
Saarland University

Department of Computer Science

New Approaches to Privacy Preserving
Signatures

Dissertation

zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften (Dr.-Ing.)

der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

vorgelegt von
Jonas Schneider-Bensch

Saarbrücken, 2021

ii

Details des Kolloquiums
Tag des Kolloquiums: 26.09.2022
Dekan der Fakultät: Univ.-Prof. Dr. Jürgen Steimle

Prüfungsausschuss:
Vorsitz: Prof. Dr. Raimund Seidel
Berichterstatter: Prof. Dr. Michael Backes

Prof. Dr. Aniket Kate
Akademischer Mitarbeiter: Dr. Dipayan Das

iii

Abstract
In this thesis we advance the theory and practice of privacy preserving digital signatures.
Privacy preserving signatures such as group and ring signatures enable signers to hide
in groups of potential signers. We design a cryptographic primitive called signatures
with flexible public keys, which allows for modular construction of privacy preserving
signatures. Its core is an equivalence relation between verification keys, such that key
representatives can be transformed in their class to obscures their origin. The resulting
constructions are more efficient than the state of the art, under the same or weaker
assumptions. We show an extension of the security model of fully dynamic group
signatures, which are those where members may join and leave the group over time.
Our contribution here, which is facilitated by the new primitive, is the treatment of
membership status as potentially sensitive information. In the theory of ring signatures,
we show a construction of ring signatures which is the first in the literature with
logarithmic signature size in the size of the ring without any trusted setup or reliance
on non-standard assumptions. We show how to extend our techniques to the derived
setting of linkable ring signatures, where different signatures of the same origin may
be publicly linked. Here, we further revisit the notion of linkable anonymity, offering a
significant strengthening compared to previous definitions.

iv

Zusammenfassung
Diese Arbeit treibt die Theorie und Praxis der privatsphärewahrenden digitalen Signa-
turen voran. Privatsphärewahrende Signaturen, wie Gruppen- oder Ringsignaturen
erlauben es Zeichnern sich in einer Gruppe potenzieller Zeichner zu verstecken. Wir
entwerfen mit Signatures with Flexible Public Keys einen kryptografischen Baustein
zur modularen Konstruktion von privatsphärewahrenden Signaturen. Dessen Kern
ist eine Äquivalenzrelation zwischen den Schlüsseln, sodass ein Schlüsselvertreter in
seiner Klasse bewegt werden kann, um seinen Ursprung zu verschleiern. Darauf auf-
bauende Konstruktionen sind effizienter als der Stand der Technik, unter gleichen oder
schwächeren Annahmen. Wir erweitern das Sicherheitsmodell vollständig dynami-
scher Gruppensignaturen, die es Mitgliedern erlauben der Gruppe beizutreten oder
sie zu verlassen: Durch das neue Primitiv, wird die Behandlung der Mitgliedschaft als
potenziell sensibel ermöglicht. In der Theorie der Ringsignaturen geben wir die erste
Konstruktion, welche über eine logarithmische Signaturgröße verfügt, ohne auf eine
Vorkonfiguration oder unübliche Annahmen vertrauen zu müssen. Wir übertragen
unsere Ergebnisse auf das Feld der verknüpfbaren Ringsignaturen, die eine öffentliche
Verknüpfung von zeichnergleichen Signaturen ermöglichen. Unsere Neubetrachtung
des Begriffs der verknüpfbaren Anonymität führt zu einer signifikanten Stärkung im
Vergleich zu früheren Definitionen.

v

Acknowledgments
First, I want to thank my advisor, Michael Backes, for his invaluable guidance over the
last years. You were very patient with me, and you saw potential where my outlook
was grim.

I also want to thank Aniket Kate for agreeing to review this thesis. Long before I
started my PhD, Aniket gave me the chance to attend my first academic conference,
which I will never forget, thus introducing me to the world of research.

Inmy view, research can only be fruitful in the interaction and exchange of knowledge
and perspectives between people. So, naturally, I want to express heart-felt gratitude
to all of my co-authors over the years, for providing many unique insights, into our
projects and into research itself, and for helping me grow into a better researcher than
before I had met them. I especially want to thank Lucjan Hanzlik for motivating me to
work on privacy preserving signatures with him and for offering additional guidance
at many junctions. I want to thank you for providing a pragmatic counterweight when
my self-doubt weighed heavy.

I want to thank my colleagues at CISPA, where I have met so many wonderful and
kind people from whom I have learned so much. Especially, I would like to thank all
of my office mates, past and present. Most recently I was fortunate enough to share
an office with Ahmed, Ivan, and Min, who managed to keep the friendly spirit of our
little office alive, even virtually, in this time of the global pandemic. I wish all of you
the very best!

Thank you to Tim Ruffing and Dominik Schillo for agreeing to the arduous task of
proofreading parts of this thesis. I am lucky to count you among my friends, all the
more afterwards! 😉

Last, but not least, I want to thank all my friends and family for supporting me in my
studies by not letting me lose my head in numerous cases. And for lovingly re-attaching
it in countless other cases. My deepest gratitude goes to my wife, Nina. Thank you for
being there for me, no matter what!

Contents
1 Introduction 1

1.1 Privacy Preserving Signatures . 2
1.1.1 Group Signatures . 2
1.1.2 Ring Signatures . 3

1.2 An Overview of Our Results . 3
1.2.1 Signatures with Flexible Public Keys 4
1.2.2 Applications of SFPK to Privacy-Preserving Signatures 4
1.2.3 Logarithmic Size (Linkable) Ring Signatures 6

1.3 Structure of This Thesis . 8
1.3.1 Publication History . 8

2 Background and Building Blocks 11
2.1 General Preliminaries . 11

2.1.1 Notation and Other Conventions 11
2.1.2 The Game-Based Approach to Provable Security 12

2.2 Basic Primitives . 13
2.2.1 Digital Signature Schemes . 13
2.2.2 Public Key Encryption . 15
2.2.3 Non-interactive Proof Systems 18

2.3 Background on Group Signatures . 23
2.3.1 Security of Static Group Signatures 24

2.4 Background on Ring Signatures . 26
2.4.1 Security of Ring Signatures . 27

3 Signatures with Flexible Public Keys 29
3.1 Introduction . 29

3.1.1 Contributions in this Chapter 32
3.2 Chapter Preliminaries . 32

3.2.1 The Bilinear Group Setting . 32
3.2.2 Programmable Hash Functions 36
3.2.3 Non-interactive Proof Systems for Pairing Product Equations . 38
3.2.4 Structure-Preserving Signatures on Equivalence Classes 40

3.3 Signatures with Flexible Public Keys . 44
3.3.1 Security of Signatures with Flexible Public Keys 47

viii Contents

3.3.2 SFPK with Setup . 51
3.4 Instantiating SFPK . 52

3.4.1 Without Setup . 52
3.4.2 With Setup and Canonical Representatives 60

3.5 Applications of SFPK to Privacy-Preserving Signatures 66
3.5.1 Static Group Signatures . 66
3.5.2 Ring Signatures . 73
3.5.3 Practical Instantiations . 79

3.6 Related Work . 81

4 Membership Privacy for Fully Dynamic Group Signatures 83
4.1 Introduction . 84

4.1.1 Contributions in This Chapter 85
4.2 Chapter Preliminaries . 87

4.2.1 The Fully Dynamic Group Signature Model 87
4.3 Extensions to the Fully Dynamic Model 95

4.3.1 Functional Tracing Soundness 95
4.3.2 Membership Privacy in the Fully Dynamic Model 97

4.4 Generic Construction of Membership-Private Group Signatures 101
4.4.1 Proof of Traceability . 106
4.4.2 Proof of Anonymity . 109
4.4.3 Proof of Non-frameability . 111
4.4.4 Proof of Functional Tracing Soundness 112
4.4.5 Proof of Membership Privacy 113

4.5 Efficient Instantiation . 115
4.6 Related Work . 117

5 Logarithmic Size (Linkable) Ring Signatures 121
5.1 Introduction . 121

5.1.1 Technical Overview of Logarithmic Ring Signatures 121
5.1.2 On Linkable Ring Signatures . 126
5.1.3 Contributions in This Chapter 129

5.2 Chapter Preliminaries . 129
5.2.1 Non-interactive Proof Systems 130
5.2.2 Non-interactive Commitment Schemes 130
5.2.3 Public Key Encryption . 132
5.2.4 Somewhere Perfectly Binding Hashing 132

5.3 Logarithmic Size Ring-Signatures . 135
5.3.1 Proof of Unforgeability . 137
5.3.2 Proof of Anonymity . 141

5.4 Linkable Ring Signatures, Revisited . 145

Contents ix

5.5 Construction of Linkable Ring Signatures 149
5.5.1 Proof of Unforgeability . 153
5.5.2 Proof of Linkable Anonymity 155
5.5.3 Proof of Linkability . 161
5.5.4 Proof of Non-Frameability . 163

5.6 Related Work . 164

6 Outlook 167
6.1 Recapitulating our Results . 167
6.2 Future Work . 168

6.2.1 Further Applications of SFPK 168
6.2.2 Instantiation of SPB Hashing 168

Bibliography 171

Formal Oracle Definitions 187

1 Introduction

In this chapter:
1.1 Privacy Preserving Signatures . 2

1.1.1 Group Signatures . 2
1.1.2 Ring Signatures . 3

1.2 An Overview of Our Results . 3
1.2.1 Signatures with Flexible Public Keys 4
1.2.2 Applications of SFPK to Privacy-Preserving Signatures 4
1.2.3 Logarithmic Size (Linkable) Ring Signatures 6

1.3 Structure of This Thesis . 8
1.3.1 Publication History . 8

The field of information security recognizes the triad of confidentiality, integrity and
availability as the summation of our goals when it comes to securing communications.
This means, roughly, that messages should arrive only at those people for whom they
were meant, and nowhere else, that they should not be illegitimately tampered with in
transit, and that the systems which facilitate our communication themselves should be
safe from malicious disruption.

In our modern information society we have developed design principles for informa-
tion systems that harden them against denial of service and other types of disruptive
attacks. We have notions of public and private key encryption, which give us fine-
grained control over the confidentiality of our communications. Addressing issues of
communication integrity, the solutions also come from cryptography: Digital signature
schemes (and message authentication codes, their counterparts in the realm of sym-
metric cryptography) are the fundamental building blocks that ensure that the words
others hear us say are really the words we spoke and that it was really us that spoke
them.

Informally, a digital signature on some message represents a publicly verifiable claim
that the owner of the signing key has at some point seen and signed this message.
Hidden in this description are the two crucial aspects of the kind of statements digital
signatures allow us to make:

• First, the digital signature is tied to the owner of a secret signing key that has
an associated public identity represented by their public verification key. If we

2 1 Introduction

know of this association, the signature serves as a non-repudiable proof that
exactly this person has seen the message. A different person without access to
the signing key can never show us someone else’s valid signature on a message
that the signer has not actually created.1

• Second, the signature is valid only for the exact message the signer has created
it for. This prevents anyone from being able to make the signer attest messages
they did not explicitly accept.

Thus, digital signatures are the basis of the public key infrastructure that allows us
to communicate with people we have never met, while retaining some modicum of
assurance that they really are who they claim to be. Any form of online commerce
like we know it today would be impossible without digital signatures. They are also
at the heart of modern software updates, where software vendors provide signatures
on the patches they hand out, allowing users to verify that any update came from the,
presumably trustworthy, vendor and was not modified by a third party while in transit.

1.1 Privacy Preserving Signatures
Privacy preserving signature schemes are digital signature schemes where a signature
can be made on behalf of a group of more than one signer, and where the signature
does not reveal which member of the group in particular was the creator of any one
signature. At the same time, it should remain infeasible for non-members to forge
signatures on behalf of the group. This is a relaxation of the non-repudiation property
of digital signature schemes described above, but the circle of potential signers is still
limited and can be made up of meaningful group of people.

This has proved to be very useful in the construction of privacy preserving informa-
tion systems of many types, where we know that a certain group of people share some
property and one of them should give a signature, but we need not or must not reveal
who exactly the actual signer is.

This thesis contains new results for two types of privacy preserving signatures,
namely group signatures and ring signatures.

1.1.1 Group Signatures
The concept of group signatures was introduced by Chaum and van Heyst in [Cv91]. It
allows a group manager to delegate signing rights to multiple signers. The group mem-
bers may create publicly verifiable signatures on behalf of the entire group, such that the

1Unless they break the cryptographic hardness assumptions that are at the heart of the security proofs
of any such scheme.

1.2 An Overview of Our Results 3

signature does not reveal the identity of the actual signer beyond their membership in
the group. A designated opening authority has the ability to verifiably reveal the actual
signer of a particular signature, in case of abuse. Ideal applications of group signatures
are, for instance, business processes, where responsibility for certain actions should be
shared among the members of one level of management by creating a signature, but
accountability is preserved via the possibility of after-the-fact opening of a signature
through a supervisory board.

1.1.2 Ring Signatures
Ring signatures, introduced by Rivest, Shamir and Tauman-Kalai [RST01] allow a signer
to hide in a ring of potential signers that the signer has chosen themselves. More
specifically, the signing algorithm of a ring signature scheme takes as additional input a
list of verification keys R and outputs a signature. Such a signature can be verified given
the ring R. The feature of interest of ring signatures is that given such a signature, no one,
not even an insider in possession of all the secret keys corresponding to the verification
keys in the ring, can tell which key was used to compute this signature. The original
motivation for ring signatures was whistle-blowing, where the leaking party can hide
their identity and at the same time convince outsiders that the leaked information is
genuine (by using a ring composed only of people with access to this information). In
terms of security two properties are required of ring signatures: unforgeability and
anonymity. The first property requires that an efficient adversary should not be able
to forge a signature on behalf of an honest ring of signers. Anonymity requires that
signatures do not give away by which member they were created. This can be cast as
an experiment in which the adversary has to guess which one out of two ring members
created a signature.

1.2 An Overview of Our Results
Both primitives present challenges in terms of their security modeling and the unique
requirements of their applications. For instance, group signatures can be made the basis
of more complex schemes such as direct anonymous attestation (DAA) and the balance
between privacy of group members and powers entrusted to privileged authorities must
be carefully considered. One application of ring signatures is in the implementation
of confidential transaction protocols in the context of cryptocurrencies. In this context,
practical efficiency is paramount for the efficiency of signed transactions, which are
the basic items that can be considered with respect to a cryptocurrency. At the same
time, since the unforgeability of a ring signature in this context directly protects the
integrity of digital financial assets in a decentralized system, there is no room in the
security model for trusted parties or exotic cryptographic assumptions.

4 1 Introduction

We now give a brief overview of our results in this area, beginning with a new
cryptographic primitive that facilitates the construction of privacy preserving signature
schemes.

1.2.1 Signatures with Flexible Public Keys
Signatures with flexible public keys (SFPK) are a type of digital signatures where public
verification keys live in a system of equivalence classes induced by a relationR. When
a signature has been created under a pair of signing and verification keys it may later be
transformed such that verification under a different verification key that is equivalent
with respect toR becomes possible. Informally, an SFPK scheme offers two security
properties:

Existential Unforgeability. Analogously to common digital signature schemes, we
expect it to be infeasible for any computationally efficient adversary to forge
valid signatures, even when given access to a signing oracle. In SFPK, this should
hold even if the adversary may produce forgeries under any representative of
the verification key under challenge.

