coefficients may be investigated on a theoretical, probabilis-
tic, and experimental level as well. E.g., fast algorithms for all-pairs approximate
shortest paths are discussed in [139].

Generalization to more Complex Backbones [Chapter 5] One may increase
the local scope of the boundary coefficient. I.e., the BC currently only averages
over pairs of neighbors, but it may as well consider neighbors of neighbors, and
so on. In this way, we may be able to effectively mine topological skeletons in
data with a a locally higher intrinsic dimension. An example of this would be the
Swiss Roll from Section 5.7, where we increase the width of the manifold (along
the z-axis), while also increasing the sparsity of the proximity graph.

We experimentally demonstrated that modeling the topology of or graph by
means of a (sub)forest is not a severe limitation when it comes to cycles. These
may be more efficiently discovered through persistent homology if our backbone
provides a significant size reduction, while remaining spread out across the under-
lying topology. However, we have yet to provide an effective method for ‘lifting’
the holes found by means of topological persistence to our forest-structured back-
bone, i.e., closing the gaps corresponding to these holes. Persistent homology
has also been connected to minimum spanning trees and their higher-dimensional
analogues of minimum spanning acycles on a theoretical level [140]. Connecting

186 CHAPTER 8

these results to CLOF may lead to new theoretically well-founded approximation
algorithms for computing persistence [40, 141].

Another interesting direction is to investigate how our method generalizes to
directed graphs. From a topological viewpoint, (anti-)arborescences could be very
useful to interpret as possible backbone structures in directed graphs, as they have
a natural and consistent flow defined on them. However, this may already become
too restrictive. Unlike for unweighted graphs, such backbones may become non-
existing if we require that each other node in the graph can be connected in some
way to this backbone, through either a fixed or varying directionality. Furthermore,
the BC may become undefined for nodes in weakly connected components, that
are not strongly connected, and a different core measure may be more appropriate.
This leads to many new theoretical and practical research questions.

Applications of Backbones [Chapter 5] Considering backbone inference in
graphs, we only focused on applications within the field of topological data anal-
ysis. Correctly identifying the graph-structured model is the exact purpose of
CTI methods. For other graphs such as social networks, we also showed that we
can meaningfully identify backbone structures, both on a qualitative and quantita-
tive level. Our procedure provides a way to visualize or obtain insight into their
underlying structure. Nevertheless, this is often not the end goal for these net-
works. Hence, a wide variety of new applications of backbones, such as commu-
nity detection, subgroup discovery, and graph embeddings, is yet to be discovered.
E.g., [102] introduced a heuristic algorithm to iteratively simplify a graph, as to
increase the performance of any existing graph embedding method through better
initializations. Hence, initializing the embedding through a well-chosen backbone
can lead to a graph embedding method that respects topological properties of the
graph.

Finally, one may investigate how backbone extraction improves existing mod-
els for graph-structured data, and vice versa. E.g., graph convolutional networks
(GCNs) have recently led to many new applications for graphs [142]. On the one
hand, prior knowledge of nodes near or on the core structure of the graph may
enhance the ability to learn from graphs through better initializing a GCN. This
is similar to the method described above for improving graph embeddings, which
is also one of the many applications of GCNs. On the other hand, similar to how
an initial dimensionality reduction improves the performance of cell trajectory in-
ference, graph autoencoders [143] may serve as a tool to find a latent or denoised
representation of the graph, prior to the final backbone extraction.

Cell Trajectory Inference [Chapters 5 & 6] In case of CTI, we noted that even
high-ranked cell trajectory methods, according to [9], often struggle to capture the
geometry of the underlying model, or its exact number of leaves (Figures 5.31 &

CONCLUDING REMARKS AND FUTURE WORK 187

5.33). From Chapter 6, we conclude that for many data sets, branches are difficult
to separate from each other due to a high amount of noise (even after a dimen-
sionality reduction), or that branches which are relatively short according to some
main trajectory are left undetected (intuitively, our ‘elbow’ in Figure 5.10b will
occur too soon). In Section 5.8, we also showed how our method for backbone
inference may benefit from a more accurate leaf inference method for the task of
cell trajectory inference, increasing its performance under this knowledge (Figure
5.31). Again, from Chapter 6 we conclude that developing such method based
on purely topological information may be difficult. However, the signatures in-
troduced in this chapter allow do us to qualitatively and quantitatively evaluate
which data representation (dimensionality reduction and/or proximity graph) bet-
ter captures topological properties of cell trajectory data. Naturally, finding more
effective representations will lead to a better performance of both our as well as
other methods. This is the formal subject of [6].

Topological Image Modification and Processing [Chapter 7] The idea behind
topological image modification—altering the topological properties of an image
to improve the detection of both relevant and significant objects—is very generic.
Hence, a wide variety of topological image modifiers, as well as new applications
of topological image processing to supervised learning and domains other than
(segmenting) skin lesions are yet to be discovered. A simple example of an ad-
ditional topological image modifier would be color modification. E.g., through a
nonlinear function on the color channels we may decrease the prominence of the
purple surgical markers of the image in Figure 7.10b. This may prevent their detec-
tion through the resulting persistence diagram. Furthermore, adding extra channels
that capture topological information to images may prove to be valuable for con-
volutional neural networks models. Unfortunately, many current state-of-the-art
pre-trained layers have been optimized for 3-channel (RGB) images. Hence, we
might not be directly able to exploit their advantage of having been trained on
sometimes millions of images [144], and require further investigation into novel
model architectures that benefit from this additional topological information.

