32 research outputs found

    Prepare for VoIP Spam

    Get PDF

    Privacy-preserving, User-centric VoIP CAPTCHA Challenges: an Integrated Solution in the SIP Environment

    Get PDF
    Purpose – This work aims to argue that it is possible to address discrimination issues that naturally arise in contemporary audio CAPTCHA challenges and potentially enhance the effectiveness of audio CAPTCHA systems by adapting the challenges to the user characteristics. Design/methodology/approach – A prototype has been designed, called PrivCAPTCHA, to offer privacy-preserving, user-centric CAPTCHA challenges. Anonymous credential proofs are integrated into the Session Initiation Protocol (SIP) protocol and the approach is evaluated in a real-world Voice over Internet Protocol (VoIP) environment. Findings – The results of this work indicate that it is possible to create VoIP CAPTCHA services offering privacy-preserving, user-centric challenges while maintaining sufficient efficiency. Research limitations/implications – The proposed approach was evaluated through an experimental implementation to demonstrate its feasibility. Additional features, such as appropriate user interfaces and efficiency optimisations, would be useful for a commercial product. Security measures to protect the system from attacks against the SIP protocol would be useful to counteract the effects of the introduced overhead. Future research could investigate the use of this approach on non-audio CAPTCHA services. Practical implications – PrivCAPTCHA is expected to achieve fairer, non-discriminating CAPTCHA services while protecting the user’s privacy. Adoption success relies upon the general need for employment of privacy-preserving practices in electronic interactions. Social implications – This approach is expected to enhance the quality of life of users, who will now receive CAPTCHA challenges closer to their characteristics. This applies especially to users with disabilities. Additionally, as a privacy-preserving service, this approach is expected to increase trust during the use of services that use it. Originality/value – To the best of authors’ knowledge, this is the first comprehensive proposal for privacy-preserving CAPTCHA challenge adaptation. The proposed system aims at providing an improved CAPTCHA service that is more appropriate for and trusted by human users

    From Understanding Telephone Scams to Implementing Authenticated Caller ID Transmission

    Get PDF
    abstract: The telephone network is used by almost every person in the modern world. With the rise of Internet access to the PSTN, the telephone network today is rife with telephone spam and scams. Spam calls are significant annoyances for telephone users, unlike email spam, spam calls demand immediate attention. They are not only significant annoyances but also result in significant financial losses in the economy. According to complaint data from the FTC, complaints on illegal calls have made record numbers in recent years. Americans lose billions to fraud due to malicious telephone communication, despite various efforts to subdue telephone spam, scam, and robocalls. In this dissertation, a study of what causes the users to fall victim to telephone scams is presented, and it demonstrates that impersonation is at the heart of the problem. Most solutions today primarily rely on gathering offending caller IDs, however, they do not work effectively when the caller ID has been spoofed. Due to a lack of authentication in the PSTN caller ID transmission scheme, fraudsters can manipulate the caller ID to impersonate a trusted entity and further a variety of scams. To provide a solution to this fundamental problem, a novel architecture and method to authenticate the transmission of the caller ID is proposed. The solution enables the possibility of a security indicator which can provide an early warning to help users stay vigilant against telephone impersonation scams, as well as provide a foundation for existing and future defenses to stop unwanted telephone communication based on the caller ID information.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Dynamic Exposure Control in P2PSIP Networks

    Get PDF
    Voice over IP services have undergone a large-scale deployment thanks to the development of high-speed broadband access and the standardization of dedicated signaling protocols. They offer new opportunities, in particular in the context of peer-to-peer networks. However they are exposed to multiple security attacks due to a lower confinement in comparison to traditional networks. Protection mechanisms are available, but may significantly impact the service performance. We propose in this paper a risk management strategy for dynamically adapting the exposure of P2PSIP networks. We describe the underlying mechanisms for mitigating risks based on a portfolio of countermeasures. We also detail the mathematical modeling which supports our solution based on the analysis of a case study. Finally we quantify the benefits and limits of this approach through an extensive set of experiments performed with the OMNET++ simulator

    Managing Risks at Runtime in VoIP Networks and Services

    Get PDF
    International audienceIP telephony is less confined than traditional PSTN telephony. As a consequence, it is more exposed to security attacks. These attacks are specific to VoIP protocols such as SPIT, or are inherited from the IP layer such as ARP poisoning. Protection mechanisms are often available, but they may seriously impact on the quality of service of such critical environments. We propose to exploit and automate risk management methods and techniques for VoIP infrastructures. Our objective is to dynamically adapt the exposure of a VoIP network with regard to the attack potentiality while minimizing the impact for the service. This paper describes the challenges of risk management for VoIP, our runtime strategy for assessing and treating risks, preliminary results based on Monte-Carlo simulations and future work

    Security for Decentralised Service Location - Exemplified with Real-Time Communication Session Establishment

    Get PDF
    Decentralised Service Location, i.e. finding an application communication endpoint based on a Distributed Hash Table (DHT), is a fairly new concept. The precise security implications of this approach have not been studied in detail. More importantly, a detailed analysis regarding the applicability of existing security solutions to this concept has not been conducted. In many cases existing client-server approaches to security may not be feasible. In addition, to understand the necessity for such an analysis, it is key to acknowledge that Decentralised Service Location has some unique security requirements compared to other P2P applications such as filesharing or live streaming. This thesis concerns the security challenges for Decentralised Service Location. The goals of our work are on the one hand to precisely understand the security requirements and research challenges for Decentralised Service Location, and on the other hand to develop and evaluate corresponding security mechanisms. The thesis is organised as follows. First, fundamentals are explained and the scope of the thesis is defined. Decentralised Service Location is defined and P2PSIP is explained technically as a prototypical example. Then, a security analysis for P2PSIP is presented. Based on this security analysis, security requirements for Decentralised Service Location and the corresponding research challenges -- i.e. security concerns not suitably mitigated by existing solutions -- are derived. Second, several decentralised solutions are presented and evaluated to tackle the security challenges for Decentralised Service Location. We present decentralised algorithms to enable availability of the DHTs lookup service in the presence of adversary nodes. These algorithms are evaluated via simulation and compared to analytical bounds. Further, a cryptographic approach based on self-certifying identities is illustrated and discussed. This approach enables decentralised integrity protection of location-bindings. Finally, a decentralised approach to assess unknown identities is introduced. The approach is based on a Web-of-Trust model. It is evaluated via prototypical implementation. Finally, the thesis closes with a summary of the main contributions and a discussion of open issues
    corecore