Class Hiding. The transformation of a verification key to a different representative in
its class should make the result of the transformation computationally indistin-
guishable from a key in a different equivalence class.

We first introduced this primitive in [Bac+18], where we gave a full formalization of
the security properties of the scheme in the form of cryptographic games and offer an
efficient instantiation based on bilinear groups. The functionality of SFPK can be seen as
complementary to that of signatures on equivalence classes (SPS-EQ), first introduced
by Fuchsbauer, Derler, and Slamanig [HS14]. In SPS-EQ, it is the messages which live
in a system of equivalence classes, which already enables numerous applications to
efficient anonymous credential constructions.

1.2.2 Applications of SFPK to Privacy-Preserving Signatures
One way to conceptualize both types of privacy-preserving signature schemes described
above is a modular structure, which includes functionally distinct components:

1. An underlying signature on the message that is to be signed.

2. A membership proof that certifies the signer as a member of the claimed group
or ring.

On a high level, to achieve unforgeability and signer anonymity it has to hold simulta-
neously that: (1) the underlying signature and membership proof belong to the same

1.2 An Overview of Our Results 5

identity, which is part of the group and also (2) that no part of the final signature reveals
this identity, at least without knowledge of a potentially available opening secret.

This forms the basis for the generic construction of such primitives in the sign-
encrypt-prove approach. It works by encrypting both a regular signature on the message
and a form of membership certificate, depending on the concrete scheme, and finally
giving a non-interactive zero-knowledge (NIZK) proof about the encryption. The
proof simultaneously ensures validity of the ciphertext, the contained signature, and
membership proof and provides the cryptographic “glue” to bind everything to the
same identity, all without revealing that identity.

This construction’s generic nature comes at the price of less than optimal practical
efficiency if instantiated with ill-fitting component schemes, in particular the NIZK
proof becomes prohibitively expensive in terms of signer run time and signature size.
Additionally, as described above, particularly in the ring signature case the use of a
NIZK proof system is questionable due to its inherent requirement of either a common
reference string shared by all parties, i.e. a trusted setup, or reliance on heuristic security
arguments outside the cryptographic standard model, i.e. in the random oracle model.

In this thesis we show that SFPK offers a solution to these issues in privacy-preserving
signatures.

SFPK and Group Signatures

Roughly following the generic approach outlined above, an SFPK signature scheme
can provide the underlying signature component of a group signature. An SPS-EQ
signature by the group manager where the signing member’s SFPK verification key is
the message serves as the certificate of membership in group. The crucial insight of
our construction is that, if these two schemes are chosen such that both systems of
equivalence classes match, then anonymity of the group signature can be achieved by
simultaneous application of the transferability of public keys, respectively messages, to
different representatives and the class hiding properties of both schemes. Unforgeability
also follows from this joint change in representatives as well as the unforgeability of
the underlying schemes with respect to equivalence classes of public keys, respectively
messages. Observe that, in this construction, the compatible choice of SFPK and SPS-EQ
schemes obviates the need for any general purpose proof system and thus eliminates
the major source of practical inefficiency pointed out above.

Thus, in chapter 3 we present a group signature scheme in the standard model, with
strongest-possible security properties in the static model due to Bellare, Micciancio and
Warinschi [BMW03] that is in concrete terms more efficient than the state-of-the-art at
the time of publication, and remains competitive even taking into account constructions
with weaker security guarantees.

SFPK based group signatures also allow us to conceptually extend these frameworks.
In the most expressive framework for group signature security modeling, the fully

6 1 Introduction

dynamic model due to Bootle et al. [Boo+16], group membership is not fixed forever
a priori as in the static model, but an identity may or may not be a member in the
group for any of a running number of epochs in a scheme’s lifetime, as decided by the
group manager. In chapter 4 we extend this model by the notion of membership privacy,
that had not previously been considered for fully dynamic group signatures and which
guards the group membership information from adversaries trying to make inferences
about the groups members. The efficiency overhead of such anSFPK based membership
private scheme is marginal compared to one that does not enjoy this feature.

SFPK and Ring Signatures

In chapter 3 we propose the first sub-linear size ring signature scheme in the literature
that is rooted in the cryptographic standard model and does not require a trusted
setup. Here again, anonymity is provided by SFPKs ability to transfer public keys from
representative to representative, obscuring the original equivalence class. As the ring is
chosen in an ad hoc fashion for each signature by the signer themselves, we cannot rely
on a centrally trusted party to provide succinct membership certificates as in the case
of group signatures. Instead, we observe that a full-blown zero-knowledge proof is not
necessary to achieve the strongest security guarantees in ring signatures and instead
the weaker property of witness indistinguishability is sufficient. In contrast to non-
interactive zero-knowledge proof systems, non-interactive witness indistinguishable
(NIWI) proofs can be built in the cryptographic standard model without trusted setup.
We show how SFPK instantiations based on bilinear pairing groups integrate efficiently
with NIWI proofs in the same setting and result in a scheme that has sub-linear signature
size O(

√
`) in the ring size ` and where signatures are even in concrete terms smaller

in size than for comparable schemes with high security guarantees.

1.2.3 Logarithmic Size (Linkable) Ring Signatures
The notion of linkable ring signatures [LWW04] is an extension of the concept of
ring signatures such that there is a public way of determining whether two signatures
have been produced by the same signer. Linkable ring signatures yield a very elegant
approach to e-voting [TW04]: Every voter is registered with their verification key. To
cast a vote, all a voter has to do is to sign their vote on behalf of the ring of all registered
voters. Linkability prevents voters from casting multiple votes. This can even be turned
into an augmentation of the voting functionality by allowing voters to re-vote, where
only the most recently cast votes of a set of votes that link counts.

Recently, linkable ring signature have also drawn attention in the domain of decen-
tralized currencies, where they can be used to implement a mechanism for anonymized
transactions. Linkable ring signatures are, for instance, used in a cryptocurrency called
Monero [Noe15], where they allow payers to hide their identity in an anonymity set

1.2 An Overview of Our Results 7

composed of identities from previous transactions. Currently, Monero uses a setup-free
Schnorr based ring signature scheme [Sch90] where the size of signatures scales linearly
in the size of the ring. To decrease the size of the transaction by default Monero uses
small rings, which provide only a limited amount of anonymity. The anonymity defini-
tion for linkable ring signatures needs to be different from the definition for standard
ring signatures. We will elaborate further on this topic below. In both of the above
applications two aspects are of the essence:

• The ring signature scheme should not rely on a trusted setup. Especially in the
e-voting application it is of paramount importance for the acceptance of such
a system that there cannot exist a trapdoor that enables de-anonymization of
voters.

• For practical purposes, e.g. for elections with millions of voters, the size of
individual signatures should be essentially independent of the size of the ring of
signers.

A ring signature scheme without trusted setup where the signature size is sub-linear
in the size of the ring has long eluded the research community. TheO(

√
`) size scheme

of chapter 3 was a promising first step and the construction based on SFPK is truly
practical, but it is not the best we can hope for in terms of asymptotic signature size. The
structure of typical ring signature constructions suggests it should be possible to achieve
a size ofO(log(`)), since we can think of a ring signature as a regular signature together
with a kind of blinded pointer into the ring that allows to verify that the signature is
valid under one of the keys in the ring. A straightforward approach to similar problems
of proving membership in a list via a logarithmic size argument is through the use
of Merkle trees. However, this approach fails in the case of ring signatures since the
Merkle tree is only computationally binding, i.e. we are not perfectly guaranteed that
a valid corresponding key is really in the ring. While Merkle trees give sufficient
guarantees for many use cases in practice, this lack of perfect binding is a barrier in the
proof of unforgeability for a ring signature scheme constructed in this way.

We address this issue by recognizing that Merkle trees in a way would give us too
much of a property that is not enough, namely the computational binding actually
holds for the whole ring, while we need perfect binding at just one position in the ring,
namely where the signer verification key resides. At other places computational binding
may be sufficient. Having recognized this, we make use of a primitive called somewhere
perfectly binding hashing which guarantees exactly the right kind of binding property
we need and allows us for the first time to construct logarithmic size ring signatures
without any trusted setup.

In addition, we reconsider the securitymodel for linkable ring signatures, significantly
the notion linkable anonymity. Whereas earlier definitions of linkable anonymity fail
to give any guarantees once the adversary has seen more than a single signature of the

8 1 Introduction

user in question, presumably since then the adversary can use the linking property to
unmask the real signer, our new definition takes into account that a link between two
signatures does not uniquely identify the signer unless the intersection of the two rings
contains exactly one verification key, which must then belong to the signer. Indeed, an
adversary may see many linking signatures without being able to further narrow down
the identity of the real signer beyond the members of the ring that was signed under.

We then show that our logarithmic size ring signature can also be made linkable,
retaining all the desirable characteristics of logarithmic size, no trusted setup and
fulfilling our stronger notions of linkable security.

1.3 Structure of This Thesis
This thesis is organized in the following way.

In chapter 2, we introduce notation that is used throughout the thesis, and we recall
fundamental definitions that allow us to keep further, chapter-specific preliminaries to
a minimum in subsequent chapters. We also offer a brief recapitulation of basic notions
relating to ring and group signatures.

We begin the detailed description of the contributions of this thesis in chapter 3 with
a discussion of signatures with flexible public keys, their instantiations and a look at
their basic application in the construction of ring signature and static group signature
schemes.

Chapter 4 shows that the properties of SFPK enable new theoretical insights as well,
by describing in detail an extension of the fully dynamic model of group signature
security, which becomes feasible through the use of SFPK.

In chapter 5 we continue the exploration on the level of security models and generic
constructions for the case of ring signatures, by giving our construction of ring signa-
tures of logarithmic size without trusted setup and its linkable variant. This chapter
also contains a redevelopment of the notion of linkable anonymity for linkable ring
signatures, strengthening it substantially.

Finally, in chapter 6 we briefly summarize our results and provide possible avenues
for future work based on this thesis.

1.3.1 Publication History
Most of the content of this thesis has previously been published in the following works:

• Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. “Signa-
tures with Flexible Public Key: Introducing Equivalence Classes for Public Keys.”
In: Advances in Cryptology – ASIACRYPT 2018, Part II. ed. by Thomas Peyrin
and Steven Galbraith. Vol. 11273. Lecture Notes in Computer Science. Brisbane,

1.3 Structure of This Thesis 9

Queensland, Australia: Springer, Heidelberg, Germany, Dec. 2018, pp. 405–434.
doi: 10.1007/978-3-030-03329-3_14

• Michael Backes, Lucjan Hanzlik, and Jonas Schneider-Bensch. “Membership
Privacy for Fully Dynamic Group Signatures.” In: ACM CCS 2019: 26th Conference
on Computer and Communications Security. Ed. by Lorenzo Cavallaro, Johannes
Kinder, XiaoFengWang, and Jonathan Katz. ACM Press, Nov. 2019, pp. 2181–2198.
doi: 10.1145/3319535.3354257

• Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Kluczniak, and Jonas
Schneider. “Ring Signatures: Logarithmic-Size, No Setup - from Standard As-
sumptions.” In: Advances in Cryptology – EUROCRYPT 2019, Part III. ed. by Yuval
Ishai and Vincent Rijmen. Vol. 11478. Lecture Notes in Computer Science. Darm-
stadt, Germany: Springer, Heidelberg, Germany, May 2019, pp. 281–311. doi:
10.1007/978-3-030-17659-4_10

Each of the main chapters chapters 3 to 5 includes a note on the publication history of
its contents and any potential differences to the previously published materials.

https://doi.org/10.1007/978-3-030-03329-3_14
https://doi.org/10.1145/3319535.3354257
https://doi.org/10.1007/978-3-030-17659-4_10

2 Background and Building Blocks

In this chapter:
2.1 General Preliminaries . 11

2.1.1 Notation and Other Conventions 11
2.1.2 The Game-Based Approach to Provable Security 12

2.2 Basic Primitives . 13
2.2.1 Digital Signature Schemes . 13
2.2.2 Public Key Encryption . 15
2.2.3 Non-interactive Proof Systems 18

2.3 Background on Group Signatures . 23
2.3.1 Security of Static Group Signatures 24

2.4 Background on Ring Signatures . 26
2.4.1 Security of Ring Signatures . 27

This chapter introduces our notation and a number of fundamental notions that will
be relevant in all chapters that follow. Subsequent chapters will include chapter-specific
preliminaries that is not presented here.

2.1 General Preliminaries

2.1.1 Notation and Other Conventions
Unless explicitly stated otherwise, we all presented algorithms are assumed to run
in probabilistic polynomial time. This notion is the standard notion of asymptotic
efficiency in cryptography. We often write that an algorithm is PPT to signify that it
is probabilistic and has polynomially bounded runtime. We also extend this notion to
algorithms that accept other inputs than bit strings, e.g. group elements. In that case,
we assume there is a binary representation of the inputs and the run time is bounded
by a polynomial in the length of that representation.

Throughout this thesis, we make use of a security parameter λ ∈ N when we want
to make claims and give proofs about asymptotic security. In order to be able to argue
about the run times of adversaries and other algorithms in terms of polynomials in
the length of their inputs, we typically give algorithms an auxiliary input that encodes

12 2 Background and Building Blocks

the security parameter in unary form 1λ. An exception are algorithms that are given
inputs that depend on the security parameter, such as public key material or scheme
parameters, since these inputs are assumed to implicitly encode the security parameter.

We say a function f : N→ R≥0 is negligible, if for any positive polynomial p there
exists a thresholdN ∈ N, such that for all n > N it holds f(n) < 1

p(n)
. To ease notation,

we write f(λ) ≤ negl(λ) to mean that f is negligible in the security parameter λ.

2.1.2 The Game-Based Approach to Provable Security

Our approach to provable security follows the common game-based paradigm, where
cryptographic primitives are defined as sets of abstract interfaces which implement
a cryptographic functionality. The functionality is expressed through correctness
requirements on the interactions between the different algorithms in the interface.

To formalize security notions, this approach makes use of probabilistic experiments,
also known as cryptographic games, in which an adversary plays against a challenger.
The challenger mediates access of the adversary to the interface offered by a crypto-
graphic primitive. The challenger often restricts the capabilities of the adversary or
manages some state that is relevant to determining whether the adversary has success-
fully subverted the security notion expressed by the experiment. In this context it is
especially important which computational resources are afforded to the adversary.

We give an explanation of our presentation of experiments with oracles in example 2.1.

Pseudocode. We use an informal pseudocode to describe algorithms. We do not give
a formal semantics for this pseudocode as the operations follow the conventions of the
field and there is not much insight to gain from doing so in the context of this thesis.

The pseudocode allows a number of control flow constructs such as loops and branch-
ing as well as assignment statements and procedure calls. We assume the challenger can
use simple data structures like sets and indexed arrays and that these can be efficiently
implemented.

We denote by y ← A(x; r) the execution of algorithm A on input x with appropri-
ately drawn randomness r, outputting y. If the specific randomness used is not relevant,
we write just y ← A(x) instead. We denote by [A] the support of a probabilistic
algorithm A, i.e. those outputs which have a non-zero probability. For a finite set S
we write r ← S to mean that r is chosen uniformly at random from S. We will use [n]
to denote the set {1, . . . , n}, and [n]0 if we mean to include 0. We write ~u to denote a
vector u and

(
x0 . . . x|x|

)
bin

to denote the binary representation of some object x.
We will use the symbol ∅ to denote an undefined value.