8.3 Our Work in a Broader Context

We both qualitatively and quantitatively showed that we developed effective tools
for topological inference and analysis across a wide variety of real-world graphs
and images. Naturally, not every of our considered ‘applications’ appears to be
equally important at the time of writing. E.g., it might be obvious that cell tra-
jectory inference is currently a more relevant and difficult problem, than inferring
the underlying model of the Harry Potter network. The purpose of this section is
hence to discuss how our work may impact society and show real-world value.

188 CHAPTER 8

Something that we did not discuss is that methods particularly targeting CTI
often deal with pseudotime analysis, which corresponds to ordering cells along the
(inferred) trajectory [9]. Given a (inferred) trajectory, cells can be directly ordered
in various ways, e.g., by projecting them onto the trajectory. In a matter of fact, this
is exactly implemented in the wrapper provided by [9]. Note that early methods for
CTI prioritized ordering cells correctly over inferring the actual trajectories [9,58].
Cell trajectories and these pseudotimes offer a transcriptome-wide understanding
of dynamic processes [9]. In cancer, they can be used to identify (dis)continuity
in cell states, and indicate the mode of tumor evolution [58–61]. In immunol-
ogy, understanding the cellular transition dynamics modeled by cell trajectories
and how they can be modified to improve human health is one of the central ob-
jectives [62]. These examples accompanied by the ongoing efforts to construct
transcriptomic catalogs of whole organisms [9,145,146], clarify the importance of
effective and scalable CTI methods.

Nevertheless, we merely showed that our method for CTI through backbone
inference (Section 5.8) is competitive to, but does not outperform the state-of-the-
art. Although our provided method for CTI may show to be a complementary and
useful tool over the 45 others evaluated by [9], and those that have been and will
be developed thereafter [147, 148], we argue that our real contribution for the par-
ticular case of CTI lies in Chapter 6. Indeed, by using our topological signatures
(Corollary 6.3.5) for exploratory data analysis rather than topological inference in
Section 6.4, we were able to explain the difficulties accompanied by CTI (which
we observed in Section 5.8) on both a theoretical and practical level within a topo-
logical context. To the best of our knowledge, neither such an application of TDA,
nor such an analysis within the field of CTI, had been considered before. Further-
more, we observed that the performance averaged over all CTI methods evaluated
by [9] is consistent with the information captured through our topological signa-
tures, allowing for a novel method for cell trajectory data quality control. This may
eventually lead to new methods for evaluating the data prior to the actual trajectory
inference, and for comparing and developing new representations (dimensionality
reductions and/or proximity graphs) to improve the effectiveness of both our or
other CTI methods. We recently investigated and discussed this in more detail
in [6].

In a more general context beyond CTI, applications of topological inference of
graphs from graphs are still unclear. E.g., the locations of earthquakes in Figure
5.23 can be straightforwardly visualized, which does not require the underlying
model. Similarly, while connoisseurs may confirm that our method qualitatively
provides effective models for the Harry Potter and Game of Thrones network,
this is subject to opinion, and what we can use these models for remains vague.
Yet, it is for these very reasons we included extensive experiments on a variety
of different graphs, rising from artificial graphs to fields such as social networks,

CONCLUDING REMARKS AND FUTURE WORK 189

geology, and biology. This enabled us to thoroughly illustrate that we are able to
provide effective graph-structured models in many fields of science, without any
particular application currently in mind.

Similar to dimensionality reductions of point cloud data, the direct applications
of inferring graph-structured models in graphs lie within topics such as exploratory
data analysis, and visualization. Furthermore, as do dimensionality reductions find
applications for improving machine learning models, e.g., by reducing overfitting,
so may constrained graph-structured models lead to future applications for im-
proving machine learning models on graphs, such as GCNs, graph embeddings,
or classification models. As an example (which we also discussed above), [102]
showed that simplified graphs obtained from the original graph—which are exactly
the models we consider in a broader context—may prevent any existing graph em-
bedding method from getting stuck in local minima during optimization. The ap-
plications of these various machine learning problems on graphs range from link
prediction and recommender systems [149–151] (think of Netflix predicting which
series you will like, Amazon which items might interest you, or Facebook your po-
tential friends) to classification of graphs arising from social networks, toxicology,
and protein functions or structures [39, 152–155].

In case of topological image modification and image processing, and in the par-
ticular case of skin lesion images, effective segmentations allow for automatic and
more accurate predictions [117], and hence fast and tailored interventions when
necessary. However, applications must not be restricted to biomedicine, or even
have any social value at all. One may e.g. think of a cool new selection tool or
filter in Photoshop, with only expressing your creativity as an application in mind.

