926 research outputs found

    Time Stamp based Cross Layer MANET Security Protocol

    Get PDF
    Mobile Adhoc Network (MANET) is a wireless network where nodes communicate through other nodes without the aid of a base station. Security is a major challenge in MANET as the packets are prone vulnerability and eavesdropping in wireless environment. Generally MAC layer provides the security in such wireless network through encryption and authentication and the protocol is called WEP. Many authentication and encryption techniques are proposed to increase the security of the MANET. But stronger Security leads to more energy loss as mobiles have less energy and limited processing capability. In this work a Cross layer timestamp based network security technique is developed. The technique reduces the encryption packet overflow which is due to PKE or public key exchange, and derives the public key directly from the neighbor2019;s table which is transmitted using routing information exchange. The simulation is performed with omnet++ simulator. Performance results demonstrate that the energy overhead due to encryption or performance compromise are very low in the proposed system. Further as the protocol is embedded in the network layer it is easily adoptable to any existing architecture without modifying the MAC or Physical layer standard or protocol

    Enhancement the security of WSN using ALARM protocol to Prevention from Reply Attack

    Get PDF
    The wireless Ad hoc network is the self configuring type of network. In self configuring type of networks mobile nodes can leave or join the network when they want .In such type of networks many inside and outside attacks are possible. Inside and outside attacks are broadly classified as active and passive attacks. To prevent inside and outside attacks trust relationship between the mobile nodes must be maintained. The trust relationship between the mobile nodes is provided by mutual authentication. ALARM is the protocol for providing trust relationship between the mobile nodes. In this protocol the clocks of the mobile nodes are weakly synchronized by using GPS. In such case reply attack is possible. To prevent reply attack clocks of the mobile nodes must be strongly synchronized. In our new proposed technique, we are enhancing t the ALARM protocol to provide strong clock synchronization between the mobile nodes. Our new technique will be based on the NTP (network time protocol). Keywords— ALARM, Attacks, clock Synchronization, GPS, NT

    Security and Dynamic Encryption System in Mobile Ad-Hoc Network

    Get PDF

    On Security Analysis of Recent Password Authentication and Key Agreement Schemes Based on Elliptic Curve Cryptography

    Get PDF
    Secure and efficient mutual authentication and key agreement schemes form the basis for any robust network communication system. Elliptic Curve Cryptography (ECC) has emerged as one of the most successful Public Key Cryptosystem that efficiently meets all the security challenges. Comparison of ECC with other Public Key Cryptosystems (RSA, Rabin, ElGamal) shows that it provides equal level of security for a far smaller bit size, thereby substantially reducing the processing overhead. This makes it suitable for constrained environments like wireless networks and mobile devices as well as for security sensitive applications like electronic banking, financial transactions and smart grids. With the successful implementation of ECC in security applications (e-passports, e-IDs, embedded systems), it is getting widely commercialized. ECC is simple and faster and is therefore emerging as an attractive alternative for providing security in lightweight device, which contributes to its popularity in the present scenario. In this paper, we have analyzed some of the recent password based authentication and key agreement schemes using ECC for various environments. Furthermore, we have carried out security, functionality and performance comparisons of these schemes and found that they are unable to satisfy their claimed security goals

    Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.Comment: 32 pages, 10 figures. The work is an extended version of the author's previous works submitted in CoRR: arXiv:1107.5538v1 and arXiv:1102.1226v

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    • …
    corecore