2.2 Basic Primitives 13

Example 2.1: Example Experiment

Consider the following experiment, or game, between a challenger and an al-
gorithm A. The challenger, running the code of the experiment, sets up an
environment containing the two variables target and counter. It initializes them
to 5 and 0 respectively. The challenger then runs the adversary A, giving it
access to the example oracle OExample. The code of the oracle will be executed
by the challenger if it is invoked by the adversary with the expected argument
increment. To avoid clutter, especially in the presence of many oracles, we
specify the oracles an adversary has access to below the code of the experiment.

Example− Experiment

target := 5

counter := 0
′done′ ← A(counter)
if counter = target

then return true

else return false

A may invoke OExample.

OExample(increment)

counter := counter+ increment

return counter

The experiment terminates, whenever the challenger reaches a return or abort
statement. We then write Example− Experiment ⇒ true for the event that
the experiment terminates with outcome true and Example− Experiment ⇒
false for the event that the experiment terminates with outcome false. If the
termination is the result of an abort, the probability is split evenly between the
two outcomes.

2.2 Basic Primitives
In this section we recall standard definitions of basic cryptographic building blocks, or
primitives.

2.2.1 Digital Signature Schemes
Digital signature schemes allow a person in possession of a signing key to create
digital signatures on documents, which may later be verified by anyone holding the
person’s verification key. This provides a non-repudiable piece of evidence regarding

14 2 Background and Building Blocks

the originator of the signature, since only the person in possession of the signing key
can create signatures that verify under the corresponding signing key and the signature
will only be valid for the exact message that was originally signed.

Definition 2.1: Digital Signature

KeyGen(1λ)→ (sk, vk)
Takes as input a security parameter. Outputs a pair of signing key sk and
verification key vk.

Sign(sk,m)→ σ
Takes as input a signing key sk and a messagem ∈M. Outputs a signature
σ.

Verify(vk,m, σ)→ r ∈ {true, false}
Takes as input a verification key vk, a messagem and a signature σ. Outputs
either true or false.

A signature scheme is correct if the following holds for all λ ∈ N and messages
m ∈ M: Given (sk, vk) ← KeyGen(1λ) and σ ← Sign(sk,m), the output of
Verify(vk,m, σ) is true.

The security properties informally described above are captured in the well-known
notion of existential unforgeability under chosen message attacks, which says that a
malicious party cannot produce signatures under a signing key that is not known to the
malicious party, unless it has previously seen such signatures, created by the legitimate
owner of that signing key.1

Definition 2.2: Unforgeability Under Chosen-Message Attacks

For any signature scheme DS, consider the unforgeability under chosen message
attacks experiment EUF-CMA between a challenger and an adversary A:

1There is a subtle detail here in the informal phrasing: Namely, a signature scheme could well be
unforgeable in the above sense and still allow an adversary to produce previously not seen signatures
for messages that had been signed once by the legitimate owner, e.g. by modifying the existing
signature in some way that does not affect its validity. If that is undesirable, one must ask for a
signature scheme which is strongly existentially unforgeable. In that case, an adversary cannot even
produce different signatures for previously signed messages.

2.2 Basic Primitives 15

EUF-CMAA
DS(1

λ)

Q := ∅
(sk, vk)← DS.KeyGen(1λ)

(m∗, σ∗)← A(vk)
ifm∗ 6∈ Q and

DS.Verify(vk,m∗, σ∗) = true

then return true

else return false

Amay queryOSign at any point dur-
ing its runtime.

OSign(m)

σ ← DS.Sign(sk,m)

Q := Q ∪ {m}
return σ

We define the advantage of A in this experiment as

Adv EUF-CMA
A,DS (λ) := Pr

[
EUF-CMAA

DS(1
λ)⇒ true

]
.

A signature scheme DS is unforgeable under chosen-message attacks if for any
PPT adversary A, we have

Adv EUF-CMA
A,DS (λ) ≤ negl(λ) .

There are many more security properties that can be considered for digital signa-
tures and choosing the correct one for a given application is critical to prevent subtle
subversion of the application security [Jac+19]. In our case the above standard notion
is sufficient.

2.2.2 Public Key Encryption
Public key encryption allows a person to freely distribute encryption keys, which may
be used to encrypt messages to that person. Ciphertext may only be decrypted using a
secret decryption key.

Definition 2.3: Public Key Encryption

KeyGen(1λ)→ (ek, dk)
Takes as input a security parameter. Outputs a pair of encryption key ek
and decryption key dk.

Enc(ek,m)→ ctx
Takes as input an encryption key ek and a message m ∈ M. Outputs a

16 2 Background and Building Blocks

ciphertext ctx.

Dec(dk, ctx)→ r ∈M∪ {⊥}
Takes as input a decryption key dk and a ciphertext ctx. Outputs either a
decryption result inM or the error symbol ⊥ in case of decryption error

A public key encryption scheme is perfectly correct if the following holds for
all λ ∈ N and messages m ∈ M: Given (ek, dk) ← KeyGen(1λ) and ctx ←
Enc(ek,m), the output of Dec(dk, ctx) ism.a

aFor some encryption schemes, there may be a negligible possibility of decryption error, even
for well-formed ciphertexts. In this case we speak merely of correctness instead of perfect
correctness.

The basic security notion of public key encryption is indistinguishability of cipher-
texts under chosen plaintext attacks. It says that an attacker may not learn a single bit
about messages encrypted in ciphertexts it did not create itself, even if it knows the
message that is encrypted must be one it has seen before.

Definition 2.4: Indistinguishability Under Chosen Plaintext Attacks

For any public key encryption scheme PKE, consider the ciphertext indistin-
guishability under chosen plaintext attacks experiment IND-CPA between a
challenger and a two-stage adversary A = (A0,A1):

IND-CPAA
PKE(1

λ)

(ek, dk)← PKE.KeyGen(1λ)

(state,m0,m1)← A0(ek)

b← {0, 1}
ctx← PKE.Enc(ek,mb)

b′ ← A1(state, ctx)

if b′ = b then return true

else return false

We define the advantage of A in this experiment as

Adv IND-CPA
A,PKE (λ) :=

∣∣∣∣Pr[IND-CPAA
PKE(1

λ)⇒ true
]
− 1

2

∣∣∣∣ .
A public key encryption scheme PKE has indistinguishable ciphertexts under

2.2 Basic Primitives 17

chosen plaintext attacks if for any PPT adversary A, we have

Adv IND-CPA
A,PKE (λ) ≤ negl(λ) .

In our use of public key encryption in later chapters it will often occur that, for
instance, the anonymity of a group signature depends on the inability of an adversary
to determine the intended recipient of a given ciphertext, i.e. a ciphertext itself should
not reveal which public key was used to create it. We formalize this in the vein
of [Bel+01].

Definition 2.5: Key Privacy Under Chosen Plaintext Attacks

For any public key encryption scheme PKE, consider the key privacy under
chosen plaintext attacks experiment IK-CPA between a challenger and a two-
stage adversary A = (A0,A1):

IK-CPAA
PKE(1

λ)

(ek0, dk0)← PKE.KeyGen(1λ)

(ek1, dk1)← PKE.KeyGen(1λ)

(state,m)← A0(ek0, ek1)

b← {0, 1}
ctx← PKE.Enc(ekb,m)

b′ ← A1(state, ctx)

if b′ = b then return true

else return false

We define the advantage of A in this experiment as

Adv IK-CPA
A,PKE (λ) :=

∣∣∣∣Pr[IK-CPAA
PKE(1

λ)⇒ true
]
− 1

2

∣∣∣∣ .
A public key encryption scheme PKE has key privacy under chosen plaintext
attacks if for any PPT adversary A, we have

Adv IK-CPA
A,PKE (λ) ≤ negl(λ) .

A priori it is not clear that public key encryption schemes should satisfy this property,
since it does not seem relevant to the other security properties expected of public key
encryption. After all, the public key is by definition not hidden itself. Luckily for us,

18 2 Background and Building Blocks

many well-known public key encryption schemes fulfill this property, e.g. the ElGamal
encryption scheme. For more details regarding key privacy and more examples of
schemes that fulfill the property, please consider [Bel+01].

2.2.3 Non-interactive Proof Systems

Interactive proof systems a prover and a verifier to establish certain facts between each
other, often overcoming some differential in computational power between the parties.

For instance, using a type of proof system called zero-knowledge proof of knowledge
a prover can convince a verifier that the prover has knowledge of an object, called a
witness, that satisfies a given statement without revealing information about anything
more than this fact, in particular without revealing information about the witness itself.

In many cryptographic protocols such proofs allow us to argue for stronger security
notions, since they enable parties to keep each other in check without revealing their
cryptographic secrets to each other.

Astonishingly, cryptographers have discovered ways to avoid the interactivity of
these proofs, allowing provers to convince verifiers of some statement by giving a single
message.

Let R be an efficiently computable binary relation, where for R(x,w) ⇒ true we
call x a statement and w a witness. Moreover, we denote by LR the language consisting
of statements inR, i.e. LR = {x|∃w : (x,w) ∈ R}.

Definition 2.6: Non-interactive Proof System

Let R be an efficiently computable witness relation and LR be the language
accepted byR.

Prove(1λ, x,w)→ π ∪ {⊥}
Takes as input a security parameter, a statement x and a witnessw. Outputs
either a proof π or an error ⊥.

Verify(x, π)→ r ∈ {true, false}
Takes as input a statement x and proof π Outputs either true or false.

A non-interactive proof system NIP for LR is called perfectly complete, if for all
λ ∈ N, all statements x ∈ LR and all witnesses w, such thatR(x,w) = true, that
given any π ← Prove(x,w) it holds Verify(x, π) = true.

The price for this non-interactivity is paid in the weaker security guarantees we can
give about these kinds of non-interactive proofs. The strongest forms of cryptographic
security of the witness, namely zero-knowledge can only be achieved non-interactively
by either assuming the existence of random oracles, a strong idealization of crypto-

2.2 Basic Primitives 19

graphic hash functions, or by assuming that every party has access to a precomputed
piece of information, a common reference string.

Definition 2.7: Non-interactive Proof System with Setup

A non-interactive proof system may NIP, in addition to Prove,Verify, include a
setup procedure.

Setup(1λ)→ crs
Takes as input the security parameter and outputs a common reference
string crs.

In this case, both Prove and Verify take a common reference string crs as an
additional argument and completeness should hold with respect to any crs ←
Setup(1λ) for all λ ∈ N.

Definition 2.8: Soundness

A non-interactive proof system NIP is sound if for all λ ∈ N and any PPT
adversaryA the following holds: Given crs← NIP.Setup(1λ) and x, π ← A(crs)
we have

Pr [NIP.Verify(crs, x, π) = true and x 6∈ LR] ≤ negl(λ) . (2.1)

For any adversary A, we refer to the probability in eq. (2.1) as its soundness
advantage Adv Soundness

A,NIP (λ). If the advantage vanishes completely, we say NIP has
perfect soundness.

It has been shown that security proofs in the random oracle can only offer heuristic
guarantees, since there are non-trivial cases where it is impossible to instantiate random
oracles securely[CGH98]. Furthermore, in scenarios where we have to assume none
of the parties trust each other it is unclear how to implement a precomputation step
that could not be tampered with to the advantage of one party. Because of this, these
so-called trusted setup approaches are a serious concern in real-world applications such
as cryptocurrencies.

Remark

In the following we will give all definitions as though every proof system had a
setup, as described in definition 2.7, unless explicitly stated otherwise. Note that
any non-interactive proof system without setup can be made to include a trivial
setup algorithm which simply returns its input, the security parameter as crs.

20 2 Background and Building Blocks

Definition 2.9: Non-interactive Proof System with Simulator

A non-interactive proof system with setup NIP has a simulator if, in addition to
the interface defined in definition 2.7, the following two PPT algorithms exist.

SimSetup(1λ)→ (crs, ρ)
Takes as input a security parameter. Outputs a common reference string
crs and a simulation trapdoor ρ.

Sim(crs, ρ, x)→ π
Takes as input a common reference string crs, a simulation trapdoor ρ and
a statement x. Outputs a proof π.

Definition 2.10: Zero-Knowledge

For any non-interactive proof system with simulator NIP, consider the zero-
knowledge experiment ZK between a challenger and an adversary A:

ZKA
NIP(1

λ)

b← {0, 1}
if b = 1 then

crs← NIP.Setup(1λ)

else

(crs, ρ)← NIP.SimSetup(1λ)

b′ ← A(crs)
if b′ = b then return true

else return false

A may query OProve at any
point during its runtime.

OProve(x,w)

ifR(x,w) = false

then return ⊥
elseif b = 1

then return NIP.Prove(crs, x,w)

else return NIP.Sim(crs, ρ, x)

We define the advantage of A in this experiment as

Adv ZK
A,NIP(λ) :=

∣∣∣∣Pr[ZKA
NIP(1

λ)⇒ true
]
− 1

2

∣∣∣∣ .
A non-interactive proof system NIP is (computationally) zero-knowledge if for
any PPT adversary A, we have

Adv ZK
A,NIP(λ) ≤ negl(λ) .

2.2 Basic Primitives 21

On the other hand, a weaker property called witness indistinguishability is possible
non-interactively without assuming any kind of trusted precomputation or shared
access to a random oracle.

Definition 2.11: Witness Indistinguishability

For any non-interactive proof system NIP, consider the witness indistinguisha-
bility experiment WI between a challenger and a two-stage adversary A =
(A0,A1):

WIANIP(1
λ)

crs← NIP.Setup(1λ)

(state, x,w0,w1)← A0(crs)

b← {0, 1}
π ← NIP.Prove(crs, x,wb)

b′ ← A1(state, π)

if b′ = b then return true

else return false

We define the advantage of A in this experiment as

AdvWI
A,NIP(λ) :=

∣∣∣∣Pr[WIANIP(1
λ)⇒ true

]
− 1

2

∣∣∣∣ .
A non-interactive proof system NIP is witness-indistinguishable if for any PPT
adversary A, we have

AdvWI
A,NIP(λ) ≤ negl(λ) .

If the advantage vanishes completely, we say the proof system is perfectly witness-
indistinguishable.

Non-interactive witness-indistinguishable proofs can be constructed from NIZK
proofs and derandomization assumptions [DN00b; BOV03], from bilinear pair-
ings [GOS06] and indistinguishability obfuscation [BP15].

It may be advantageous for a soundness adversary to see simulated proofs. A strong
requirement that makes this impossible is the notion of simulation sound extractability
that requires that whenever an adversary produces a valid proof, we can extract a
witness from this proof, even if the adversary has seen many simulated proofs before.

22 2 Background and Building Blocks

Definition 2.12: Non-interactive Proof System with Extractor

A non-interactive proof system with setup NIP has an extractor if, in addition to
the interface defined in definition 2.7, the following three PPT algorithms exist.

ExtSetup(1λ)→ (crs, ρ, ξ)
Takes as input a security parameter. Outputs a common reference string
crs, a simulation trapdoor ρ and an extraction trapdoor.

Sim(crs, ρ, x)→ π
Takes as input a common reference string crs, a simulation trapdoor ρ and
a statement x. Outputs a proof π.

