10 research outputs found

    Stackelberg security games: Looking beyond a decade of success

    Get PDF

    Efficient computation of approximate equilibria in discrete Colonel Blotto games

    Get PDF
    The Colonel Blotto game is a famous game commonly used to model resource allocation problems in many domains ranging from security to advertising. Two players distribute a fixed budget of resources on multiple battlefields to maximize the aggregate value of battlefields they win, each battlefield being won by the player who allocates more resources to it. The continuous version of the game—where players can choose any fractional allocation—has been extensively studied, albeit only with partial results to date. Recently, the discrete version—where allocations can only be integers—started to gain traction and algorithms were proposed to compute the equilibrium in polynomial time; but these remain computationally impractical for large (or even moderate) numbers of battlefields. In this paper, we propose an algorithm to compute very efficiently an approximate equilibrium for the discrete Colonel Blotto game with many battlefields. We provide a theoretical bound on the approximation error as a function of the game's parameters. We also propose an efficient dynamic programming algorithm in order to compute for each game instance the actual value of the error. We perform numerical experiments that show that the proposed strategy provides a fast and good approximation to the equilibrium even for moderate numbers of battlefields

    Efficient Computation of Approximate Equilibria in Discrete Colonel Blotto Games

    Get PDF
    International audienceThe Colonel Blotto game is a famous game commonly used to model resource allocation problems in many domains ranging from security to advertising. Two players distribute a fixed budget of resources on multiple battlefields to maximize the aggregate value of battlefields they win, each battlefield being won by the player who allocates more resources to it. The continuous version of the game-where players can choose any fractional allocation-has been extensively studied , albeit only with partial results to date. Recently , the discrete version-where allocations can only be integers-started to gain traction and algorithms were proposed to compute the equilibrium in polynomial time; but these remain computationally impractical for large (or even moderate) numbers of battlefields. In this paper, we propose an algorithm to compute very efficiently an approximate equilibrium for the discrete Colonel Blotto game with many battlefields. We provide a theoretical bound on the approximation error as a function of the game's parameters, in particular number of battlefields and resource budgets. We also propose an efficient dynamic programming algorithm to compute the best-response to any strategy that allows computing for each game instance the actual value of the error. We perform numerical experiments that show that the proposed strategy provides a fast and good approximation to the equilibrium even for moderate numbers of battlefields

    Efficient computation of approximate equilibria in discrete Colonel Blotto games

    Get PDF
    The Colonel Blotto game is a famous game commonly used to model resource allocation problems in many domains ranging from security to advertising. Two players distribute a fixed budget of resources on multiple battlefields to maximize the aggregate value of battlefields they win, each battlefield being won by the player who allocates more resources to it. The continuous version of the game—where players can choose any fractional allocation—has been extensively studied, albeit only with partial results to date. Recently, the discrete version—where allocations can only be integers—started to gain traction and algorithms were proposed to compute the equilibrium in polynomial time; but these remain computationally impractical for large (or even moderate) numbers of battlefields. In this paper, we propose an algorithm to compute very efficiently an approximate equilibrium for the discrete Colonel Blotto game with many battlefields. We provide a theoretical bound on the approximation error as a function of the game's parameters. We also propose an efficient dynamic programming algorithm in order to compute for each game instance the actual value of the error. We perform numerical experiments that show that the proposed strategy provides a fast and good approximation to the equilibrium even for moderate numbers of battlefields

    Adversarial patrolling with spatially uncertain alarm signals

    Get PDF
    When securing complex infrastructures or large environments, constant surveillance of every area is not affordable. To cope with this issue, a common countermeasure is the usage of cheap but wide-ranged sensors, able to detect suspicious events that occur in large areas, supporting patrollers to improve the effectiveness of their strategies. However, such sensors are commonly affected by uncertainty. In the present paper, we focus on spatially uncertain alarm signals. That is, the alarm system is able to detect an attack but it is uncertain on the exact position where the attack is taking place. This is common when the area to be secured is wide, such as in border patrolling and fair site surveillance. We propose, to the best of our knowledge, the first Patrolling Security Game where a Defender is supported by a spatially uncertain alarm system, which non-deterministically generates signals once a target is under attack. We show that finding the optimal strategy is FNP-hard even in tree graphs and APX-hard in arbitrary graphs. We provide two (exponential time) exact algorithms and two (polynomial time) approximation algorithms. Finally, we show that, without false positives and missed detections, the best patrolling strategy reduces to stay in a place, wait for a signal, and respond to it at best. This strategy is optimal even with non-negligible missed detection rates, which, unfortunately, affect every commercial alarm system. We evaluate our methods in simulation, assessing both quantitative and qualitative aspects

    Security Games with Protection Externalities

    No full text
    Stackelberg security games have been widely deployed in recent years to schedule security resources. An assumption in most existing security game models is that one security resource assigned to a target only protects that target. However, in many important real-world security scenarios, when a resource is assigned to a target, it exhibits protection externalities: that is, it also protects other “neighbouring” targets. We investigate such Security Games with Protection Externalities (SPEs). First, we demonstrate that computing a strong Stackelberg equilibrium for an SPE is NP-hard, in contrast with traditional Stackelberg security games which can be solved in polynomial time. On the positive side, we propose a novel column generation based approach—CLASPE—to solve SPEs. CLASPE features the following novelties: 1) a novel mixed-integer linear programming formulation for the slave problem; 2) an extended greedy approach with a constant-factor approximation ratio to speed up the slave problem; and 3) a linear-scale linear programming that efficiently calculates the upper bounds of target-defined subproblems for pruning. Our experimental evaluation demonstrates that CLASPE enable us to scale to realistic-sized SPE problem instances
    corecore