Bibliography

[1] Robin Vandaele, Yvan Saeys, and Tijl De Bie. Mining Topological Structure
in Graphs through Forest Representations. Journal of Machine Learning
Research, 21(215):1–68, 2020.

[2] Robin Vandaele, Guillaume Adrien Nervo, and Olivier Gevaert. Topological
image modification for object detection and topological image processing
of skin lesions. Scientific Reports, 10(1):21061, 2020.

[3] Robin Vandaele, Tijl De Bie, and Yvan Saeys. Local Topological Data
Analysis to Uncover the Global Structure of Data Approaching Graph-
Structured Topologies. In Michele Berlingerio, Francesco Bonchi, Thomas
Gärtner, Neil Hurley, and Georgiana Ifrim, editors, Machine Learning and
Knowledge Discovery in Databases, pages 19–36, Cham, 2019. Springer
International Publishing.

[4] Robin Vandaele, Yvan Saeys, and Tijl De Bie. The Boundary Coefficient: a
Vertex Measure for Visualizing and Finding Structure in Weighted Graphs.
In Proceedings of the 15th International Workshop on Mining and Learning
with Graphs (MLG), 2019.

[5] Mira Bernstein, Vin De Silva, John C Langford, and Joshua B Tenenbaum.
Graph approximations to geodesics on embedded manifolds. Technical re-
port, Citeseer, 2000.

[6] Robin Vandaele. Topological Data Analysis of Metric Graphs for Evaluat-
ing Cell Trajectory Data Representations. Master’s thesis, Ghent Univer-
sity, 2020.

[7] Andrea S LaPaugh and Ronald L Rivest. The subgraph homeomorphism
problem. Journal of Computer and System Sciences, 20(2):133–149, 1980.

[8] Michael Joswig, Frank H Lutz, and Mimi Tsuruga. Heuristics for sphere
recognition. In International Congress on Mathematical Software, pages
152–159. Springer, 2014.

192 CHAPTER 8

[9] Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A
comparison of single-cell trajectory inference methods. Nature Biotechnol-
ogy, 37:1, 04 2019.

[10] Songtao He, Favyen Bastani, Sofiane Abbar, Mohammad Alizadeh, Hari
Balakrishnan, Sanjay Chawla, and Sam Madden. RoadRunner: improving
the precision of road network inference from GPS trajectories. In Proceed-
ings of the 26th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 3–12, 2018.

[11] Punam Bedi and Chhavi Sharma. Community detection in social networks.
WIREs Data Mining and Knowledge Discovery, 6(3):115–135, 2016.

[12] W.W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33:452–473, 1977.

[13] Mridul Aanjaneya, Frederic Chazal, Daniel Chen, Marc GLisse, Leonidas
Guibas, and Dmitriy Morozov. Metric Graph Reconstruction from Noisy
Data. International Journal of Computational Geometry and Applications,
22(04):305–325, 2012.

[14] Gabor Csardi, Tamas Nepusz, et al. The igraph software package for com-
plex network research. InterJournal, complex systems, 1695(5):1–9, 2006.

[15] Gunnar Carlsson. Topology and data. Bulletin of the American Mathemat-
ical Society, 46(2):255–308, jan 2009.

[16] Larry Wasserman. Topological Data Analysis. Annual Review of Statistics
and Its Application, 5(1), 2018.

[17] Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson. Topology based
data analysis identifies a subgroup of breast cancers with a unique muta-
tional profile and excellent survival. Proceedings of the National Academy
of Sciences, 108(17):7265–7270, apr 2011.

[18] Mathieu Carrière, Steve Y. Oudot, and Maks Ovsjanikov. Stable Topo-
logical Signatures for Points on 3D Shapes. Computer Graphics Forum,
34(5):1–12, 2015.

[19] Chad Giusti, Robert Ghrist, and Danielle S. Bassett. Two’s company, three
(or more) is a simplex. Journal of Computational Neuroscience, 41(1):1–14,
Aug 2016.

[20] Tamal Krishna Dey, Sayan Mandal, and William Varcho. Improved Image
Classification using Topological Persistence. In Matthias Hullin, Reinhard
Klein, Thomas Schultz, and Angela Yao, editors, Vision, Modeling & Visu-
alization. The Eurographics Association, 2017.

CONCLUDING REMARKS AND FUTURE WORK 193

[21] Rabih Assaf, Alban Goupil, Valeriu Vrabie, Thomas Boudier, and Moham-
mad Kacim. Persistent homology for object segmentation in multidimen-
sional grayscale images. Pattern Recognition Letters, 112:277 – 284, 2018.

[22] Kenneth Kunen. Set theory an introduction to independence proofs. Else-
vier, 2014.

[23] M.A. Armstrong. Basic Topology. Undergraduate Texts in Mathematics.
Springer New York, 2013.

[24] Ulrich Stelzl, Uwe Worm, Maciej Lalowski, Christian Haenig, Felix H
Brembeck, Heike Goehler, Martin Stroedicke, Martina Zenkner, Anke
Schoenherr, Susanne Koeppen, et al. A human protein-protein interaction
network: a resource for annotating the proteome. Cell, 122(6):957–968,
2005.