Ext(crs, ξ, x, π)→ w
Takes as input a common reference string crs, an extraction trapdoor ξ
and a statement x as well as proof π. Outputs a witness w.

Definition 2.13: Simulation Sound Extractability

For any non-interactive proof system with extraction NIP, consider the ex-
tractability experiment SSE between a challenger and an adversary A:

SSEA
NIP(1

λ)

(crs, ρ, ξ)← NIP.ExtSetup(1λ)

(x, π)← A(crs, ξ)
w← NIP.Ext(crs, ξ, x, π)

if NIP.Verify(crs, x, π) and
R(x,w) = false and
(x, π) 6∈ Q

then return true

else return false

A may query OProve at any
point during its runtime.

OProve(x,w)

ifR(x,w) = false

then return ⊥
π ← NIP.Sim(crs, ρ, x)

Q := Q ∪ {(x, π)}
return π

We define the advantage of A in this experiment as

Adv SSE
A,NIP(λ) := Pr

[
SSEANIP(1

λ)⇒ true
]
.

2.3 Background on Group Signatures 23

A non-interactive proof system NIP with extraction has simulation sound ex-
tractability if for any PPT adversary A, we have

Adv SSE
A,NIP(λ) ≤ negl(λ) .

2.3 Background on Group Signatures
Here, we recall the formalization of static group signatures due to Bellare, Micciancio
and Warinschi [BMW03], which will be the model for our construction in chapter 3 and
is the basis for the extended model due to Bootle et al. [Boo+16] that is reconsidered in
chapter 4.

Definition 2.14: Static Group Signature Scheme

KeyGen(1λ, n)→ (gpk, gmsk, ~gsk)
Takes as input a security parameter 1λ and the group size n ∈ N. Outputs
the group verification key gpk, the group manager secret key gmsk and
~gsk, a vector of size n, where ~gsk[i] is the signing key of the i-th group
member.

Sign(~gsk[i],m)→ σ

Takes as input the signing key of the i-th group member ~gsk[i] and a
messagem ∈M. Outputs a signature σ.

Verify(gpk,m, σ)→ r ∈ {true, false}
Takes as input the group verification key gpk, a messagem and a signature
σ. Outputs either true or false.

Open(gmsk,m, σ)→ i ∈ [n] ∪ {⊥}
Takes as input the group manager secret key gmsk, message m and a
signature σ. Outputs an identity i or the symbol ⊥ in case of failure.

For simplicity group members are assigned consecutive integer identities from
the set [n].
We say that a static group signature scheme is correct if the following holds for all
λ, n ∈ N andm ∈M: Given (gpk, gmsk, ~gsk)← KeyGen(1λ, n), for all i ∈ [n],
whenever σ ← Sign(~gsk[i],m) we have

Verify(gpk,m, σ) = true and Open(gmsk,m, σ) = i.

24 2 Background and Building Blocks

2.3.1 Security of Static Group Signatures
Prior to the work of [BMW03], many notions of security for group signatures were
considered, including notions of unforgeability, exculpability, non-frameability, and
unlinkability. The BMW model shows that these can be subsumed under two strong
notions of anonymity and traceability.

Full-Anonymity. Informally, anonymity means that it should be hard for an adver-
sary to recover the identity of the signer from a signature without knowledge of the
group manager’s secret key. To properly model collusion among group members the
adversary is given the secret keys of all group members. Moreover, the adversary can
use an opening oracleOOpen(·, ·), which models the possibility of the adversary seeing
previous openings.

Definition 2.15: Full Anonymity

For static group signature scheme GS, consider the anonymity experiment
sG-Anonymity for group size n between a challenger and a two-stage adversary
A = (A0,A1).

sG-AnonymityA
GS(λ, n)

b← {0, 1}
Q := ∅

(gpk, gmsk, ~gsk)←GS.KeyGen(1λ, n)

(state, i0, i1,m∗)← A0(gpk, ~gsk)

σ∗ ← GS.Sign(~gsk[ib],m∗)

b′ ← A1(state, σ∗)

if (m∗, σ∗) ∈ Q
then return false

elseif b′ = b then return true

else return false

A0 and A1 may query OOpen at
any point during their run time.

OOpen(m,σ)

Q := Q ∪ {(m,σ)}
return GS.Open(gmsk,m, σ)

We define the advantage of A in the above experiment as

Adv sG-Anonymityn
A,GS (λ) =

∣∣∣∣Pr[sG-Anonymity RS
A (1λ, n)⇒ true

]
− 1

2

∣∣∣∣ .

2.3 Background on Group Signatures 25

A group signature scheme GS is fully anonymous if for all PPT adversaries A
and group sizes n = poly(λ), we have

Adv sG-Anonymityn
A,GS (λ) ≤ negl(λ) .

This property subsumes the notion of unlinkability that was considered be-
fore [BMW03].

Full-Traceability. The next required property is called traceability. In case of misuse,
we would like the group manager to always be able to identify the signer. In particular,
this means that it should not be possible to create a signature that cannot be opened.
Moreover, a colluding set S of group members should not be able to frame an honest
member, i.e. create a signature that opens to a member that is not in S.

Definition 2.16: Full Traceability

For static group signature scheme GS, consider the traceability experiment
sG-Traceability for group size n between a challenger and an adversary A.

sG-Traceability(1λ, n)

Q := ∅;C := ∅

(gpk, gmsk, ~gsk)← GS.KeyGen(1λ, n)

(m∗, σ∗)← A(gmsk, gpk)

if GS.Verify(gpk,m∗, σ∗) = false then return false

if GS.Open(gmsk,m∗, σ∗) = ⊥ then return true

elseif GS.Open(gmsk,m∗, σ∗) = i and i 6∈ C and (i,m∗) 6∈ Q
then return true

else return false

A may query OSign and OCorrupt at any point during its run time.

OSign(i,m)

Q := Q ∪ {(i,m)}

return GS.Sign(~gsk[i],m)

OCorrupt(i)

C := C ∪ {i}

return ~gsk[i]

26 2 Background and Building Blocks

We define the advantage of A in this experiment as

Adv sG-Traceability
A,GS (λ) := Pr

[
sG-TraceabilityAGS(1

λ, n)⇒ true
]
.

A static group signature scheme GS is fully traceable if for any PPT adversary A,
and all group sizes n = poly(λ) we have

Adv sG-Traceability
A,GS (λ) ≤ negl(λ) .

This property implies the notions of unforgeability, exculpability, non-frameability
and coalition-resistance that were considered before [BMW03].

2.4 Background on Ring Signatures

Here, we state the formal model of ring signatures as defined by [BKM06]. They give
a plethora of possible security definitions, of varying strength, but we only state the
strongest notions of security, since these are the ones relevant to our constructions.

Definition 2.17: Ring Signature

KeyGen(1λ)→ (rsk, rvk)
Takes as input a security parameter 1λ. Outputs a pair (rsk, rvk) of signing
and verification keys.

Sign(m, rsk(s),R)→ ς
Takes as input a message m ∈ M, a signing key rsk(s) and an ordered
set (a ring) of verification keys R =

(
rvk(1), . . . , rvk(n)

)
with rvk(s) ∈ R.

Outputs a signature ς .

Verify(m, ς,R)→ r ∈ {true, false}
Takes as input a messagem, signature ς , and a ring of verification keys R.
Outputs either true or false.

A ring signature scheme is correct if for all λ ∈ N, all ring sizes n = poly(λ),
any

{(
rsk(i), rvk(i)

)}n

i=1
generated with KeyGen(1λ), any s ∈ [n] and any

message m ∈ M, we have Verify(m, Sign(m, rsk(s),R),R) = true, where R =(
rvk(1), . . . , rvk(n)

)
.

2.4 Background on Ring Signatures 27

2.4.1 Security of Ring Signatures

Ring signatures should be unforgeable with respect to the specific message that was
signed and the ring of public keys that it was signed to, i.e. besides being unable to
forge signatures on new messages, an adversary should also be unable to create a new
signature for a previously signed message but with a modified ring.

Definition 2.18: Unforgeability w.r.t. Insider Corruption

For ring signature scheme RS, and key universe size q consider the unforgeability
with respect to insider corruption experiment RUF-IC between a challenger and
an adversary A.

RUF-IC RS
A (1λ, q)

Q := ∅,C := ∅
for i = 1 . . . q do

(rski, rvki)← RS.KeyGen(1λ)

(m∗, ς∗,R∗)← A
(
S :=

{
rvki

}q

i=1

)
if RS.Verify(m∗, ς∗,R∗) = true

and (m∗,R∗) 6∈ Q
and R∗ ⊆ S \ C

then return true

else return false

A may query OSign and OCorrupt at any point during its run time.

OSign(m, s,R)

Q := Q ∪{(m,R)}
if rvks ∈ R then

ς ← RS.Sign(rsks,m,R)

return ς

else return ⊥

OCorrupt(i)

C := C ∪
{
rvki

}
return rski

We define the advantage of A in the above experiment as

Adv RUF-IC
A,RS,q(λ) = Pr

[
RUF-IC RS

A (1λ, q)⇒ true
]
.

28 2 Background and Building Blocks

A signature scheme RS is unforgeable with respect to insider corruption if for all
PPT adversaries A, and for all q = poly(λ) we have

Adv RUF-IC
A,RS,q(λ) ≤ negl(λ) .

A ring signature scheme should also be anonymous, i.e. it should be infeasible for
an attacker, given a signature, to establish which ring member actually created this
signature. In its strongest form, this property should hold true, even if the adversary
has access to all key material, including the signing keys, of the members of the ring.

Definition 2.19: Anonymity Against Full Key Exposure

For ring signature scheme RS and key universe size q consider the anonymity
against full key exposure experiment RAnon-FKE between a challenger and a
two-stage adversary A = (A0,A1).

RAnon-FKE RS
A (1λ, q)

for i = 1 . . . q do

(rski, rvki)← RS.KeyGen(1λ; ri)

(state,m, i0, i1,R)← A0 ({ri}qi=1)

b← {0, 1}
if rvki0 6∈ R or rvki1 6∈ R then
ς := ⊥

else

ς ← RS.Sign(rskib,m,R)

b′ ← A1 (state, ς)

if b = b′ then return true

else return false

adv0 andA1 may query OSign at
any point during their run time.

OSign(m, s,R)

Q := Q ∪{(m,R)}
if rvks ∈ R then

ς ← Sign(m, rsk(s),R)

return ς

else return ⊥

We define the advantage of A in the above experiment as

Adv RUF-IC
A,RS,q(λ) = Pr

[
RUF-IC RS

A (1λ, q)⇒ true
]
.

A signature scheme RS is unforgeable with respect to insider corruption if for all
PPT adversaries A, and for all q = poly(λ) we have

Adv RUF-IC
A,RS,q(λ) ≤ negl(λ) .

3 Signatures with Flexible Public
Keys

In this chapter:
3.1 Introduction . 29

3.1.1 Contributions in this Chapter 32
3.2 Chapter Preliminaries . 32

3.2.1 The Bilinear Group Setting . 32
3.2.2 Programmable Hash Functions 36
3.2.3 Non-interactive Proof Systems for Pairing Product Equations . 38
3.2.4 Structure-Preserving Signatures on Equivalence Classes 40

3.3 Signatures with Flexible Public Keys . 44
3.3.1 Security of Signatures with Flexible Public Keys 47
3.3.2 SFPK with Setup . 51

3.4 Instantiating SFPK . 52
3.4.1 Without Setup . 52
3.4.2 With Setup and Canonical Representatives 60

3.5 Applications of SFPK to Privacy-Preserving Signatures 66
3.5.1 Static Group Signatures . 66
3.5.2 Ring Signatures . 73
3.5.3 Practical Instantiations . 79

3.6 Related Work . 81

3.1 Introduction
Digital signature schemes are commonly used to ensure two security properties: in-
tegrity of the signed message and authenticity of the signer’s identity. In some applica-
tions, these requirements, as implemented in traditional signature schemes are not quite
right for the job. They might be too rigid and prohibit efficient implementation of some
useful functionality. As one example, consider sanitizable signatures [Ate+05b], which
allow designated parties to redact certain parts of a signed message, while otherwise
preserving its integrity and the signer’s intent. This could be implemented, in principle,

30 3 Signatures with Flexible Public Keys

Publication History

Most of the material presented in this chapter is based on, and was first published
in

Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schnei-
der. “Signatures with Flexible Public Key: Introducing Equiva-
lence Classes for Public Keys.” In: Advances in Cryptology – ASI-
ACRYPT 2018, Part II. ed. by Thomas Peyrin and Steven Galbraith.
Vol. 11273. Lecture Notes in Computer Science. Brisbane, Queens-
land, Australia: Springer, Heidelberg, Germany, Dec. 2018, pp. 405–
434. doi: 10.1007/978-3-030-03329-3_14.

The instantiation of signatures with flexible public keys presented in construc-
tion 3.4 was first given in [BHS19].

using regular digital signatures, e.g. by having the signer simply re-sign the redacted
messages. It turns out that more efficient schemes can be designed, where the original
signer does not have to be involved in the creation of a redacted signature. Since this
presents a deviation from the strong integrity guarantees of traditional signatures, care
has to be taken to formulate new security guarantees, which capture exactly the kind
of desired deviation, and nothing more. If successful, the new primitive can possibly be
instantiated differently from traditional signatures and its thus extended functionality
can find further application in different contexts beyond the application originally
envisioned.

In this chapter, we introduce such a primitive, called signatures with flexible public
keys (SFPK). In contrast to the sanitizable signatures described above our primitive
allows for a relaxation of signer authenticity instead. If this property was completely
dropped, any impostor could sign messages on behalf of a legitimate signer. Rather
than this, with our primitive authenticity holds with respect to a specific but hidden
previously established legitimate signer.

Signatures with flexible public key formalize a signature scheme, where verification
and signing keys live in a system of equivalence classes induced by a relation R.
Given a signing or verification key it is possible to transform the key into a different
representative of the same equivalence class, i.e., the pair of old key and new key
are related via R. Signatures under a transformed signing key can be verified using
an equally transformed verification key. Thus, one possibility of attack that was not
possible previously is that an adversary might be able to create signatures which verify
under a key in the class of the challenge signing key. We must therefore extend the
requirement of unforgeability of signatures to the whole equivalence class of the given

https://doi.org/10.1007/978-3-030-03329-3_14

3.1 Introduction 31

key under attack.

Additionally, it should be infeasible, without a trapdoor, to check whether two keys
are in the same class. This property, which we call class hiding, ensures that given
an old verification key, a signature under a fresh representative is indistinguishable
from a signature under a different newly generated key, which lives in a different
class altogether with overwhelming probability. Intuitively this means that signers can
produce signatures for their whole class of keys, but they cannot sign for a different
class (because of unforgeability) and they are able to hide the class to which the
signature belongs, i.e., to hide their own identity in the signature (because of class
hiding). This primitive is motivated by (structure-preserving) signatures on equivalence
classes [HS14] (SPS-EQ), where relations are defined for the message space, instead of
the key space. Both notions are complementary, in the sense that we can use SPS-EQ
to certify the verification key of an SFPK scheme if the respective equivalence relations
are compatible.

