994 research outputs found

    Identity and Access Management System: a Web-Based Approach for an Enterprise

    Get PDF
    Managing digital identities and access control for enterprise users and applications remains one of the greatest challenges facing computing today. An attempt to address this issue led to the proposed security paradigm called Identity and Access Management (IAM) service based on IAM standards. Current approaches such as Lightweight Directory Access Protocol (LDAP), Central Authentication Service (CAS) and Security Assertion Markup Language (SAML) lack comprehensive analysis from conception to physical implementation to incorporate these solutions thereby resulting in impractical and fractured solutions. In this paper, we have implemented Identity and Access Management System (IAMSys) using the Lightweight Directory Access Protocol (LDAP) which focuses on authentication, authorization, administration of identities and audit reporting. Its primary concern is verification of the identity of the entity and granting correct level of access for resources which are protected in either the cloud environment or on-premise systems. A phased approach methodology was used in the research where it requires any enterprise or organization willing to adopt this must carry out a careful planning and demonstrated a good understanding of the technologies involved. The results of the experimental evaluation indicated that the average rating score is 72.0 % for the participants involved in this study. This implies that the idea of IAMSys is a way to mitigating security challenges associated with authentication, authorization, data protection and accountability if properly deployed

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Hierarchical Group and Attribute-Based Access Control: Incorporating Hierarchical Groups and Delegation into Attribute-Based Access Control

    Get PDF
    Attribute-Based Access Control (ABAC) is a promising alternative to traditional models of access control (i.e. Discretionary Access Control (DAC), Mandatory Access Control (MAC) and Role-Based Access control (RBAC)) that has drawn attention in both recent academic literature and industry application. However, formalization of a foundational model of ABAC and large-scale adoption is still in its infancy. The relatively recent popularity of ABAC still leaves a number of problems unexplored. Issues like delegation, administration, auditability, scalability, hierarchical representations, etc. have been largely ignored or left to future work. This thesis seeks to aid in the adoption of ABAC by filling in several of these gaps. The core contribution of this work is the Hierarchical Group and Attribute-Based Access Control (HGABAC) model, a novel formal model of ABAC which introduces the concept of hierarchical user and object attribute groups to ABAC. It is shown that HGABAC is capable of representing the traditional models of access control (MAC, DAC and RBAC) using this group hierarchy and that in many cases it’s use simplifies both attribute and policy administration. HGABAC serves as the basis upon which extensions are built to incorporate delegation into ABAC. Several potential strategies for introducing delegation into ABAC are proposed, categorized into families and the trade-offs of each are examined. One such strategy is formalized into a new User-to-User Attribute Delegation model, built as an extension to the HGABAC model. Attribute Delegation enables users to delegate a subset of their attributes to other users in an off-line manner (not requiring connecting to a third party). Finally, a supporting architecture for HGABAC is detailed including descriptions of services, high-level communication protocols and a new low-level attribute certificate format for exchanging user and connection attributes between independent services. Particular emphasis is placed on ensuring support for federated and distributed systems. Critical components of the architecture are implemented and evaluated with promising preliminary results. It is hoped that the contributions in this research will further the acceptance of ABAC in both academia and industry by solving the problem of delegation as well as simplifying administration and policy authoring through the introduction of hierarchical user groups

    Insider threat mitigation and access control in healthcare systems

    Get PDF
    Rapid and reliable information sharing of patient healthcare information has become critical for achieving better care with lower costs. However, such healthcare information sharing requires to be done securely with privacy guarantees, as required by law. Among its other requirements, the Health Insurance Portability and Accountability Act (HIPAA) requires the use of appropriate access control mechanisms to protect healthcare information. Despite these legal requirements, currently implemented access control models in the healthcare domain are typically inadequate as demonstrated by the large and increasing numbers of successful attacks on healthcare systems. In particular, current access control models do not provide sufficient protection for healthcare systems from attacks by insiders, i.e., authorized healthcare personnel. This paper examines how healthcare information can be protected from unauthorized or improper use, disclosure, alteration, and destruction by health- care providers. Using a holistic approach toward modeling access control, the authors construct a threat model for access control in healthcare systems. The constructed model is then used to assess the effectiveness of current access control mechanisms such as Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC), as well as the BiLayer Access Control (BLAC) model, which was proposed as a flexible, higher-performance replacement for both RBAC and ABAC
    • …
    corecore