[25] Michael Hecker, Sandro Lambeck, Susanne Toepfer, Eugene Van Someren,
and Reinhard Guthke. Gene regulatory network inference: data integration
in dynamic models—a review. Biosystems, 96(1):86–103, 2009.

[26] Xiaoming Liu, Johan Bollen, Michael L Nelson, and Herbert Van de Som-
pel. Co-authorship networks in the digital library research community. In-
formation processing & management, 41(6):1462–1480, 2005.

[27] Stephen P Borgatti, Martin G Everett, and Jeffrey C Johnson. Analyzing
social networks. Sage, 2018.

[28] Songtao He, Favyen Bastani, Sofiane Abbar, Mohammad Alizadeh, Hari
Balakrishnan, Sanjay Chawla, and Sam Madden. RoadRunner: improving
the precision of road network inference from GPS trajectories. In Proceed-
ings of the 26th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 3–12, 2018.

[29] Ena Choi, Nicholas A. Bond, Michael A. Strauss, Alison L. Coil, Marc
Davis, and Christopher N. A. Willmer. Tracing the filamentary structure of
the galaxy distribution at z ∼ 0.8. Monthly Notices of the Royal Astro-
nomical Society, 406(1):320–328, jul 2010.

[30] Herbert Edelsbrunner. Persistent Homology in Image Processing. In Wal-
ter G. Kropatsch, Nicole M. Artner, Yll Haxhimusa, and Xiaoyi Jiang, edi-
tors, Graph-Based Representations in Pattern Recognition, pages 182–183,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[31] Korte Bernhard and Jens Vygen. Combinatorial optimization: theory and
algorithms. Springer-Verlag Berlin Heidelberg, 2012.

194 CHAPTER 8

[32] Wikipedia. Unit disk graph — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Unit%
20disk%20graph&oldid=970510290, 2020. [Online; accessed 27-
November-2020].

[33] Brent N Clark, Charles J Colbourn, and David S Johnson. Unit disk graphs.
In Annals of Discrete Mathematics, volume 48, pages 165–177. Elsevier,
1991.

[34] David Eppstein, Michael S Paterson, and F Frances Yao. On nearest-
neighbor graphs. Discrete & Computational Geometry, 17(3):263–282,
1997.

[35] Timothy F Havel, Irwin D Kuntz, and Gordon M Crippen. The combinato-
rial distance geometry method for the calculation of molecular conforma-
tion. I. A new approach to an old problem. Journal of theoretical biology,
104(3):359–381, 1983.

[36] H. Edelsbrunner and J. Harer. Computational Topology: An Introduction.
Applied Mathematics. American Mathematical Society, 2010.

[37] Robert Ghrist. Barcodes: The Persistent Topology of Data. Bulletin (New
Series) of the American Mathematical Society, 45(107):61–75, 2008.

[38] Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep
Learning with Topological Signatures. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17,
pages 1633–1643, USA, 2017. Curran Associates Inc.

[39] Bastian Rieck, Christian Bock, and Karsten Borgwardt. A Persistent
Weisfeiler-Lehman Procedure for Graph Classification. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 5448–5458, Long Beach, California,
USA, 09–15 Jun 2019. PMLR.

[40] Steve Y. Oudot. Persistence Theory: From Quiver Representations to Data
Analysis. Number 209 in Mathematical Surveys and Monographs. Ameri-
can Mathematical Society, 2015.

[41] Nikhil Singh, Heather D. Couture, J. S. Marron, Charles Perou, and Marc
Niethammer. Topological Descriptors of Histology Images. In Guorong Wu,
Daoqiang Zhang, and Luping Zhou, editors, Machine Learning in Medical
Imaging, pages 231–239, Cham, 2014. Springer International Publishing.

CONCLUDING REMARKS AND FUTURE WORK 195

[42] Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topo-
logical autoencoders. arXiv preprint arXiv:1906.00722, 2019.

[43] Kathryn Garside, Robin Henderson, Irina Makarenko, and Cristina Ma-
soller. Topological data analysis of high resolution diabetic retinopathy
images. PLOS ONE, 14(5):1–10, 05 2019.

[44] Allen Hatcher. Algebraic topology. Cambridge University Press, 2002.

[45] Wikipedia. Simplicial complex — Wikipedia, The Free Ency-
clopedia. http://en.wikipedia.org/w/index.php?title=
Simplicial%20complex&oldid=970115769, 2020. [Online; ac-
cessed 24-November-2020].

[46] Kairui Glen Wang. The basic theory of persistent homology.
http://math.uchicago.edu/˜may/REU2012/REUPapers/
WangK.pdf, 2012.

[47] Clément Maria. Algorithms and data structures in computational topology.
Theses, Université Nice Sophia Antipolis, October 2014.

[48] Alexander Nabutovsky and Shmuel Weinberger. Algorithmic aspects of
homeomorphism problems. Contemporary Mathematics, 231:245–250,
1999.