Signatures with flexible public key are especially useful in applications where there
is a (possibly pre-defined) set of known verification keys and a verifier only needs to
know that the creator of a given signature was part of that set. Indeed, upon reading
the first description of the scheme’s properties, what should come to mind immediately
is the setting of group signatures [Cv91] and to some extent ring signatures [RST01]
where the group is chosen at signing time and considered a part of the signature. In
both settings, however, we need a way to tie a random representative of a key to its
corresponding key in the ring or group to ensure unforgeability of the resulting group
or ring signature.

The basic idea how to build a group signature scheme from signatures with flexible
public key is to combine themwith an equally re-randomizable certificate on the signing
key. Such a certificate is created through structure-preserving signatures on equivalence
classes by the group manager on the members’ verification key. A group signature
is then produced by signing the message under a fresh representative of the flexible
public key and tying that signature to the group by also providing a blinded certificate
corresponding to the fresh flexible key. This fresh certificate can be generated from the
one provided by the group manager. Opening of group signatures is done using the
trapdoor that can be used to distinguish if public keys belong to the same equivalence
class.

In the case of ring signatures, the certification of keys becomes slightly more com-
plex, since we cannot make any assumption on the presence of a trusted group man-
ager. Therefore, the membership certificate is realized through a perfectly sound
non-interactive proof of membership.

The basic principle, however, remains the same, pointing to an elegant, unified
approach to both group and ring signatures.

32 3 Signatures with Flexible Public Keys

3.1.1 Contributions in this Chapter
This chapter develops a new cryptographic building block, presenting security def-
initions, concrete instantiations and applications. In short, the contributions are as
follows:

Signatures with Flexible Public Key
We present the new primitive of signatures with flexible public keys, which can be
seen as a natural counterpart of structure-preserving signatures on equivalence
classes, but for the public key space.

Two Instantiations of SFPK
We present two possible instantiations of SFPK, with different characteristics in
terms of underlying cryptographic assumptions and trade-offs.

Applications to Ring and Group Signatures
We demonstrate how SFPK can be used to build group and ring signatures.
The resulting group and ring signature schemes have smaller (asymptotic and
concrete) signature sizes than the previous state-of-the-art schemes also secure in
the strongest attacker model, including schemes with non-standard assumptions.

At time of publication the ring signature construction presented in this chapter
was the first to achieve sub-linear signature size, concretely size in O(

√
`) for a

ring size of `, without trusted setup and with security under standard assumptions
in the strongest security model by Bender, Katz and Morselli [BKM06]. We also
show how to efficiently instantiate the scheme using Groth-Sahai proofs and
thereby we solve an open problem stated at ASIACRYPT’2017 by Malavolta and
Schröder [MS17], namely: Are there efficient ring signature schemes without trusted
setup provably secure under falsifiable assumptions?

3.2 Chapter Preliminaries
In this section, we introduce preliminaries relevant in the constructions and arguments
of this chapter. In particular, we recall the well-known setting of cryptographic groups
equipped with a bilinear pairing, we recall the notion of programmable group hash
functions, we sketch a non-interactive proof system for pairing product equations, and
we recall the concept of structure preserving signatures on equivalence classes.

3.2.1 The Bilinear Group Setting
In cryptography, bilinear pairings had their start as a tool for elliptic curve crypt-
analysis [MVO91], only later to become a powerful tool for building sophisticated

3.2 Chapter Preliminaries 33

crypto-systems that rely on the algebraic flexibility afforded by the pairing, beginning
with the seminal work by Boneh and Franklin [BF01] on identity-based encryption.

Definition 3.1: Bilinear Map

Let us consider cyclic groups G1, G2, GT of prime order p. We call e : G1 ×
G2 → GT a bilinear map or simply pairing if it is efficiently computable and the
following conditions hold:

Bilinearity: For all (s, t) ∈ G1 ×G2, and for all a, b ∈ Zp, we have

e(sa, tb) = e(s, t)a·b.

Non-degeneracy: Let g1, g2 be generators of respectively G1 and G2 and let
ĝ = e(g1, g2). Then ĝ 6= 1GT

and ĝ is a generator of group GT .

Depending on the choice of groups we say that map e is

• of type I if G1 = G2,

• of type II if G1 6= G2 and there is an efficiently computable isomorphism
ψ : G2 → G1,

• of type III if no such isomorphism ψ is known.

Unless explicitly stated otherwise we consider only type III pairing groups in this
work.

In order to argue about the asymptotic hardness of computational problems in the
bilinear group setting we assume the existence of an algorithm that generates groups
at a suitable security level.

Definition 3.2: Bilinear Group Generator

A bilinear-group generator is a deterministic polynomial-time algorithm BGGen
that on input a security parameter 1λ returns a bilinear group BG =
(p,G1,G2,GT , e, g1, g2) such that G1 = 〈g1〉, G2 = 〈g2〉 and GT are groups
of order p and e : G1 ×G2 → GT is a bilinear map.

We will assume that all parties have access to the bilinear group family that is used
to instantiate a certain construction. Bilinear groups with an efficient bilinear-group
generator are known to be instantiable e.g. with ordinary elliptic curves such as those
introduced by Barreto and Naehrig [BN06].

34 3 Signatures with Flexible Public Keys

Invertible Sampling. In our proofs, we will make use of a sampling technique due
to Damgård and Nielsen [DN00a]: A standard sampler returns a group element X
on input coins ω. An inverted sampler returns coins ω′ on input a group element X .
Invertible sampling requires that (X,ω) and (X,ω′) are indistinguishably distributed.

Cryptographic Assumptions in the Bilinear Group Setting

We recall assumptions relevant to the instantiations of our constructions presented in
this chapter. They are stated relative to bilinear group parameters

BG := (p,G1,G2,GT , e, g1, g2)← BGGen(1λ).

We begin with the well-known Diffie-Hellman assumption, given for groups with a
type III pairing.

Definition 3.3: Decisional Diffie-Hellman Assumption in Gi

Consider the decisional Diffie-Hellman experiment in group Gi between a chal-
lenger and an adversary A:

DDHA
Gi
(1λ)

x, y ← Z∗
p

b← {0, 1}
if b = 1 then

z ← Z∗
p

else
z = x · y

b′ ← A(gxi , g
y
i , g

z
i)

if b′ = b then return true

else return false

We define the advantage of A in the above experiment as

Adv DDH−i
A (λ) :=

∣∣∣∣Pr[DDHA
Gi
(1λ)⇒ true

]
− 1

2

∣∣∣∣ .
The decisional Diffie-Hellman assumption in Gi states that for all PPT adversaries
A, we have

Adv DDH−i
A (λ) ≤ negl(λ) .

3.2 Chapter Preliminaries 35

If the instance were given in both groups, i.e. (gx1 , g
y
1 , g

z
1 , g

x
2 , g

y
2 , g

z
2) then the pairing

would allow a simple test e(gx1 , g
y
2) = e(gz1 , g2). This also immediately renders the

assumption false in groups with a type I pairing. Similarly, the existence of an isomor-
phism fromG2 toG1 in groups with a type II pairing invalidates the assumption forG2,
but as far as we know not for G1. To the best of our knowledge the existence of a type
III pairing does not invalidate the assumption in either of the two base groups G1, G2.

Boneh and Franklin [BF01] introduce an extension of the decisional Diffie-Hellman
problem, initially called the Weil decisional Diffie-Hellman problem, that is assumed to
remain infeasible in the bilinear setting, even for type I pairings between the groups.
In their later work [BF03] it was given its commonly used name today as the bilinear
decisional Diffie-Hellman assumption. We restate it for type III pairings as follows:

Definition 3.4: Bilinear Decisional Diffie-Hellman Assumption

Consider the bilinear decisional Diffie-Hellman experiment between a challenger
and an adversary A:

BDDHA
BG(1

λ)

u, v, w ← Z∗
p

b← {0, 1}
if b = 1 then

z ← Z∗
p

else
z = u · v · w

b′ ← A(gu1 , gv1 , gw1 , gz1, gu2 , gv2 , gw2 , gz2)
if b′ = b then return true

else return false

We define the advantage of A in the above experiment as

Adv BDDH
A (λ) :=

∣∣∣∣Pr[BDDHA
BG(1

λ)⇒ true
]
− 1

2

∣∣∣∣ .
The bilinear decisional Diffie-Hellman assumption states that for all PPT adver-
saries A, we have

Adv BDDH
A (λ) ≤ negl(λ) .

An extension of the decisional Diffie-Hellman assumption that is assumed to hold
even in groups where the decisional Diffie-Hellman assumption does not hold is the

36 3 Signatures with Flexible Public Keys

decisional linear assumption. We now state the symmetric variant of the decisional
linear assumption, where the problem instance is given in both G1 and G2. This
definition was also used by Ghadafi, Smart and Warinschi [GSW10].

Definition 3.5: Symmetric Decisional Linear Assumption

Consider the symmetric decisional linear experiment between a challenger and
an adversary A:

SDLINA
BG(1

λ)

ϕ, θ, α, β ← Z∗
p

f1 := gϕ1 ;h1 := gθ1

f2 := gϕ2 ;h2 := gθ2

b← {0, 1}
if b = 1 then
γ ← Z∗

p

else
γ = α · β

b′ ← A(f1, h1, fα
1 , h

β
1 , f2, h2, f

α
2 , h

β
2 , g

γ
1 , g

γ
2)

if b′ = b then return true

else return false

We define the advantage of A in the above experiment as

Adv SDLIN
A (λ) :=

∣∣∣∣Pr[SDLINA
BG(1

λ)⇒ true
]
− 1

2

∣∣∣∣ .
The symmetric decisional linear assumption states that for all PPT adversaries A,
we have

Adv SDLIN
A (λ) ≤ negl(λ) .

3.2.2 Programmable Hash Functions

Programmable hash functions, introduced by Hofheinz and Kiltz [HK08] present a way
to hash into groups with limited programmability. To formally define such functions
we first define so-called group hash functions into a group G.

3.2 Chapter Preliminaries 37

Definition 3.6: Group Hash Function into G

Let ` ∈ N be the input length of the hash function.

Gen(1λ)→ K
Takes as input a security parameter 1λ. Outputs a hash keyK .

Eval(K, x)→ r ∈ G
Takes as input a hash keyK and a bit string x ∈ {0, 1}`. Outputs a group
element in G.

Definition 3.7: Programmable Hash Function

A group hash function into G is called (m,n, γ, δ)-programmable if there are
polynomial time algorithms PHF.tdGen and PHF.tdEval such that:

• For any g, h ∈ G the trapdoor algorithm

(K ′, t)← PHF.tdGen(1λ, g, h)

outputs a keyK ′ and trapdoor t. Moreover, for every x ∈ {0, 1}` we have

(ax, bx)← PHF.tdEval(t, x),

such that PHF.Eval(K ′, x) = gaxhbx .

• For all g, h ∈ G and for

(K ′, t)← PHF.tdGen(1λ, g, h) and
K ← PHF.Gen(1λ),

the keys K and K ′ are statistically γ-close.

• For all g, h ∈ G and all possible keys K ′ from the range of
PHF.tdGen(1λ, g, h), for all x1, . . . , xm, z1, . . . , zn ∈ {0, 1}` such that
xi 6= zj for any i, j and for the corresponding

(axi
, bxi

)← PHF.tdEval(t, xi) and
(azi, bzi)← PHF.tdEval(t, zi),

we have

Pr[ax1 = · · · = axm = 0 ∧ az1 = · · · = azn 6= 0] ≥ δ,

where the probability is over trapdoor t that was generated with key K ′.

38 3 Signatures with Flexible Public Keys

An example of a programmable hash function is the following construction based
on the one due to Waters [Wat05] and modified for type II and type III pairings by
Chatterjee and Menezes [CM11].

Construction 3.1: Waters Group Hash Function

PHF.Gen(1λ)

for i ∈ [`]0 do
hi ← G

K := (h0, . . . , h`)

returnK

PHF.Eval(K, x)

parse K = (h0, . . . , h`) ∈ G`+1

r := h0 ·
∏̀
i=1

hxi
i

return r

We recall the following result about the construction above, due to Hofheinz and
Kiltz[HK08, Theorem 4].

Lemma 3.1: Construction 3.1 is (1, q, 0, 1/8 · (`+ 1) · q)-programmable

For any fixed q = poly (λ) construction 3.1 is a (1, q, 0, 1/8 · (` + 1) · q)-
programmable group hash function.

Unless mentioned otherwise, we will always instantiate the programmable hash
function using the Waters function and use input length ` = λ.

3.2.3 Non-interactive Proof Systems for Pairing Product
Equations

We have introduced the general formalism of non-interactive proof systems in sec-
tion 2.2.3. In this chapter, the constructions we design make use of a specific instantia-
tion of a proof system for statements in the language of pairing product equations in a
bilinear group setting. Namely, we recall the framework of pairing product equations
that is used for the languages of the Groth-Sahai proof system [GS08]. For constants
Ai ∈ G1, Bi ∈ G2, tT ∈ GT , γij ∈ Zp which are either publicly known or part of
the statement, and witnesses Xi ∈ G1, Yi ∈ G2 given as commitments, we can prove
statements of the form:

n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
j=1

n∏
i=1

e(Xi, Yi)
γij = tT .

For our constructions of privacy-preserving signatures we require a proof system for
pairing product equations which remains perfectly sound even if there is no trusted

3.2 Chapter Preliminaries 39

third party that could perform an initial setup phase to generate a common reference
string. We will construct such a proof system using two underlying proof systems:

• Let NIPPPE be the proof system for pairing product equations given by Ghadafi,
Smart and Warinschi [GSW10]. This proof system is perfectly sound in the com-
mon reference string model under the symmetric decisional linear assumption.

• Let NIPDLIN be the proof system due to Groth, Ostrovsky and Sahai [GOS06]
which is perfectly sound and perfectly witness-indistinguishable without any
trusted setup. Using this proof system one can show that given tuples T1, T2 as a
statement, at least one of T1 and T2 is a valid DLIN tuple. 1

The soundness of NIPPPE hinges on the correctness of the common reference string,
which must be a valid DLIN tuple for the proof to be sound. The crucial idea is now
that we can use NIPDLIN to enforce a correct common reference string generation even
for a malicious party by letting the prover generate two common reference strings for
NIPPPE, at least one of which must be valid for the proof in NIPDLIN to be valid. Since at
least one is a valid DLIN tuple and one of two proofs in NIPPPE uses the valid common
reference string, our proof system is perfectly sound even if the setup phase is executed
by an untrusted party.

We cannot hope for more than computational witness indistinguishability for the
resulting proof system, since we are making the common reference strings of the
underlying proof systems NIPPPE part of our own proof, but this is still sufficient for
our applications of the proof system.

The full scheme is presented in construction 3.2.

Construction 3.2: Proof System for Pairing Product Equations

NIP.Prove(x,w)

r, s← Z∗
p

crs1 := (f1, f2, h1, h2, . . .)← NIPPPE.Setup(1λ)

crs2 := (f1, f2, h1, h2, f
r
1 , f

r
2 , h

s
1, h

s
2, g

r+s
1 , gr+s

2)

πDLIN ← NIPDLIN.Prove((crs1, crs2), (r, s))

π1 ← NIPPPE.Prove(crs1, x,w)

π2 ← NIPPPE.Prove(crs2, x,w)

return π := (crs1, crs2, πDLIN, π1, π2)

1The results were shown for type I pairings but the proof itself is only given as elements inG2. Moreover,
our variant of the DLIN assumption gives the elements in both groups. Thus, we can apply the same
steps as in [GOS06]. The size of such a proof is 6 elements in G2.

