50 research outputs found

    Modelling Smart Card Security Protocols in SystemC TLM

    No full text
    Smart cards are an example of advanced chip technology. They allow information transfer between the card holder and the system over secure networks, but they contain sensitive data related to both the card holder and the system, that has to be kept private and confidential. The objective of this work is to create an executable model of a smart card system, including the security protocols and transactions, and to examine the strengths and determine the weaknesses by running tests on the model. The security objectives have to be considered during the early stages of systems development and design, an executable model will give the designer the advantage of exploring the vulnerabilities early, and therefore enhancing the system security. The Unified Modeling Language (UML) 2.0 is used to model the smart card security protocol. The executable model is programmed in SystemC with the Transaction Level Modeling (TLM) extensions. The final model was used to examine the effectiveness of a number of authentication mechanisms with different probabilities of failure. In addition, a number of probable attacks on the current security protocol were modeled to examine the vulnerabilities. The executable model shows that the smart card system security protocols and transactions need further improvement to withstand different types of security attacks

    A Trace Logic for Local Security Properties

    Get PDF
    We propose a new simple \emph{trace} logic that can be used to specify \emph{local security properties}, i.e. security properties that refer to a single participant of the protocol specification. Our technique allows a protocol designer to provide a formal specification of the desired security properties, and integrate it naturally into the design process of cryptographic protocols. Furthermore, the logic can be used for formal verification. We illustrate the utility of our technique by exposing new attacks on the well studied protocol TMN.Comment: New versio

    Anonymity and Information Hiding in Multiagent Systems

    Full text link
    We provide a framework for reasoning about information-hiding requirements in multiagent systems and for reasoning about anonymity in particular. Our framework employs the modal logic of knowledge within the context of the runs and systems framework, much in the spirit of our earlier work on secrecy [Halpern and O'Neill 2002]. We give several definitions of anonymity with respect to agents, actions, and observers in multiagent systems, and we relate our definitions of anonymity to other definitions of information hiding, such as secrecy. We also give probabilistic definitions of anonymity that are able to quantify an observer s uncertainty about the state of the system. Finally, we relate our definitions of anonymity to other formalizations of anonymity and information hiding, including definitions of anonymity in the process algebra CSP and definitions of information hiding using function views.Comment: Replacement. 36 pages. Full version of CSFW '03 paper, submitted to JCS. Made substantial changes to Section 6; added references throughou

    Relating Process Algebras and Multiset Rewriting for Security Protocol Analysis

    Get PDF
    When formalizing security protocols, different specification languages support very different reasoning methodologies, whose results are not directly or easily comparable. Therefore, establishing clear relationships among different frameworks is highly desirable, as it permits various methodologies to cooperate by interpreting theoretical and practical results of one system in another. In this paper, we examine the nontrivial relationship between two general verification frameworks: multiset rewriting (MSR) and a process algebra (PA) inspired to the CCS and the -calculus. We present two separate mappings, one from MSR to PA and the other from PA to MSR. Although defining a simple and general bijection between MSR and PA appears difficult, we show that in the specific context of cryptographic protocols they do admit effective translations that preserve trace

    Style-Based Model Transformation for Early Extrafunctional Analysis of Distributed Systems

    Get PDF
    International audienceIn distributed environments, client-server, publish-subscribe, and peer-to-peer architecture styles are largely employed. However, style selection often remains implicit, relying on the designer's know-how regarding requirements. In this paper, we propose a framework to explicitly specify distributed architectural styles, as independent models of the application functionalities. To justify feasibility and further benefits of our approach, we formally define three classical distributed architectural styles in a process calculus. Our proposal then opens up the way to a systematic composition of functional models with architectural style models as an endogenous transformation. Comparative analysis of extrafunctional properties could then be proposed at the early design stages to guide the architect in stylistic choices

    Approximating Imperfect Cryptography in a Formal Model

    Get PDF
    We present a formal view of cryptography that overcomes the usual assumptions of formal models for reasoning about security of computer systems, i.e. perfect cryptography and Dolev-Yao adversary model. In our framework, equivalence among formal cryptographic expressions is parameterized by a computational adversary that may exploit weaknesses of the cryptosystem to cryptanalyze ciphertext with a certain probability of success. To validate our approach, we show that in the restricted setting of ideal cryptosystems, for which the probability of guessing information that the Dolev-Yao adversary cannot derive is negligible, the computational adversary is limited to the allowed behaviors of the Dolev-Yao adversary
    corecore