[49] Yngve Sundblad. The Ackermann function. a theoretical, computational,
and formula manipulative study. BIT Numerical Mathematics, 11(1):107–
119, Mar 1971.

[50] NJ Cavanna, M Jahanseir, and DR Sheehy. A geometric perspective on
sparse filtrations. arXiv preprint arXiv:1506.03797, 2015.

[51] Gunnar Carlsson, Anjan Dwaraknath, and Bradley J Nelson. Persistent
and Zigzag Homology: A Matrix Factorization Viewpoint. arXiv preprint
arXiv:1911.10693, 2019.

[52] Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Geometry helps
to compare persistence diagrams. Journal of Experimental Algorithmics
(JEA), 22:1–20, 2017.

[53] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of
persistence diagrams. Discrete & computational geometry, 37(1):103–120,
2007.

[54] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clus-
tering: an overview. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(1):86–97, 2012.

196 CHAPTER 8

[55] Xu Liu, Zheng Xie, Dongyun Yi, et al. A fast algorithm for constructing
topological structure in large data. Homology, Homotopy and Applica-
tions, 14(1):221–238, 2012.

[56] Tamal K Dey, Facundo Mémoli, and Yusu Wang. Multiscale mapper: topo-
logical summarization via codomain covers. In Proceedings of the twenty-
seventh annual acm-siam symposium on discrete algorithms, pages 997–
1013. SIAM, 2016.

[57] Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. Interleaving dis-
tance between merge trees. Discrete and Computational Geometry, 49(22-
45):52, 2013.

[58] Justine Jia Wen Seow, Regina Men Men Wong, Rhea Pai, and Ankur
Sharma. Single-Cell RNA Sequencing for Precision Oncology: Current
State-of-Art. Journal of the Indian Institute of Science, page 1, 2020.

[59] Ankur Sharma. Hiding in plain sight: epigenetic plasticity in drug-induced
tumor evolution. Epigenetics Insights, 12:2516865719870760, 2019.

[60] Ankur Sharma and Ramanuj DasGupta. Tracking tumor evolution one-cell-
at-a-time. Molecular & cellular oncology, 6(3):1590089, 2019.

[61] Ankur Sharma, Elaine Yiqun Cao, Vibhor Kumar, Xiaoqian Zhang, Hui Sun
Leong, Angeline Mei Lin Wong, Neeraja Ramakrishnan, Muhammad
Hakimullah, Hui Min Vivian Teo, Fui Teen Chong, et al. Longitudinal
single-cell RNA sequencing of patient-derived primary cells reveals drug-
induced infidelity in stem cell hierarchy. Nature communications, 9(1):1–
17, 2018.

[62] Daniel J Kunz, Tomás Gomes, and Kylie R James. Immune cell dynam-
ics unfolded by single-cell technologies. Frontiers in immunology, 9:1435,
2018.

[63] Kelly Street, Davide Risso, Russell Fletcher, Diya Das, John Ngai, Nir
Yosef, Elizabeth Purdom, and Sandrine Dudoit. Slingshot: Cell lineage
and pseudotime inference for single-cell transcriptomics. BMC Genomics,
19, 12 2018.

[64] James Eberwine, Jai-Yoon Sul, Tamas Bartfai, and Junhyong Kim. The
promise of single-cell sequencing. Nature methods, 11(1):25–27, 2014.

[65] Robrecht Cannoodt, Wouter Saelens, Helena Todorov, and Yvan Saeys.
Single-cell -omics datasets containing a trajectory, October 2018.

CONCLUDING REMARKS AND FUTURE WORK 197

[66] Ronald R Coifman, Stephane Lafon, Ann B Lee, Mauro Maggioni, Boaz
Nadler, Frederick Warner, and Steven W Zucker. Geometric diffusions as
a tool for harmonic analysis and structure definition of data: Diffusion
maps. Proceedings of the national academy of sciences, 102(21):7426–
7431, 2005.

[67] Daniel Marbach, James C Costello, Robert Küffner, Nicole M Vega,
Robert J Prill, Diogo M Camacho, Kyle R Allison, Manolis Kellis, James J
Collins, and Gustavo Stolovitzky. Wisdom of crowds for robust gene net-
work inference. Nature methods, 9(8):796–804, 2012.

[68] Béla Bollobás. Random graphs. In Modern graph theory, pages 215–252.
Springer, 1998.

[69] Alan Frieze and Michał Karoński. Introduction to random graphs. Cam-
bridge University Press, 2016.

[70] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-
world’ networks. Nature, 393(6684):440–442, June 1998.

[71] Paul Bendich, Bei Wang, and Sayan Mukherjee. Local homology transfer
and stratification learning. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms, pages 1355–1370. SIAM, 2012.

[72] Paul Bendich, David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and
Dmitriy Morozov. Inferring local homology from sampled stratified spaces.
In 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’07), pages 536–546. IEEE, 2007.

[73] Primoz Skraba and Bei Wang. Approximating local homology from sam-
ples. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 174–192. SIAM, 2014.

