3,625 research outputs found

    Differential Privacy for Industrial Internet of Things: Opportunities, Applications and Challenges

    Get PDF
    The development of Internet of Things (IoT) brings new changes to various fields. Particularly, industrial Internet of Things (IIoT) is promoting a new round of industrial revolution. With more applications of IIoT, privacy protection issues are emerging. Specially, some common algorithms in IIoT technology such as deep models strongly rely on data collection, which leads to the risk of privacy disclosure. Recently, differential privacy has been used to protect user-terminal privacy in IIoT, so it is necessary to make in-depth research on this topic. In this paper, we conduct a comprehensive survey on the opportunities, applications and challenges of differential privacy in IIoT. We firstly review related papers on IIoT and privacy protection, respectively. Then we focus on the metrics of industrial data privacy, and analyze the contradiction between data utilization for deep models and individual privacy protection. Several valuable problems are summarized and new research ideas are put forward. In conclusion, this survey is dedicated to complete comprehensive summary and lay foundation for the follow-up researches on industrial differential privacy

    A Review of Real World Big Data Processing Structure: Problems and Solutions

    Get PDF
    Information sort and sum in human culture is developing in astonishing pace which is brought about by rising new administrations as distributed computing, web of things and area-based administrations, the time of enormous information has arrived. As information, has been principal asset, how to oversee and use enormous information better has pulled in much consideration. Particularly, with the advancement of web of things, how to handling huge sum continuous information has turned into an extraordinary test in research and applications. As of late, distributed computing innovation has pulled in much consideration with elite, yet how to utilize distributed computing innovation for substantial scale ongoing information preparing has not been contemplated. This paper concentrated the difficulties of huge information firstly and finishes up every one of these difficulties into six issues. Keeping in mind the end goal to enhance the execution of constant handling of substantial information, this paper manufactures a sort of real-time big data processing (RTDP) design considering the distributed computing innovation and after that proposed the four layers of the engineering, and various leveled figuring model. This paper proposed a multi-level stockpiling model and the LMA-based application organization technique to meet the continuous and heterogeneity necessities of RTDP framework. We utilize DSMS, CEP, group-basedMap Reduce and other handling mode and FPGA, GPU, CPU, ASIC advancements contrastingly to preparing the information at the terminal of information gathering. We organized the information and afterward transfer to the cloud server and Map Reduce the information consolidated with the effective processing abilities cloud design. This paper brings up the general structure for future RTDP framework and computation techniques, is right now the general strategy RTDP framework outline

    Integrity and Privacy Protection for Cyber-physical Systems (CPS)

    Get PDF
    The present-day interoperable and interconnected cyber-physical systems (CPS) provides significant value in our daily lives with the incorporation of advanced technologies. Still, it also increases the exposure to many security privacy risks like (1) maliciously manipulating the CPS data and sensors to compromise the integrity of the system (2) launching internal/external cyber-physical attacks on the central controller dependent CPS systems to cause a single point of failure issues (3) running malicious data and query analytics on the CPS data to identify internal insights and use it for achieving financial incentive. Moreover, (CPS) data privacy protection during sharing, aggregating, and publishing has also become challenging nowadays because most of the existing CPS security and privacy solutions have drawbacks, like (a) lack of a proper vulnerability characterization model to accurately identify where privacy is needed, (b) ignoring data providers privacy preference, (c) using uniform privacy protection which may create inadequate privacy for some provider while overprotecting others.Therefore, to address these issues, the primary purpose of this thesis is to orchestrate the development of a decentralized, p2p connected data privacy preservation model to improve the CPS system's integrity against malicious attacks. In that regard, we adopt blockchain to facilitate a decentralized and highly secured system model for CPS with self-defensive capabilities. This proposed model will mitigate data manipulation attacks from malicious entities by introducing bloom filter-based fast CPS device identity validation and Merkle tree-based fast data verification. Finally, the blockchain consensus will help to keep consistency and eliminate malicious entities from the protection framework. Furthermore, to address the data privacy issues in CPS, we propose a personalized data privacy model by introducing a standard vulnerability profiling library (SVPL) to characterize and quantify the CPS vulnerabilities and identify the necessary privacy requirements. Based on this model, we present our personalized privacy framework (PDP) in which Laplace noise is added based on the individual node's selected privacy preferences. Finally, combining these two proposed methods, we demonstrate that the blockchain-based system model is scalable and fast enough for CPS data's integrity verification. Also, the proposed PDP model can attain better data privacy by eliminating the trade-off between privacy, utility, and risk of losing information

    PanCast: Listening to Bluetooth Beacons for Epidemic Risk Mitigation

    Full text link
    During the ongoing COVID-19 pandemic, there have been burgeoning efforts to develop and deploy smartphone apps to expedite contact tracing and risk notification. Most of these apps track pairwise encounters between individuals via Bluetooth and then use these tracked encounters to identify and notify those who might have been in proximity of a contagious individual. Unfortunately, these apps have not yet proven sufficiently effective, partly owing to low adoption rates, but also due to the difficult tradeoff between utility and privacy and the fact that, in COVID-19, most individuals do not infect anyone but a few superspreaders infect many in superspreading events. In this paper, we proposePanCast, a privacy-preserving and inclusive system for epidemic risk assessment and notification that scales gracefully with adoption rates, utilizes location and environmental information to increase utility without tracking its users, and can be used to identify superspreading events. To this end, rather than capturing pairwise encounters between smartphones, our system utilizes Bluetooth encounters between beacons placed in strategic locations where superspreading events are most likely to occur and inexpensive, zero-maintenance, small devices that users can attach to their keyring. PanCast allows healthy individuals to use the system in a purely passive "radio" mode, and can assist and benefit from other digital and manual contact tracing systems. Finally, PanCast can be gracefully dismantled at the end of the pandemic, minimizing abuse from any malevolent government or entity

    The SaPPART COST Action: Towards Positioning Integrity for Road Transport

    Get PDF
    Global Navigation Satellite Systems (GNSS) is becoming one of the main components supporting Intelligent Transport Systems (ITS) and value-added services in road transport and personal mobility. The use of GNSS is expected to grow significantly due to improvements in positioning performance, with positive impacts such as: finding the optimal route; improving traffic and travel efficiency as well as safety and security; reducing congestion and optimizing fuel consumption. The deployment of mission critical applications needs high reliability in the positioning information. However, the positioning reliability is not easy to achieve because of the heterogeneous quality of the GNSS signal, which is highly influenced by the road environment and the operational scenario of the application. It is important to understand the requirements and performance GNSS can achieve for various road transport applications. This paper is presenting the SaPPART COST Action on the Satellite Positioning Performance Assessment for Road Transport. It introduces the goal and the framework of the Action with the research programme and some related activities dedicated to dissemination and supporting standardisation working groups
    • …
    corecore