456 research outputs found

    Security Analysis of the Unrestricted Identity-Based Aggregate Signature Scheme

    Full text link
    Aggregate signatures allow anyone to combine different signatures signed by different signers on different messages into a single short signature. An ideal aggregate signature scheme is an identity-based aggregate signature (IBAS) scheme that supports full aggregation since it can reduce the total transmitted data by using an identity string as a public key and anyone can freely aggregate different signatures. Constructing a secure IBAS scheme that supports full aggregation in bilinear maps is an important open problem. Recently, Yuan {\it et al.} proposed an IBAS scheme with full aggregation in bilinear maps and claimed its security in the random oracle model under the computational Diffie-Hellman assumption. In this paper, we show that there exists an efficient forgery attacker on their IBAS scheme and their security proof has a serious flaw.Comment: 9 page

    On Randomizing Hash Functions to Strengthen the Security of Digital Signatures

    Full text link
    Halevi and Krawczyk proposed a message randomization algorithm called RMX as a front-end tool to the hash-then-sign digital signature schemes such as DSS and RSA in order to free their reliance on the collision resistance property of the hash functions. They have shown that to forge a RMX-hash-then-sign signature scheme, one has to solve a cryptanalytical task which is related to finding second preimages for the hash function. In this article, we will show how to use Dean’s method of finding expandable messages for finding a second preimage in the Merkle-Damgård hash function to existentially forge a signature scheme based on a t-bit RMX-hash function which uses the Davies-Meyer compression functions (e.g., MD4, MD5, SHA family) in 2 t/2 chosen messages plus 2 t/2 + 1 off-line operations of the compression function and similar amount of memory. This forgery attack also works on the signature schemes that use Davies-Meyer schemes and a variant of RMX published by NIST in its Draft Special Publication (SP) 800-106. We discuss some important applications of our attack

    New approaches to privacy preserving signatures

    Get PDF
    In this thesis we advance the theory and practice of privacy preserving digital signatures. Privacy preserving signatures such as group and ring signatures enable signers to hide in groups of potential signers. We design a cryptographic primitive called signatures with flexible public keys, which allows for modular construction of privacy preserving signatures. Its core is an equivalence relation between verification keys, such that key representatives can be transformed in their class to obscures their origin. The resulting constructions are more efficient than the state of the art, under the same or weaker assumptions. We show an extension of the security model of fully dynamic group signatures, which are those where members may join and leave the group over time. Our contribution here, which is facilitated by the new primitive, is the treatment of membership status as potentially sensitive information. In the theory of ring signatures, we show a construction of ring signatures which is the first in the literature with logarithmic signature size in the size of the ring without any trusted setup or reliance on non-standard assumptions. We show how to extend our techniques to the derived setting of linkable ring signatures, where different signatures of the same origin may be publicly linked. Here, we further revisit the notion of linkable anonymity, offering a significant strengthening compared to previous definitions.Diese Arbeit treibt die Theorie und Praxis der privatsphärewahrenden digitalen Signa- turen voran. Privatsphärewahrende Signaturen, wie Gruppen- oder Ringsignaturen erlauben es Zeichnern sich in einer Gruppe potenzieller Zeichner zu verstecken. Wir entwerfen mit Signatures with Flexible Public Keys einen kryptografischen Baustein zur modularen Konstruktion von privatsphärewahrenden Signaturen. Dessen Kern ist eine Äquivalenzrelation zwischen den Schlüsseln, sodass ein Schlüsselvertreter in seiner Klasse bewegt werden kann, um seinen Ursprung zu verschleiern. Darauf auf- bauende Konstruktionen sind effizienter als der Stand der Technik, unter gleichen oder schwächeren Annahmen. Wir erweitern das Sicherheitsmodell vollständig dynami- scher Gruppensignaturen, die es Mitgliedern erlauben der Gruppe beizutreten oder sie zu verlassen: Durch das neue Primitiv, wird die Behandlung der Mitgliedschaft als potenziell sensibel ermöglicht. In der Theorie der Ringsignaturen geben wir die erste Konstruktion, welche über eine logarithmische Signaturgröße verfügt, ohne auf eine Vorkonfiguration oder unübliche Annahmen vertrauen zu müssen. Wir übertragen unsere Ergebnisse auf das Feld der verknüpfbaren Ringsignaturen, die eine öffentliche Verknüpfung von zeichnergleichen Signaturen ermöglichen. Unsere Neubetrachtung des Begriffs der verknüpfbaren Anonymität führt zu einer signifikanten Stärkung im Vergleich zu früheren Definitionen

    Kleptography and steganography in blockchains

    Get PDF
    Despite its vast proliferation, the blockchain technology is still evolving, and witnesses continuous technical innovations to address its numerous unresolved issues. An example of these issues is the excessive electrical power consumed by some consensus protocols. Besides, although various media reports have highlighted the existence of objectionable content in blockchains, this topic has not received sufficient research. Hence, this work investigates the threat and deterrence of arbitrary-content insertion in public blockchains, which poses a legal, moral, and technical challenge. In particular, the overall aim of this work is to thoroughly study the risk of manipulating the implementation of randomized cryptographic primitives in public blockchains to mount kleptographic attacks, establish steganographic communication, and store arbitrary content. As part of our study, we present three new kleptographic attacks on two of the most commonly used digital signatures: ring signature and ECDSA. We also demonstrate our kleptographic attacks on two real cryptocurrencies: Bytecoin and Monero. Moreover, we illustrate the plausibility of hijacking public blockchains to establish steganographic channels. Particularly, we design, implement, and evaluate the first blockchain-based broadcast communication tool on top of a real-world cryptocurrency. Furthermore, we explain the detrimental consequences of kleptography and steganography on the users and the future of the blockchain technology. Namely, we show that kleptography can be used to surreptitiously steal the users' secret signing keys, which are the most valuable and guarded secret in public blockchains. After losing their keys, users of cryptocurrencies will inevitably lose their funds. In addition, we clarify that steganography can be used to establish subliminal communication and secretly store arbitrary content in public blockchains, which turns them into cheap cyberlockers. Consequently, the participation in such blockchains, which are known to store unethical content, can be criminalized, hindering the future adoption of blockchains. After discussing the adverse effects of kleptographic and steganographic attacks on blockchains, we survey all of the existing techniques that can defend against these attacks. Finally, due to the shortcomings of the available techniques, we propose four countermeasures that ensure kleptography and steganography-resistant public blockchains. Our countermeasures include two new cryptographic primitives and a generic steganographyresistant blockchain framework (SRBF). This framework presents a universal solution that deters steganography and practically achieves the right to be forgotten (RtbF) in blockchains, which represents a regulatory challenge for current immutable blockchains
    corecore