[74] Paul Bendich. Analyzing stratified spaces using persistent versions of inter-
section and local homology. Duke University, 2008.

[75] Timothy M Chan. All-pairs shortest paths for unweighted undirected
graphs in o (mn) time. ACM Transactions on Algorithms (TALG), 8(4):1–
17, 2012.

[76] Lior Rokach and Oded Maimon. Clustering methods. In Data mining and
knowledge discovery handbook, pages 321–352. Springer, 2005.

[77] Leen De Baets, Sofie Van Gassen, Tom Dhaene, and Yvan Saeys. Unsuper-
vised trajectory inference using graph mining. In International Meeting on
Computational Intelligence Methods for Bioinformatics and Biostatistics,
pages 84–97. Springer, 2015.

198 CHAPTER 8

[78] Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys. Computational meth-
ods for trajectory inference from single-cell transcriptomics. European
Journal of Immunology, 46(11):2496–2506, nov 2016.

[79] Louis L McQuitty. Hierarchical linkage analysis for the isolation of types.
Educational and Psychological Measurement, 20(1):55–67, 1960.

[80] Bastian Rieck and Heike Leitte. Agreement Analysis of Quality Measures
for Dimensionality Reduction. In Hamish Carr, Christoph Garth, and Tino
Weinkauf, editors, Topological Methods in Data Analysis and Visualization
IV, pages 103–117, Cham, 2017. Springer International Publishing.

[81] Yu Wang, Eshwar Ghumare, Rik Vandenberghe, and Patrick Dupont. Com-
parison of Different Generalizations of Clustering Coefficient and Local Ef-
ficiency for Weighted Undirected Graphs. Neural Computation, 29(2):313–
331, 2017.

[82] Douglas Klein. Centrality measure in graphs. Journal of Mathematical
Chemistry, 47:1209–1223, 05 2010.

[83] Per Hage and Frank Harary. Eccentricity and centrality in networks. Social
Networks, 17(1):57–63, 1995.

[84] M. Barthélemy. Betweenness centrality in large complex networks. The
European Physical Journal B, 38(2):163–168, Mar 2004.

[85] A. Davie and AJ Stothers. Improved bound for complexity of matrix multi-
plication. Proceedings of the Royal Society of Edinburgh: Section A Math-
ematics, 143, 04 2013.

[86] Bernard Chazelle. A Minimum Spanning Tree Algorithm with inverse-
Ackermann Type Complexity. J. ACM, 47(6):1028–1047, November 2000.

[87] Ryuhei Uehara and Yushi Uno. Efficient Algorithms for the Longest Path
Problem. In Rudolf Fleischer and Gerhard Trippen, editors, Algorithms and
Computation, pages 871–883, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[88] Andreas Krause and Daniel Golovin. Submodular Function Maximization.
Tractability, 3:71–104, 01 2011.

[89] Yuanyuan Zhu, Hao Zhang, Lu Qin, and Hong Cheng. Efficient MapRe-
duce algorithms for triangle listing in billion-scale graphs. Distributed and
Parallel Databases, 35(2):149–176, Jun 2017.

[90] Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, and Clément Maria. Intro-
duction to the R package TDA. arXiv preprint arXiv:1411.1830, 2014.

CONCLUDING REMARKS AND FUTURE WORK 199

[91] Juan Mesa and T Brian Boffey. A review of extensive facility location in
networks. European Journal of Operational Research, 95:592–603, 12 1996.

[92] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA,
1990.

[93] Afshin Sadeghi and Holger Fröhlich. Steiner tree methods for optimal sub-
network identification: An empirical study. BMC bioinformatics, 14:144,
04 2013.

[94] Shubhadip Mitra, Priya Saraf, and Arnab Bhattacharya. TIPS: mining top-
k locations to minimize user-inconvenience for trajectory-aware services.
IEEE Transactions on Knowledge and Data Engineering, 2019.

[95] T.G. Crainic and G. Laporte. Fleet Management and Logistics. Centre for
Research on Transportation. Springer US, 1998.

[96] Tae Kim, Timothy Lowe, James Ward, and Richard Francis. A minimum
length covering subgraph of a network. Annals of Operations Research,
18:245–259, 12 1989.

[97] Y.P. Aneja and K.P.K. Nair. Location Of A Tree Shaped Facility In A Net-
work. INFOR: Information Systems and Operational Research, 30(4):319–
324, 1992.

[98] Michael B. Richey. Optimal location of a path or tree on a network with
cycles. Networks, 20(4):391–407, 1990.

[99] Yingpeng Hu, Kaixi Zhang, Jing Yang, and Yanghui Wu. Application of
Hierarchical Facility Location-Routing Problem with Optimization of an
Underground Logistic System: A Case Study in China. Mathematical Prob-
lems in Engineering, 2018:1–10, 09 2018.

[100] Pasquale Avella, Maurizio Boccia, Antonio Sforza, and Igor Vasil’Ev. A
Branch-and-Cut Algorithm for the Median-Path Problem. Computational
Optimization and Applications, 32(3):215–230, Dec 2005.