40 3 Signatures with Flexible Public Keys

NIP.Verify(x, π)

parse π = (crs1, crs2, πDLIN, π1, π2)

if (NIPPPE.Verify(crs1, x, π1) = true or
NIPPPE.Verify(crs2, x, π2) = true) and
NIPDLIN.Verify((crs1, crs2), πDLIN) = true then return true

else return false

Theorem 3.2: Perfect Soundness of Construction 3.2

Construction 3.2 is perfectly sound without trusted setup if NIPPPE is perfectly
sound in the common reference string model and NIPDLIN is perfectly sound.

Proof (Sketch). Because NIPDLIN is perfectly sound NIPDLIN.Verify((crs1, crs2), πDLIN) =
true means that at least one of crs1 and crs2 is a valid DLIN tuple. It follows from the
perfect soundness of NIPPPE that at least one of π1 and π2 is a perfectly sound proof for
statement x. Thus, statement x must be true.

Theorem 3.3: Computational Witness Indistinguishability of Construc-
tion 3.2

Construction 3.2 is computationally witness-indistinguishable if NIPPPE is per-
fectly witness-indistinguishable in the common reference string model.

Proof (Sketch). Because the proof system for pairing product equations is witness-
indistinguishable, we change the witness we use in proof π1. Note that this change may
include the change of crs1 to a non-DLIN tuple but the proof πDLIN is still valid because
crs2 is a DLIN tuple. Next we replace crs1 with crs2 and use SetupPPE to compute crs2.
Finally, we change the witness used to compute π2.

3.2.4 Structure-Preserving Signatures on Equivalence Classes
The concept of structure-preserving signatures on equivalence classes (SPS-EQ) was
first introduced by Hanser and Slamanig [HS14]. This work was further extended by
Fuchsbauer, Hanser and Slamanig in [FHS14] and [FHS15].

The core idea of SPS-EQ is that messages live in a system of equivalence classes
induced by equivalence relationR. By signing a message, i.e. one representative of a
class, the signer conceptually provides a signature for all the elements in that same
equivalence class.

3.2 Chapter Preliminaries 41

This is made clear by the existence of a procedure SPS.Move(vkSPS,m, σEQ, δ) that
can be used to change a given signature on representativem to a different representative
without knowledge of the signing key, allowing one signature on any representative
of the class to cover the whole class, in effect. We thus require that there exists a set
of randomizers for the equivalence relation ∆R, which can be used to move around
between different representatives of the same class using the SPS.Move algorithm.

Structure-preserving signatures on equivalence classes are formally defined as fol-
lows:

Definition 3.8: Structure-preserving Signatures on Equivalence Classes

Setup(1λ)→ ppSPS
Takes as input a security parameter 1λ. Outputs public parameters ppSPS.

KeyGen(ppSPS)→ (skSPS, vkSPS)
Takes as input the public parameters ppSPS. Outputs a pair of signing and
verification keys (skSPS, vkSPS).

Sign(skSPS,m)→ σEQ
Takes as input a message m ∈ M and signing key skSPS. Outputs a
signature σEQ.

Verify(vkSPS,m, σEQ)→ r ∈ {true, false}
Takes as input a verification key vkSPS, a message m, and signature σEQ.
Outputs either true or false.

Move(vkSPS,m, σEQ, δ)→ (m′, σ′
EQ)

Takes as input a verification key vkSPS, a messagem, a signature σEQ, and
randomizer δ ∈ ∆R. Outputs a message-signature pair (m′, σ′

EQ).

ValKey(skSPS, vkSPS)→ r ∈ {true, false}
Takes as input a signing key skSPS and verification key vkSPS. Outputs
either true or false.

An SPS-EQ scheme for equivalence relation R is correct, if for all λ ∈ N, all
ppSPS ← Setup(1λ) and (skSPS, vkSPS)← KeyGen(ppSPS), all messagesm and all
randomizers δ ∈ ∆R, we have:

• ValKey(skSPS, vkSPS) = true,

• Pr [Verify(vkSPS,m, Sign(skSPS,m)) = true] = 1,

• and Pr [Verify(vkSPS,Move(vkSPS,m, Sign(skSPS,m), δ)) = true] = 1.

42 3 Signatures with Flexible Public Keys

The original work [HS14] defines two security notions for SPS-EQ namely unforge-
ability under chosen-message attacks and class hiding. We will only require the original
notion of unforgeability and a stronger notion of class hiding, that we recall shortly.

Definition 3.9: EUF-CMA for SPS-EQ

For any structure preserving signature scheme on equivalence classes SPS con-
sider the unforgeability under chosen message attacks experiment EQ-EUF-CMA
between a challenger and an adversary A:

EQ-EUF-CMAA
SPS(1

λ)

ppSPS ← SPS.Setup(1λ)

(skSPS, vkSPS)← SPS.KeyGen(ppSPS)

(m∗, σ∗)← A(vkSPS)
if ∀m ∈ Q : (m∗,m) 6∈ R and
SPS.Verify(vkSPS,m∗, σ∗) = true

then return true

else return false

Amay invokeOSign at any point
during its runtime.

OSign(m)

Q := Q ∪ {m}
return SPS.Sign(skSPS,m)

We define the advantage of A in this experiment as

Adv EQ-EUF-CMA
A,SPS (λ) := Pr

[
EQ-EUF-CMAA

SPS(1
λ)⇒ true

]
.

A signature scheme on equivalence classes SPS is unforgeable under chosen-
message attacks if for any PPT adversary A, we have

Adv EQ-EUF-CMA
A,SPS (λ) ≤ negl(λ) .

Possible equivalence relations. To the best of our knowledge, all known instantia-
tions of SPS-EQ allow signing messages from the space (G∗)`, for some ` > 1, and cyclic
group G and consider the following equivalence relationRexp: given two messages

m = (m1, . . . ,m`) and
m′ = (m′

1, . . . ,m
′
`),

3.2 Chapter Preliminaries 43

we say that m and m′ are equivalent (denoted by m ≈exp m
′) if there exists a scalar

r ∈ Z∗
p, such that for all i ∈ [`] we have

mi
r = m′

i.

The set of randomizers in this relation is then also the set of non-zero scalars∆exp = Z∗
p

and changing the representative amounts to component-wise exponentiation with the
randomizer, which we will, in slight abuse of notation, denote as

mδ =
(
m1

δ, . . . ,m`
δ
)

for a messagem ∈ (G∗)` and randomizer δ ∈ Z∗
p.

Once we restrict ourselves to constructions where the equivalence relation isRexp

we can consider stronger notions of security that are specific to the group framework
that comes with that relation.

A stronger notion of class hiding, called perfect adaptation of signatures, was pro-
posed by Fuchsbauer et al. in [FHS15]. Informally, this definition states that signatures
received by changing the representative of the class and new signatures for the rep-
resentative are identically distributed. In our schemes we will only use this stronger
notion.

Definition 3.10: Perfect Adaptation of Signatures

A structure preserving signature scheme on equivalence classes SPS for Rexp

on (G∗)` has perfect adaption of signatures if for allm ∈ (G∗
1)

`, all (skSPS, vkSPS)
such that SPS.ValKey(skSPS, vkSPS) = true and all δ ∈ Z∗

p and σEQ such that
SPS.Verify(vkSPS,m, σEQ) = true, the distributions of

(mδ, SPS.Sign(skSPS,mδ)) and SPS.Move(vkSPS,m, σEQ, δ)

are identical.

Fuchsbauer and Gay [FG18] recently introduced a weaker version of unforgeability
called unforgeability under chosen-open-message attacks, which restricts the adver-
sary’s signing queries to messages where it knows all exponents.

Definition 3.11: EUF-CoMA for SPS-EQ

For any structure preserving signature scheme on equivalence classes SPS
consider the unforgeability under chosen open message attacks experiment
EQ-EUF-CoMA between a challenger and an adversary A:

44 3 Signatures with Flexible Public Keys

EQ-EUF-CoMAA
SPS(1

λ)

ppSPS ← SPS.Setup(1λ)

(skSPS, vkSPS)← SPS.KeyGen(ppSPS)

(m∗, σ∗)← A(vkSPS)
if ∀m ∈ Q : m∗ 6≈exp m and
SPS.Verify(vkSPS,m∗, σ∗) = true

then return true

else return false

A may invoke OSignopen at any
point during its runtime.

OSignopen(e1, . . . , e`)

m := (ge11 , . . . , ge`1)

Q := Q ∪ {(m, (e1, . . . , e`))}
return Sign(skSPS,m)

We define the advantage of A in this experiment as

Adv EQ-EUF-CoMA
A,SPS (λ) := Pr

[
EQ-EUF-CoMAA

SPS(1
λ)⇒ true

]
.

A signature scheme on equivalence classes SPS is unforgeable under chosen-
message attacks if for any PPT adversary A, we have

Adv EQ-EUF-CoMA
A,SPS (λ) ≤ negl(λ) .

3.3 Signatures with Flexible Public Keys
In this section we introduce the main contribution of this chapter, the concept of
signatures with flexible public keys. We begin by motivating the idea behind our
primitive.

In the notion of existential unforgeability of regular digital signatures, the adversary
must return a signature valid under the verification key given to it by the challenger.
Imagine now that we allow a more flexible forgery. The adversary could instead return
a signature that is valid under a verification key that is in some relation R to the
verification key chosen by the challenger. In our new primitive, this relation induces
a system of randomizable equivalence classes on the set of possible public keys. This
is analogous to the system of equivalence classes that forms the message space of
SPS-EQ signatures. A given public key, along with the corresponding secret key can be
transformed to a different representative in the same class.

A technical detail of the described notion is that there may be other ways of obtaining
a new representative, hence the forgery on the challenge equivalence class is valid as

3.3 Signatures with Flexible Public Keys 45

long as the relation holds, even without knowledge of the explicit randomness that
leads to the given transformation.

In addition to this relaxed unforgeability, we require a property named class hiding
–reminiscent of the related property for SPS-EQ– that requires that it should not be
feasible, in absence of the concrete transformation randomness, to determine whether
a given verification key belongs to one class or another. This property should hold even
for an adversary which has access to the randomness used to create the key pairs in
question. Class Hiding is essential in the applications of signatures with flexible public
keys to privacy-preserving signatures.

Observe that an apparent conflict arises between class hiding of a proposed scheme
and our ability to prove unforgeability as described above, because the challenger needs
a way to efficiently determine whether a forgery is valid, even if no transformation
randomness is given. The conflict is resolved by requiring the existence of a trapdoor
key generation algorithm tdGenwhich outputs a key pair (fsk, fvk) and a class trapdoor
td for the class the key pair is in. The trapdoor allows the challenger to check whether
a given key is in the same class as fvk, even if doing so efficiently is otherwise assumed
difficult. Since we require that the keys generated using the trapdoor key generation
and the regular key generation are distributed identically, unforgeability results with
respect to the former also hold with respect to the latter.

Definition 3.12: Signatures with Flexible Public Key

KeyGen(1λ)→ (fsk, fvk)
Takes as input a security parameter 1λ. Outputs a pair (fsk, fvk) of signing
and verification keys.

tdGen(1λ)→ (fsk, fvk, td)
Takes as input a security parameter 1λ. Outputs a pair (fsk, fvk) of signing
and verification keys, as well as a trapdoor td.

Sign(fsk,m)→ σ
Takes as input a message m ∈ M and a signing key fsk. Outputs a
signature σ.

Verify(fvk,m, σ)→ r ∈ {true, false}
Takes as input a messagem, a signature σ and verification key fvk. Outputs
either true or false.

Check(td, fvk)→ r ∈ {true, false}
Takes as input a trapdoor td and a verification key fvk. Outputs either true
or false

46 3 Signatures with Flexible Public Keys

MoveVk(fvk, δ)→ fvk′

Takes as input a verification key fvk and randomizer δ ∈ ∆R. Outputs a
verification key fvk′.

MoveSk(fsk, δ)→ fsk′

Takes as input a signing key fsk and randomizer δ ∈ ∆R. Outputs a signing
key fsk′.

A signature scheme with flexible public key is correct if for all 1λ ∈ N the
following conditions hold:

• The distribution of key pairs produced by KeyGen and tdGen is identical.

• For all key pairs
(fsk, fvk)← KeyGen(1λ)

and all messagesm ∈M we have

Verify(fvk,m, Sign(fsk,m)) = true and
Verify(fvk′,m, Sign(fsk′,m)) = true,

where MoveVk(fvk, δ) = fvk′ and MoveSk(fsk, δ) = fsk′ for any random-
izer δ ∈ ∆R.

• For all (fsk, fvk, td)← tdGen(1λ) and all fvk′ we have

Check(td, fvk′) = true

if and only if fvk′ ≈R fvk.

Remark

As a matter of convenient notation, it will be useful to consider the joint trans-
formation of representatives of signing and verification keys of an SFPK scheme
using the same randomizer δ. In this case we write

(fsk′, fvk′)← SFPK.MoveKeys(fsk, fvk, δ)

instead of sequential calls to SFPK.MoveSk(fsk, δ) and SFPK.MoveVk(fvk, δ).

3.3 Signatures with Flexible Public Keys 47

3.3.1 Security of Signatures with Flexible Public Keys

Class Hiding

We require, informally, that an adversary should not be able to link verification keys to
their base representatives after they have been transformed with SFPK.MoveVk. This
should hold even if the adversary has access to the possible previous base representatives
and their corresponding signing keys, as well as the possibility to obtain signatures
under the new signing key.

Definition 3.13: Class Hiding with Key Corruption

For any signature schemewith flexible public keys SFPKwith relationR, consider
the class hiding experiment with key corruption Class-Hiding-Keys between a
challenger and an adversary A:

Class-Hiding-KeysASFPK,R(1λ)

(fsk0, fvk0)← SFPK.KeyGen(1λ)

(fsk1, fvk1)← SFPK.KeyGen(1λ)

b← {0, 1}
δ ← ∆R

fsk′ ← SFPK.MoveSk(fskb, δ)

fvk′ ← SFPK.MoveVk(fvkb, δ)

b̂← A((fsk0, fvk0), (fsk1, fvk1), fvk′)
if b = b̂ then return true

else return false

A may query OSign at any point
during its runtime.

OSign(m)

return SFPK.Sign(fsk′,m)

We define the advantage of A in this experiment as

Adv Class-Hiding-Keys
A,SFPK (λ) :=

∣∣∣∣Pr[Class-Hiding-KeysASFPK(1λ)⇒ true
]
− 1

2

∣∣∣∣ .
A SFPK is class hiding with key corruption if for any PPT adversary A, we have

Adv Class-Hiding-Keys
A,SFPK (λ) ≤ negl(λ) .

We can consider an even stronger notion of class hiding, if we allow the adversary

48 3 Signatures with Flexible Public Keys

access to the randomness that was used in generation of the base keys.

Definition 3.14: Full Class Hiding

For any signature schemewith flexible public keys SFPKwith relationR, consider
the class hiding experiment Class-Hiding between a challenger and an adversary
A:

Class-HidingASFPK,R(1λ)

(fsk0, fvk0)← SFPK.KeyGen(1λ;ω0)

(fsk1, fvk1)← SFPK.KeyGen(1λ;ω1)

b← {0, 1}
δ ← ∆R

fsk′ ← SFPK.MoveSk(fskb, δ)

fvk′ ← SFPK.MoveVk(fvkb, δ)

b̂← A(ω0, ω1, fvk′)

if b = b̂ then return true

else return false

A may query OSign at any point
during its runtime.

