14,248 research outputs found

    Challenges to describe QoS requirements for web services quality prediction to support web services interoperability in electronic commerce

    Get PDF
    Quality of service (QoS) is significant and necessary for web service applications quality assurance. Furthermore, web services quality has contributed to the successful implementation of Electronic Commerce (EC) applications. However, QoS is still the big issue for web services research and remains one of the main research questions that need to be explored. We believe that QoS should not only be measured but should also be predicted during the development and implementation stages. However, there are challenges and constraints to determine and choose QoS requirements for high quality web services. Therefore, this paper highlights the challenges for the QoS requirements prediction as they are not easy to identify. Moreover, there are many different perspectives and purposes of web services, and various prediction techniques to describe QoS requirements. Additionally, the paper introduces a metamodel as a concept of what makes a good web service

    Model Based Development of Quality-Aware Software Services

    Get PDF
    Modelling languages and development frameworks give support for functional and structural description of software architectures. But quality-aware applications require languages which allow expressing QoS as a first-class concept during architecture design and service composition, and to extend existing tools and infrastructures adding support for modelling, evaluating, managing and monitoring QoS aspects. In addition to its functional behaviour and internal structure, the developer of each service must consider the fulfilment of its quality requirements. If the service is flexible, the output quality depends both on input quality and available resources (e.g., amounts of CPU execution time and memory). From the software engineering point of view, modelling of quality-aware requirements and architectures require modelling support for the description of quality concepts, support for the analysis of quality properties (e.g. model checking and consistencies of quality constraints, assembly of quality), tool support for the transition from quality requirements to quality-aware architectures, and from quality-aware architecture to service run-time infrastructures. Quality management in run-time service infrastructures must give support for handling quality concepts dynamically. QoS-aware modeling frameworks and QoS-aware runtime management infrastructures require a common evolution to get their integration

    MDA-based ATL transformation to generate MVC 2 web models

    Full text link
    Development and maintenance of Web application is still a complex and error-prone process. We need integrated techniques and tool support for automated generation of Web systems and a ready prescription for easy maintenance. The MDA approach proposes an architecture taking into account the development and maintenance of large and complex software. In this paper, we apply MDA approach for generating PSM from UML design to MVC 2Web implementation. That is why we have developed two meta-models handling UML class diagrams and MVC 2 Web applications, then we have to set up transformation rules. These last are expressed in ATL language. To specify the transformation rules (especially CRUD methods) we used a UML profiles. To clearly illustrate the result generated by this transformation, we converted the XMI file generated in an EMF (Eclipse Modeling Framework) model.Comment: International Journal of Computer Science & Information Technology-201

    Towards Model-Driven Development of Access Control Policies for Web Applications

    Get PDF
    We introduce a UML-based notation for graphically modeling systems’ security aspects in a simple and intuitive way and a model-driven process that transforms graphical specifications of access control policies in XACML. These XACML policies are then translated in FACPL, a policy language with a formal semantics, and the resulting policies are evaluated by means of a Java-based software tool

    A Practical Environment to Apply Model-Driven Web Engineering

    Get PDF
    The application of a model-driven paradigm in the development of Web Systems has yielded very good research results. Several research groups are defining metamodels, transformations, and tools which offer a suitable environment, known as model-driven Web engineering (MDWE). However, there are very few practical experiences in real Web system developments using real development teams. This chapter presents a practical environment of MDWE based on the use of NDT (navigational development techniques) and Java Web systems, and it provides a practical evaluation of its application within a real project: specialized Diraya.Ministerio de EducaciĂłn y Ciencia TIN2007-67843-C06-03Ministerio de EducaciĂłn y Ciencia TIN2007-30391-

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: ‱ The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. ‱ The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. ‱ The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. ‱ The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services
    • 

    corecore