[101] Leman Akoglu, Jilles Vreeken, Hanghang Tong, Duen Horng Chau, Niko-
laj Tatti, and Christos Faloutsos. Mining connection pathways for marked
nodes in large graphs. In Proceedings of the 2013 SIAM International Con-
ference on Data Mining, SDM 2013, pages 37–45. Siam Society, 2013.

[102] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hi-
erarchical representation learning for networks. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

200 CHAPTER 8

[103] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A Global
Geometric Framework for Nonlinear Dimensionality Reduction. Science,
290(5500):2319–2323, 2000.

[104] J. Hartigan. The K-means algorithm. Clustering algorithms, 4, 1975.

[105] Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by
force-directed placement. Software: Practice and experience, 21(11):1129–
1164, 1991.

[106] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the
Surprising Behavior of Distance Metrics in High Dimensional Space. In
Jan Van den Bussche and Victor Vianu, editors, Database Theory — ICDT
2001, pages 420–434, Berlin, Heidelberg, 2001. Springer Berlin Heidel-
berg.

[107] Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. Near-
est neighbors in high-dimensional data: The emergence and influence of
hubs. In Proceedings of the 26th Annual International Conference on Ma-
chine Learning, pages 865–872, 2009.

[108] Andrea S. Lapaugh and Ronald L. Rivest. The subgraph homeomorphism
problem. Journal of Computer and System Sciences, 20(2):133 – 149, 1980.

[109] F. Fouss, A. Pirotte, J. Renders, and M. Saerens. Random-Walk Compu-
tation of Similarities between Nodes of a Graph with Application to Col-
laborative Recommendation. IEEE Transactions on Knowledge and Data
Engineering, 19(3):355–369, March 2007.

[110] HDK Moonesignhe and Pang-Ning Tan. Outlier detection using random
walks. In 2006 18th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’06), pages 532–539. IEEE, 2006.

[111] Trevor Hastie and Werner Stuetzle. Principal Curves. Journal of the Amer-
ican Statistical Association, 84(406):502–516, 1989.

[112] Mathieu Carriere, Steve Oudot, and Maks Ovsjanikov. Local Signatures
using Persistence Diagrams. working paper or preprint, June 2015.

[113] Frédéric Chazal, David Cohen-Steiner, Leonidas J Guibas, Facundo
Mémoli, and Steve Y Oudot. Gromov-Hausdorff stable signatures for
shapes using persistence. In Computer Graphics Forum, volume 28, pages
1393–1403. Wiley Online Library, 2009.

[114] Victor Patrangenaru and Leif Ellingson. Nonparametric Statistics on Man-
ifolds and Their Applications to Object Data Analysis. CRC Press, Inc.,
USA, 1st edition, 2015.

CONCLUDING REMARKS AND FUTURE WORK 201

[115] Elena Farahbakhsh Touli and Yusu Wang. FPT-algorithms for computing
Gromov-Hausdorff and interleaving distances between trees. arXiv preprint
arXiv:1811.02425, 2018.

[116] Kevin Buchin and Wolfgang Mulzer. Delaunay triangulations in O (sort
(n)) time and more. Journal of the ACM (JACM), 58(2):1–27, 2011.

[117] Yu-Min Chung, Chuan-Shen Hu, Austin Lawson, and Clifford Smyth.
TopoResNet: A hybrid deep learning architecture and its application to skin
lesion classification. arXiv preprint arXiv:1905.08607, 2019.

[118] S. Paris and F. Durand. A Topological Approach to Hierarchical Segmenta-
tion using Mean Shift. In 2007 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2007.

[119] Hengrui Luo, Justin Strait, and Abhijoy Saha. Combining Geomet-
ric and Topological Information in Image Segmentation. arXiv preprint
arXiv:1910.04778, 2019.

[120] Roberto A Novoa, Olivier Gevaert, and Justin M Ko. Marking the Path
Toward Artificial Intelligence–Based Image Classification in Dermatology.
Jama Dermatology, 155(10):1105–1106, 2019.

[121] D. I. Schlessinger, G. Chhor, O. Gevaert, S. M. Swetter, J. Ko, and R. A.
Novoa. Artificial intelligence and dermatology: opportunities, challenges,
and future directions. Semin Cutan Med Surg, 38(1):31–37, Mar 2019.

[122] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. In Nassir Navab,
Joachim Hornegger, William M. Wells, and Alejandro F. Frangi, editors,
Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015, pages 234–241, Cham, 2015. Springer International Publishing.

[123] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-
CNN. In The IEEE International Conference on Computer Vision (ICCV),
Oct 2017.

[124] Tony Chan and Luminita Vese. An Active Contour Model without Edges.
In Mads Nielsen, Peter Johansen, Ole Fogh Olsen, and Joachim Weickert,
editors, Scale-Space Theories in Computer Vision, pages 141–151, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

[125] F. R. D. Velasco. Thresholding using the ISODATA clustering algorithm.
IEEE Transactions on Systems Man and Cybernetics, 10:771–774, Novem-
ber 1980.