OSign(m)

return SFPK.Sign(fsk′,m)

We define the advantage of A in this experiment as

Adv Class-Hiding
A,SFPK (λ) :=

∣∣∣∣Pr[Class-HidingASFPK(1λ)⇒ true
]
− 1

2

∣∣∣∣ .
A SFPK is class hiding if for any PPT adversary A, we have

Adv Class-Hiding
A,SFPK (λ) ≤ negl(λ) .

Unforgeability under Flexible Public Keys

A signature scheme with flexible public keys should provide unforgeability for the entire
class represented by a given verification key. To make this a falsifiable notion without
harming the class hiding properties, we have to let the challenger use the SFPK.tdGen
algorithm. In order to consider the strongest possible notion of unforgeability, we thus
also give the adversary access to the class trapdoor and require that forgery should still
be infeasible.

3.3 Signatures with Flexible Public Keys 49

Definition 3.15: Existential Unforgeability under Flexible Public Key

For any signature schemewith flexible public keys SFPKwith relationR, consider
the unforgeability under flexible public keys experiment Flex-Unforgeability
between a challenger and an adversary A:

Flex-UnforgeabilityASFPK,R(1λ)

Q := ∅
(fsk, fvk, td)← SFPK.tdGen(1λ)

(fvk′,m∗, σ∗)← A(fvk, td)
if (m∗, ·) 6∈ Q and
SFPK.Check(td, fvk′) = true and
SFPK.Verify(fvk′,m∗, σ∗) = true

then return true

else return false

Amay queryOSign1 andOSign2
at any point during its runtime.

OSign1(m)

σ ← SFPK.Sign(fsk,m)

Q := Q ∪{(m,σ)}
return σ

OSign2(m, δ)

fsk′ ← SFPK.MoveSk(fsk, δ)

σ ← SFPK.Sign(fsk′,m)

Q := Q ∪{(m,σ)}
return σ

We define the advantage of A in this experiment as

Adv Flex-Unforgeability
A,SFPK (λ) := Pr

[
Flex-UnforgeabilityASFPK(1

λ)⇒ true
]
.

A scheme SFPK is existentially unforgeable with flexible public key under chosen
message attack if for any PPT adversary A, we have

Adv Flex-Unforgeability
A,SFPK (λ) ≤ negl(λ) .

Definition 3.16: Strong Existential Unforgeability under Flexible Public
Key

A signature schemewith flexible public keys SFPK is strongly existentially unforge-
able with flexible public key under chosen message attack if for all PPT adversaries
A the advantage Adv Flex-Unforgeability

A,SFPK (λ) in the above experiment is negligible in λ,
where we replace the condition (m∗, ·) 6∈ Q with (m∗, σ∗) 6∈ Q.

50 3 Signatures with Flexible Public Keys

Compatibility with SPS-EQ. Our primitive can be seen as complementary in func-
tionality to signatures on equivalence classes and indeed the applications we showcase
below benefit greatly from this complementarity. However, for there to be a useful
interaction between two such schemes, we require that they speak the same language,
i.e. that they consider the same system of equivalence classes. We thus define the
following useful property between signatures on equivalence classes and signatures
with flexible public keys.

Definition 3.17: SPS-EQ/SFPK Compatibility

A structure preserving signature scheme on equivalence classes SPS-EQ and
a signature scheme with flexible public keys SFPK are called compatible if the
message space of the former is the same as the key space of the latter and they
share the same equivalence relationR.

Canonical Representatives. In some applications it might be required that every
equivalence class has a unique representative that can act as a description of the class.
We will call such objects the canonical representatives of the given classes and further
assume that if a scheme has canonical representatives, there is an efficient predicate
SFPK.Canonical? to determine whether a verification key is canonical or not.

Definition 3.18: Canonical Representatives

A signature scheme with flexible public keys has canonical representatives if, in
addition to the interface specified in definition 3.12, there exists an algorithm
Canonical? as follows:

Canonical?(fvk)→ r ∈ {true, false}
Takes as input a verification key fvk. Outputs either true or false.

Key Recovery. In the applications we will see later, the verification and signing keys
are jointly randomized by the signer using the same randomizer in SFPK.MoveVk and
SFPK.MoveSk. However, the SFPK.MoveVk algorithm alone can be executed by a third
party given only the verification key and a randomizer δ. Revealing δ to the holder of
the signing key allows them to compute the corresponding randomized signing key. A
potentially useful property in this case would be a way to avoid interaction during this
recovery of the signing key. Allowing the signer to extract the new signing key using
only their old signing key would break class hiding, since the attacker in this case has
access to the base signing keys. Fortunately, we can instead use the additional trapdoor
returned by the SFPK.tdGen algorithm. More formally, we define this optional property
as follows.

3.3 Signatures with Flexible Public Keys 51

Definition 3.19: Key Recovery

A signature scheme with flexible public keys SFPK has recoverable signing keys
if there exists an efficient algorithm SFPK.Recover such that for all security
parameters λ ∈ N, all randomizers δ ∈ ∆R and all

(fsk, fvk, td)← SFPK.tdGen(1λ) and
fvk′ ← SFPK.MoveVk(fvk, δ)

we have
SFPK.MoveSk(fsk, δ) = SFPK.Recover(fsk, td, fvk′).

3.3.2 SFPK with Setup

In this subsection, we address applications where part of each user’s public key is
shared with all the other public keys and is precomputed by a trusted third party in a
setup phase, e.g. the key used in a programmable hash function. We therefore define
an additional algorithm SFPK.Setup that, given a security parameter, outputs a set of
public parameters ppSFPK. We assume that these parameters are an implicit input to all
algorithms of such a scheme. If the SFPK.KeyGen is independent of ppSFPK, we say that
such a scheme supports key generation without setup.

Definition 3.20: SFPK with Public Parameters

A signature scheme with flexible public keys is with public parameters if, in
addition to the interface specified in definition 3.12, there exists an algorithm
Setup as follows:

Setup(1λ)→ ppSFPK
Takes as input a security parameter 1λ. Outputs public parameters ppSFPK.

We briefly discuss the implications of a setup phase on the security notions. Usually,
we require that the public parameters are generated by an honest and trusted party
(i.e. by the challenger in definition 3.14 and definition 3.15). We can additionally
consider those notions under maliciously generated parameters ppSFPK. We call a
scheme class hiding under malicious parameters if the class hiding definition holds
even if in definition 3.14 the adversary is allowed to generate the public parameters
ppSFPK. Similarly, we call an SFPK scheme unforgeable under malicious parameters if
the unforgeability definition 3.15 holds if ppSFPK is generated by the adversary.

52 3 Signatures with Flexible Public Keys

3.4 Instantiating SFPK

In this section we present two efficient instantiations of signatures with flexible public
keys. Both schemes support a generalized exponentiation relationRexp similar to the
one we saw earlier for SPS-EQ. To recapitulate, we say that verification keys

fvk1 = (fvk1,1, . . . , fvk1,`) and
fvk2 = (fvk2,1, . . . , fvk2,`)

are equivalent, denoted fvk1 ≈exp fvk2, if and only if there exists a scalar δ ∈ Z∗
p such

that for all i ∈ [`] we have

(fvk1,i)δ = fvk2,i.

In this general variant, fvk1, fvk2 may contain a mix of elements from different (same
order) groups as long as component-wise fvk1,i, fvk2,i are in the same group for all i.

Remark

We remark that our construction requires a key homomorphism property in the
programmable hash function that is used, namely for all δ ∈ ∆ it should hold

PHF.Eval(Kδ
PHF,m) = PHF.Eval(KPHF,m)δ.

It is easy to see that this property holds e.g. for construction 3.1.

3.4.1 Without Setup

The first instantiation of SFPK we present does not require a trusted setup. In com-
parison to the construction with setup in the following section, this leads to larger
verification keys and a more time-consuming check procedure for representatives.

We assume that in the plain model scheme (i.e. without a common reference string)
the verification key contains the implicit security parameter 1λ and parameters BG.
Since the bilinear-group generation algorithm BGGen(λ) is deterministic, it follows
that this does not influence the class hiding property or the unforgeability property.
Therefore, for readability we omit those parameters.

The first instantiation is based around an instantiation of the Waters group hash
function presented in section 3.2.2. The scheme has the key recovery property.

3.4 Instantiating SFPK 53

Construction 3.3: SFPKWithout Setup

SFPK.KeyGen(1λ)

KPHF ← PHF.Gen(1λ) ∈ (G∗
1)

λ+1

A,B,C,D,X ← G∗
1

y ← Z∗
p

t := e(Xy, g2)

fvk := (t, A,B,C,D,KPHF)

fsk := (y,X, fvk)

return (fsk, fvk)

SFPK.tdGen(1λ)

a, x, y ← Z∗
p

t := e(gx·y1 , g2)

µ0 := a · x
for i = 1 . . . (λ+ 4) do

µi ← Z∗
p

KPHF := (gµi
1)i∈{4,...,λ+4}

fvk := (t, gµ0
1 , gµ1

1 , gµ2
1 , gµ3

1 ,KPHF)

fsk := (y, gx1 , fvk)

td := (a, gy2 , g
µ0
2 , . . . , g

µλ+4

2)

return (fsk, fvk, td)

SFPK.Sign(fsk,m)

parse fsk = (y,X, fvk)

parse fvk = (t, A,B,C,D,KPHF)

r ← Z∗
p

h← PHF.Eval(KPHF,m)

σ := (Xy · hr, gr1, gr2)
return σ

SFPK.Verify(fvk,m, σ)

parse σ = (σ1, σ2, σ3)

parse fvk = (t, A,B,C,D,KPHF)

h← PHF.Eval(KPHF,m)

if e(σ2, g2) = e(g1, σ
3) and

e(σ1, g2) = t · e
(
h, σ3

)
then return true

else return false

SFPK.MoveVk(fvk, δ)

parse fvk = (t, A,B,C,D,KPHF)

fvk′ := (tδ, Aδ, Bδ, Cδ, Dδ, (KPHF)
δ)

return fvk′

SFPK.MoveSk(fsk, δ)

parse fsk = (y,X, fvk)

fvk′ ← MoveVk(fvk, δ)

fsk′ := (y,Xδ, fvk′)

return fsk′

54 3 Signatures with Flexible Public Keys

SFPK.Check(td, fvk)

parse fvk = (t, fvk0, fvk1, fvk2, fvk3, . . . , fvkλ+4)

parse td = (a, Y2, td0, . . . , tdλ+4)

if e(fvka
−1

0 , Y2) = t and
λ+4∧
i=0

λ+4∧
j=0

e(fvki, tdj) = e(fvkj , fvki)

then return true

else return false

SFPK.Recover(fsk, td, fvk′)

parse fsk = (y,X, fvk)

parse td = (a, Y2, td0, . . . tdλ+4)

parse fvk′ = (t′, A′, B′, C ′, D′,K ′
PHF)

X ′ := A′a−1

fsk′ := (y,X ′, fvk′)

return fsk′

Correctness and Key Recovery. First, observe that SFPK.tdGen, instead of sam-
pling group elements directly, samples in the exponent group and uses the exponents to
compute the trapdoor in addition to signing and verification keys. Since the exponents
are sampled uniformly at random, the group elements obtained by exponentiating the
generator g1 are equally uniformly distributed in G1. Thus, the distributions of key
pairs generated by SFPK.tdGen and SFPK.KeyGen are identical.

Let (fsk, fvk, td)← SFPK.tdGen(λ). We have

fvk = (t = e(gx·y1 , g2), g
µ0=a·x
1 , gµ1

1 , g
µ2

1 , . . . , g
µλ+4

1)

fsk = (y, gx1 , fvk)

td = (a, Y2 = gy2 , td0, . . . , tdλ+4)

where tdi = gµi
2 .

We will now show that checking of representatives is correct.
First, let fvk′ = (t′, fvk′0, fvk

′
1, . . . , fvk

′
λ+4), such that fvk′ ≈exp fvk, i.e. there exists

δ ∈ Z∗
p such that t′ = tδ and fvk′i = fvkδi for all i ∈ {0, . . . , λ+ 4}.

3.4 Instantiating SFPK 55

Then we have

e(fvk′a
−1

0 , Y2) = e(gaxδ1 · a−1, gy2)

= e(gxy1 , g2)
δ = t′.

Further, let i, j ∈ {0, . . . , λ+ 4}. Then

e(fvk′i, tdj) = e(gδµi
1 , g

µj

2)

= e(g
δµj

1 , gµi
2) = e(fvk′j, tdi).

Hence, SFPK.Check(td, fvk′) = true. Observe further, that

SFPK.MoveSk(fsk, δ) = (y, gxδ1 , fvk
′)

= (y, gaxδ·a
−1

1 , fvk′) = SFPK.Recover(fsk, td, fvk′),

hence key the key recovery algorithm is correct.
Second, let ˆfvk be such that a ˆfvk 6≈exp fvk.
Then, for all δ ∈ Z∗

p we have t̂ 6= tδ or ˆfvki 6= fvkδi for some i ∈ {0, . . . , λ+ 4}. Let
δ ∈ Z∗

p such that ˆfvk0 = fvkδ0. Hence, we have t̂ = tδ+β 6= tδ or ˆfvki = fvkδ+α
i 6= fvkδi

for some i ∈ {1, . . . , λ+ 4} and α, β ∈ Z∗
p. First, assume the second case. Then

e(ˆfvki, td0) = e(g
µi(δ+α)
1 , gµ0

2)

= e(gµiδ
1 , gµ0

2) · e(gµiα
1 , gµ0

2)

6= e(gµ0δ
1 , gµi

2) = e(ˆfvk0, tdi)

thus failing the second check.
Now assume t̂ = tδ+β 6= tδ , then

e(ˆfvk0
a−1

, Y2) = e(gaxδ·a
−1

1 , gy2)

= e(gxy1 , g2)
δ = tδ

6= tδ+β = t̂,

failing the first check. Thus, we can never have SFPK.Check(td, ˆfvk) = true if ˆfvk 6≈exp

fvk.
For messagem consider now a signature

σ = (X ′y · hr, gr1, gr2)

under fsk′ corresponding to fvk′ from above. We have

e(gr1, g2) = e(g1, g
r
2)

56 3 Signatures with Flexible Public Keys

and

e(X ′y · hr, g2) = e(gxyδ1 · hr, g2)
= e(gxyδ1 , g2) · e(h, gr2)
= t′ · e(h, gr2)

Thus, if PHF is correct and compatible with the relation, we have

SFPK.Verify(fvk′,m, σ) = true.

Setting δ = 1 shows that verification succeeds for canonical keys as well.
All together, this shows correctness of the construction.

Proof of Unforgeability

Theorem 3.4: Unforgeability of Construction 3.3

Construction 3.3 is existentially unforgeable under flexible public key, assuming
the symmetric decisional linear assumption holds and that PHF is (1, poly(λ))-
programmable.

