2,754 research outputs found

    Evaluation and analysis of the orbital maneuvering vehicle video system

    Get PDF
    The work accomplished in the summer of 1989 in association with the NASA/ASEE Summer Faculty Research Fellowship Program at Marshall Space Flight Center is summarized. The task involved study of the Orbital Maneuvering Vehicle (OMV) Video Compression Scheme. This included such activities as reviewing the expected scenes to be compressed by the flight vehicle, learning the error characteristics of the communication channel, monitoring the CLASS tests, and assisting in development of test procedures and interface hardware for the bit error rate lab being developed at MSFC to test the VCU/VRU. Numerous comments and suggestions were made during the course of the fellowship period regarding the design and testing of the OMV Video System. Unfortunately from a technical point of view, the program appears at this point in time to be trouble from an expense prospective and is in fact in danger of being scaled back, if not cancelled altogether. This makes technical improvements prohibitive and cost-reduction measures necessary. Fortunately some cost-reduction possibilities and some significant technical improvements that should cost very little were identified

    Diffuse retro-reflective imaging for improved mosquito tracking around human baited bednets

    Get PDF
    Robust imaging techniques for tracking insects have been essential tools in numerous laboratory and field studies on pests, beneficial insects and model systems. Recent innovations in optical imaging systems and associated signal processing have enabled detailed characterisation of nocturnal mosquito behaviour around bednets and improvements in bednet design, a global essential for protecting populations against malaria. Nonetheless, there remain challenges around ease of use for large scale in situ recordings and extracting data reliably in the critical areas of the bednet where the optical signal is attenuated. Here we introduce a retro-reflective screen at the back of the measurement volume, which can simultaneously provide diffuse illumination, and remove optical alignment issues whilst requiring only one-sided access to the measurement space. The illumination becomes significantly more uniform, although, noise removal algorithms are needed to reduce the effects of shot noise particularly across low intensity bednet regions. By systematically introducing mosquitoes in front and behind the bednet in lab experiments we are able to demonstrate robust tracking in these challenging areas. Overall, the retro-reflective imaging setup delivers mosquito segmentation rates in excess of 90% compared to less than 70% with back-lit systems

    The Subaru Coronagraphic Extreme Adaptive Optics system: enabling high-contrast imaging on solar-system scales

    Full text link
    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500nm allowing for coronagraphic direct exoplanet imaging of the inner 3 lambda/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1 lambda/D. Non-common path, low-order aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate, NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid 2016) can take deeper exposures and/or perform angular, spectral and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable sub-diffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.Comment: Accepted for publication, 20 pages, 10 figure

    Characteristics of flight simulator visual systems

    Get PDF
    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality

    A testing procedure to characterize color and spatial quality of digital cameras used to image cultural heritage

    Get PDF
    A testing procedure for characterizing both the color and spatial image quality of trichromatic digital cameras, which are used to photograph paintings in cultural heritage institutions, is described. This testing procedure is target-based, thus providing objective measures of quality. The majority of the testing procedure followed current standards from national and international organizations such as ANSI, ISO, and IEC. The procedure was developed in an academic research laboratory and used to benchmark four representative American museum’s digital-camera systems and workflows. The quality parameters tested included system spatial uniformity, tone reproduction, color reproduction accuracy, noise, dynamic range, spatial cross-talk, spatial frequency response, color-channel registration, and depth of field. In addition, two paintings were imaged and processed through each museum’s normal digital workflow. The results of the four case studies showed many dissimilarities among the digital-camera systems and workflows of American museums, which causes a significant range in the archival quality of their digital masters

    High-speed imaging in fluids

    Get PDF
    High-speed imaging is in popular demand for a broad range of experiments in fluids. It allows for a detailed visualization of the event under study by acquiring a series of image frames captured at high temporal and spatial resolution. This review covers high-speed imaging basics, by defining criteria for high-speed imaging experiments in fluids and to give rule-of-thumbs for a series of cases. It also considers stroboscopic imaging, triggering and illumination, and scaling issues. It provides guidelines for testing and calibration. Ultra high-speed imaging at frame rates exceeding 1 million frames per second is reviewed, and the combination of conventional experiments in fluids techniques with high-speed imaging techniques are discussed. The review is concluded with a high-speed imaging chart, which summarizes criteria for temporal scale and spatial scale and which facilitates the selection of a high-speed imaging system for the applicatio

    The Psychophysics of Brain Rhythms

    Get PDF
    It is becoming increasingly apparent that brain oscillations in various frequency bands play important roles in perceptual and attentional processes. Understandably, most of the associated experimental evidence comes from human or animal electrophysiological studies, allowing direct access to the oscillatory activities. However, such periodicities in perception and attention should, in theory, also be observable using the proper psychophysical tools. Here, we review a number of psychophysical techniques that have been used by us and other authors, in successful and sometimes unsuccessful attempts, to reveal the rhythmic nature of perceptual and attentional processes. We argue that the two existing and largely distinct debates about discrete vs. continuous perception and parallel vs. sequential attention should in fact be regarded as two facets of the same question: how do brain rhythms shape the psychological operations of perception and attention

    The perception and cognition of emotion from motion

    Get PDF
    Emotional expression has been intensively researched in the past, however, this research was normally conducted on facial expressions and only seldomly on dynamic stimuli. We have been interested in better understanding the perception and cognition of emotion from human motion. To this end 11 experiments were conducted that spanned the perception and representation of emotion, the role spatial and temporal cues played in the perception of emotions and finally high level cognitive features in the categorisation of emotion. The stimuli we employed were point-light displays of human arm movements recorded as actors portrayed ordinary actions with emotion. To create them we used motion capture technology and computer animation techniques. Results from the first two experiments showed basic human competence in recognition of emotion and that the representation of emotions is along two dimensions. These dimensions resembled arousal and valence, and the psychological space resembled that found for both facial expression and experienced affect. In a search for possible stimulus properties that would act as correlates for the dimensions, it emerged that arousal could be accounted for by movement speed while valence was related to phase relations between joints in the displays. In the third experiment we manipulated the dimension of arousal and showed that through a modulation of duration, perception of angry, sad and neutral movements could be modulated. In experiments 4-7 the contribution of spatial cues to the perception of emotion was explored and in the final set of experiments (8-11) perception of emotion was examined from a cognitive perspective. Through the course of the research a number of interesting findings emerged that suggested three primary directions for future research: the possible relationship between attributions of animacy and emotion to animate and inanimate non-humans. The phase or timing relationships between elements in a display as a categorical cue to valence and finally the unexplored relationship between cues to emotion from movements and faces
    • …
    corecore