202 CHAPTER 8

[126] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High Reso-
lution 3D Surface Construction Algorithm. In Proceedings of the 14th An-
nual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’87, page 163–169, New York, NY, USA, 1987. Association for
Computing Machinery.

[127] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. SLIC
Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 34(11):2274–2282,
2012.

[128] Lawrence G Roberts. Machine perception of three-dimensional solids. PhD
thesis, Massachusetts Institute of Technology, 1963.

[129] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active
contour models. International Journal Of Computer Vision, 1(4):321–331,
1988.

[130] Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi,
Stephen Dusza, David Gutman, Brian Helba, Aadi Kalloo, Konstantinos
Liopyris, Michael Marchetti, et al. Skin lesion analysis toward melanoma
detection 2018: A challenge hosted by the international skin imaging col-
laboration (isic). arXiv preprint arXiv:1902.03368, 2019.

[131] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The HAM10000
dataset, a large collection of multi-source dermatoscopic images of com-
mon pigmented skin lesions. Scientific data, 5:180161, 2018.

[132] Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser.py: A Lean
Persistent Homology Library for Python. The Journal of Open Source Soft-
ware, 3(29):925, Sep 2018.

[133] Frédéric Chazal, Leonidas J. Guibas, Steve Oudot, and Primoz Skraba.
Persistence-Based Clustering in Riemannian Manifolds. In ACM Annual
Symposium on Computational Geometry, pages 97–106, Paris, France, June
2011.

[134] J.C. Dooley. Two-dimensional interpolation of irregularly spaced data
using polynomial splines. Physics of the Earth and Planetary Interiors,
12(2):180 – 187, 1976.

[135] Lee R Dice. Measures of the amount of ecologic association between
species. Ecology, 26(3):297–302, 1945.

CONCLUDING REMARKS AND FUTURE WORK 203

[136] Th A Sorensen. A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content and its application to
analyses of the vegetation on Danish commons. Biol. Skar., 5:1–34, 1948.

[137] Brian W Matthews. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451, 1975.

[138] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. LINE: Large-scale Information Network Embedding. In Proceed-
ings of the 24th International Conference on World Wide Web, WWW ’15,
pages 1067–1077, Republic and Canton of Geneva, Switzerland, 2015. In-
ternational World Wide Web Conferences Steering Committee.

[139] Surender Baswana and Telikepalli Kavitha. Faster algorithms for all-pairs
approximate shortest paths in undirected graphs. SIAM Journal on Com-
puting, 39(7):2865–2896, 2010.

[140] Sara Kališnik, Vitaliy Kurlin, and Davorin Lešnik. A higher-dimensional
homologically persistent skeleton. Advances in Applied Mathematics,
102:113–142, 2019.

[141] Vin Silva and Gunnar Carlsson. Topological estimation using witness com-
plexes. Proc. Sympos. Point-Based Graphics, 06 2004.

[142] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[143] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308, 2016.

[144] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, et al. Imagenet large scale visual recognition challenge. International
journal of computer vision, 115(3):211–252, 2015.

[145] Aviv Regev, Sarah A Teichmann, Eric S Lander, Ido Amit, Christophe
Benoist, Ewan Birney, Bernd Bodenmiller, Peter Campbell, Piero Carn-
inci, Menna Clatworthy, et al. Science forum: the human cell atlas. Elife,
6:e27041, 2017.

[146] Tabula Muris Consortium et al. Single-cell transcriptomics of 20 mouse
organs creates a Tabula Muris. Nature, 562(7727):367, 2018.

[147] Thinh N Tran and Gary D Bader. Tempora: cell trajectory inference using
time-series single-cell RNA sequencing data. PLOS Computational Biol-
ogy, 16(9):e1008205, 2020.

[148] Helena Todorov, Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys.
TinGa: fast and flexible trajectory inference with Growing Neural Gas.
Bioinformatics, 36(Supplement 1):i66–i74, 2020.

[149] László Grad-Gyenge, Attila Kiss, and Peter Filzmoser. Graph embedding
based recommendation techniques on the knowledge graph. In Adjunct
Publication of the 25th Conference on User Modeling, Adaptation and Per-
sonalization, pages 354–359, 2017.

[150] Jun Ai, Yayun Liu, Zhan Su, Hui Zhang, and Fengyu Zhao. Link predic-
tion in recommender systems based on multi-factor network modeling and
community detection. EPL (Europhysics Letters), 126(3):38003, 2019.

[151] Seyed Mehran Kazemi and David Poole. Simple embedding for link pre-
diction in knowledge graphs. In Advances in neural information processing
systems, pages 4284–4295, 2018.

[152] Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srini-
vasan. The predictive toxicology challenge 2000–2001. Bioinformatics,
17(1):107–108, 2001.

[153] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vish-
wanathan, Alex J Smola, and Hans-Peter Kriegel. Protein function pre-
diction via graph kernels. Bioinformatics, 21(suppl 1):i47–i56, 2005.

[154] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1365–1374, 2015.

[155] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures
from non-enzymes without alignments. Journal of molecular biology,
330(4):771–783, 2003.