Proof. In this particular proof we assume that we can re-run PHF.tdGen using the
same random coins on a different group, i.e. that we can generate key KPHF =

(gµ4

1 , . . . , g
µ
1λ+4

1) ∈ G1λ+1
1 and a corresponding keyK ′

PHF = (gµ4

2 , . . . , g
µ
1λ+4

2) ∈ G1λ+1
2 .

Note that this means that we make non-blackbox use of the underlying programmable
hash function, but this re-running is possible for the hash function we use, i.e. the
Waters hash function.

Let (f1, h1, fα
1 , h

β
1 , f2, h2, f

α
2 , h

β
2 , g

γ
1 , g

γ
2) be an instance of the decisional linear prob-

lem and let A be a PPT adversary with non-negligible advantage Adv Flex-Unforgeability
A,SFPK (λ).

We will show an algorithmR that uses A to break the above problem instance.
In the first step, the reductionR prepares the verification key fvk = (t, A,B,C,D,

KPHF) as follows. It sets:

X = gγ1 A = Xa B = hβ1

C = h1 t = e(X, f2) = e(Xφ, g2) D = fα
1

and (KPHF, τPHF) ← PHF.tdGen(1λ, gγ1 , g1). The reduction also prepares the trap-
door τ = (a, f2, f

α
2 , h

β
2 , h2, K

′
PHF), where to generate K ′

PHF we re-run the algorithm
PHF.tdGen(1λ, gγ2 , g2) as discussed above.

Let (m, l) be one of A′s signing queries. To answer it,R

3.4 Instantiating SFPK 57

• chooses random values t← Z∗
p,

• it computes (am, bm)← PHF.tdEval(τPHF,m) and aborts if am = 0,

• it computes fvk′ ← SFPK.MoveVk(fvk, l),

• it computes:

σ1 = (gγ1)
t·l·am · ((f1)(−a−1

m) · gt1))l·bm,

σ2 = (f1)
−a−1

m · gt1, σ3 = (f1)
−a−1

m · gt2,

• it returns the signature σ = (σ1, σ2, σ3).

Let f1 = gφ1 . We will now show that this is a valid signature. Note that a valid
signature is of the form (fγ·l

1 · ((g
γ
1)

am · gbm1)l·r, gr1, g
r
2). In this case, the reduction has

set r = −a−1
m · φ + t and this means that the fγ·l

1 cancels out and the reduction does
not need to compute fγ

1 .
Finally, A will output a valid signature under messagem∗:

σ̂ = (σ̂1, σ̂2, σ̂3) = ((gγ·φ1 PHF.Eval(K,m∗)r
∗
)l

∗
, gr

∗

1 , g
r∗

2),

for which we hope that am∗ = 0, where (am∗, bm∗) ← PHF.tdEval(τPHF,m∗). More-
over, since this should be a valid forgery then we have that this signature is under
a verification key ˆfvk for which (fvk, ˆfvk) ∈ R. Thus, we have σ̂ = ((fγ

1 (g
r∗
1)bm∗)l

∗
,

gr
∗

1 , g
r∗
2), for some unknown r∗ but known bm∗ . Since (fvk, ˆfvk) ∈ R. This means that

ˆfvk = (tl
∗
, Al∗, Bl∗, C l∗, Dl∗, K l∗

PHF) = ((fα
1)

l∗, (hβ1)
l∗, (h1)

l∗, (gγ·d1)l
∗
, tl

∗
, K l∗

PHF). We
now compute

T1 = e(σ̂1, h2) = e(fγ
1 (g

r∗

1)bm∗ , hl
∗

2) T2 = e(hl
∗

1 , g
r∗

2)bm∗ = e(gr
∗·bm∗

1 , hl
∗

2)

T3 = e((fα
1)

l∗, h2) = e(fα
1 , h

l∗

2) T4 = e((hβ1)
l∗, f2) = e(fβ

1 , h
l∗

2)

Finally, the reductionR returns 1 if T1 · T−1
2 = T3 · T4 and 0, otherwise. Note that

T1 · T−1
2 = e(fγ

1 , h
l∗
2) and the above equation is correct only if γ = α + β.

The success probability of the reduction R depends on whether it can answer all
signing queries ofA and on the returned forgery (i.e. for which we must have am∗ = 0).
However, since we assume that the used hash function is a (1, poly(λ))-programmable
hash function, it follows thatR has a non-negligible advantage in solving the decisional
linear problem.

58 3 Signatures with Flexible Public Keys

Proof of Class Hiding

Theorem 3.5: Class Hiding of Construction 3.3

Construction 3.3 is fully class hiding, assuming the decisional Diffie-Hellman
assumption in G1 holds.

Proof. Consider the following series of hybrids. We will use Si to denote the event that
Hi outputs true. We will also use the vector ~u to denote the key for the programmable
hash function KPHF. Let fvk′ = (t′, A′, B′, C ′, D′, ~u′) be the verification key given to
the adversary as part of the challenge. Moreover, let fvk0 = (t0, A0, B0, C0, D0, ~u0)
and fvk1 = (t1, A1, B1, C1, D1, ~u1) be the public keys that are returned by the KeyGen
algorithm on input of random coins ω0 and ω1 given to the adversary and b̂ be the bit
chosen by the challenger.

H0 : The Class-Hiding experiment.

H1: In this game we change the way we sample fvk0 and fvk1. Instead of sampling
directly fromG1, we sample a, b, c, d, x, ν1, . . . , νλ ← Z∗

p and setA = ga1 ,B = gb1,
C = gc1, D = gd1 , X = gx1 and ~u = (gν01 , . . . , g

νλ
1). We use the invertible sampling

algorithm to obtain corresponding randomness ω0, ω1 to provide to the adversary.
Moreover, we change the way fsk′ and fvk′ are computed from (fskb̂ fvkb̂),
i.e. fvk′ = (e(Qx, gy2), Q

a, Qb, Qc, Qd, (Qν0, . . . , Qνλ)), and fsk′ = (y,Qx, fvk′),
where Q← G1 is uniformly random. In other words, instead of using a value δ
to move the verification and signing keys, we use a group element Q to do it.

Because the of the indistinguishability property of the invertible sampling
algorithm and since the distribution of the keys does not change, it follows that
Pr[S1] = Pr[S0]. Note that since the signing key fsk′ is known, the signing oracle
OSign(·) can be perfectly simulated for any adversary.

H2: In this game instead of computing

fvk′ = (e(Qxb̂, g
yb̂
2), Qa, Qb, Qc, Qd, (Qν0, . . . , Qνλ))

as inH1, we sample A′ ← G1 and set

fvk′ = (e(Qxb̂, g
yb̂
2), A′, Qb, Qc, Qd, (Qν0, . . . , Qνλ)).

3.4 Instantiating SFPK 59

We will show that this transition only lowers the adversary’s advantage by
a negligible fraction. In particular, we will show a reduction R that uses an
adversaryA that can distinguish between those two games to break the decisional
Diffie-Hellman assumption in G1. Let (gα1 , g

β
1 , g

γ
1) be an instance of this problem

in G1. R samples r0,A, r1,A ← Z∗
p and sets A0 = (gα1)

r0,A , A1 = (gα1)
r1,A .

Additionally, the reduction uses Q = gβ1 and the public key

fvk′ = (e(Qxb̂, g
yb̂
2), (gγ1)

rb̂,A, Qb, Qc, Qd, (Qν0, . . . , Qνλ)).

Note that since R knows the signing key fsk′ it can answer signing queries.
Finally, notice, that if γ = α · β then (fvk′, σ) have the same distribution as in
H1 and otherwise as inH2. Thus, we have |Pr[S2]− Pr[S1]| ≤ Adv DDH

A (λ).

H3 (series of sub-games): In this game instead of computing
fvk′ = (e(Qxb̂, g

yb̂
2), A′, Qb, Qc, Qd, (Qν1, . . . , Qνλ)) as in H2, we sample B′, C ′,

, D′, u′0, . . . , u
′
1λ
← G1 and set fvk′ = (e(Qxb̂, g

yb̂
2), A′, B′, C ′, D′, (u′0, . . . , u

′
1λ
)).

This transition is composed of a number of sub-games, in which we change each
element of the verification key fvk′ separately. We can use the same reduction
as above and show that each change lowers the adversary’s advantage by at
most Adv DDH

A (λ). It is worth noting, that the reduction can always create a valid
signature, since the signing key fsk′ = (yb̂, Q

xb̂, fvk′) can be computed by R.
Thus, we have |Pr[S3]− Pr[S2]| ≤ (4 + λ) · Adv DDH

A (λ).

Let us now take a look at the randomized verification key and signature given to the
adversary. Because of all the changes, we have:

fvk′ = (e(Qxb̂·yb̂, g2), A
′, B′, C ′, D′~u′)

and signatures from the oracle are of the form

(Qxb̂·yb̂(PHF.Eval(K,m))r, gr1, g
r
2)

for some r ∈ Z∗
p and A′, B′, C ′, D′, ~u′(= KPHF), Q, which are independent of the bit

b̂ and the original public keys. Since the value Q is random and only appears as
part of the term Qxb̂·yb̂ , we can always restate this term to Q′x1−b̂·y1−b̂ where Q′ =

Q(x1−b̂·y1−b̂)·(xb̂·yb̂)
−1

and Q′ is a random value. It follows that the adversaries advantage
is zero, i.e. Pr[S3] = 0.
Finally, we have Adv Class-Hiding

A,SFPK (λ) = Pr[S0] ≤ (5 + λ) · Adv DDH
A (λ).

60 3 Signatures with Flexible Public Keys

3.4.2 With Setup and Canonical Representatives

In this section we propose a signature scheme with flexible public keys in the common
reference string model. Security relies on the bilinear decisional Diffie-Hellman as-
sumption instead of the decisional linear assumption. Unlike the scheme in section 3.4.1
this scheme only provides class hiding with key corruption. We will see in section 3.5.1
and in chapter 4 that this is sufficient for group signature constructions.

We assume that both the SFPK.KeyGen and SFPK.tdGen algorithms output a veri-
fication key that is the canonical representative of its equivalence class. Further we
assume that every user has access to a collision resistant hash function H, which we
express by including it in the output of Setup. The SFPK.MoveVk and SFPK.MoveSk
algorithms work, as before, by drawing uniformly at random an exponent δ ∈ Zp and
raising every component of the verification key, or respectively the signing key to the
power of δ. More details can be found in construction 3.4.

Construction 3.4: Canonical SFPK with Public Parameters

SFPK.Setup(1λ)

KPHF ← PHF.Gen(1λ)

y, z ← Z∗
p

Y1 ← gy1
Y2 ← gy2
ĝ ← gz1

ppSFPK := (BG, Y1, Y2,KPHF, ĝ,H)

return ppSFPK

SFPK.Check(ppSFPK, td, fvk)

parse
fvk = (fvk1, fvk2)

if e(fvk1, td) = e(fvk2, g2)

then return true

else return false

SFPK.KeyGen(ppSFPK, 1
λ)

parse
ppSFPK = (BG, Y1, Y2,KPHF, ĝ,H)

x← Z∗
p

fvk := (g1, g
x
1)

fsk := (Y x
1 , fvk)

return (fsk, fvk)

SFPK.tdGen(ppSFPK, 1
λ)

parse
ppSFPK = (BG, Y1, Y2,KPHF, ĝ,H)

x← Z∗
p

fvk := (g1, g
x
1)

fsk := (Y x
1 , fvk)

td := (gx2)

return (fsk, fvk, td)

3.4 Instantiating SFPK 61

SFPK.Sign(ppSFPK, fsk,m)

parse
ppSFPK = (BG, Y1, Y2,KPHF, ĝ,H)

fsk = (Z, fvk)

r, s← Z∗
p

σ(2) := gr1

σ(3) := gr2

ζ ← H(m||σ2||σ3||fvk)

M := gζ1 · ĝ
s

σ(1) ← Z · (PHF.Eval(KPHF,M))r

σ := (σ(1), σ(2), σ(3), s)

return σ

SFPK.Verify(ppSFPK, fvk,m, σ)

parse
ppSFPK = (BG, Y1, Y2,KPHF, ĝ,H)

fvk = (fvk1, fvk2)

σ = (σ1, σ2, σ3, s)

ζ ← H(m||σ2||σ3||fvk)

M := gζ1 · ĝ
s

h← PHF.Eval(KPHF,M)

if e(σ2, g2) = e(g1, σ
3) and

e(σ1, g2) = e(fvk2, Y2) · e(h, σ3)

then return true

else return false

SFPK.MoveVk(ppSFPK, fvk, δ)

parse fvk = (fvk1, fvk2)

fvk′ := (fvkδ1, fvk
δ
2)

return fvk′

SFPK.MoveSk(ppSFPK, fsk, δ)

parse fsk = (Z, fvk)

fvk′ ← MoveVk(fvk, δ)

fsk′ := (Zδ, fvk′)

return fsk′

Correctness. Observe first that SFPK.KeyGen and SFPK.tdGen generate signing and
verification keys fsk, fvk in identical fashion, hence their distributions are also identical.

For λ ∈ N let

(BG, Y1 = gy1 , Y2 = gy2 , KPHF, ĝ,H)← SFPK.Setup(1λ),

(fsk, fvk, td)← SFPK.tdGen(1λ),

where fvk = (g1, g
x
1), fsk = Y x

1 , fvk and td = gx2 for some x ∈ Z∗
p.

For any fvk′′ = (ga1 , g
b
1) for some a, b ∈ Z∗

p we have SFPK.Check(ppSFPK, td, fvk
′′) =

true if and only if e(ga1 , td) = e(ga1 , g
x
2) = e(gb1, g2), i.e. if and only if ax = b, hence if

and only if fvka2 = fvk′′2 .
Then, if δ ∈ ∆, and (fsk′fvk′)← SFPK.MoveKeys(fsk, fvk, δ) we have

fvk′ = (gδ1, g
xδ
1)

fsk′ = (Y xδ
1 , fvk′).

62 3 Signatures with Flexible Public Keys

Consider
σ = (σ1, σ2, σ3, s) = (Y xδ

1 · hr, gr1, gr2, s),
a signature on messagem under signing key fsk′ where h = PHF.Eval(KPHF,M). We
have

e(σ2, g2) = e(gr1, g2)

= e(g1, g
r
2)

= e(g1, σ
3).

and

e(σ1, g2) = e(Y xδ
1 · hr, g2)

= e(Y xδ
1 , g2) · e(hr, g2)

= e(gyxδ1 , g2) · e(hr, g2)
= e(gxδ1 , g

y
2) · e(h, gr2)

= e(gxδ1 , Y2) · e(h, gr2)
= e(fvk′2, Y2) · e(h, σ3)

Thus, if PHF is correct and compatible with the relation, we have

SFPK.Verify(fvk′,m, σ) = true.

Setting δ = 1 shows that verification succeeds for canonical keys as well.
All together, this shows correctness of the construction.

Proof of Unforgeability

Theorem 3.6: Unforgeability of Construction 3.4

Construction 3.4 is strongly existentially unforgeable under flexible public key
in the common reference string model, assuming the bilinear decisional Diffie-
Hellman assumption holds in G1, that PHF is (1, poly(λ))-programmable and H
is collision-resistant.

Proof. Let (σ∗,m∗, fvk∗) be the forgery returned by an adversary A, where σ∗ =
(σ∗

1, σ
∗
2, σ

∗
3, s

∗). We distinguish three types of strategies of the adversary:

Type 1: We call the adversary a type 1 adversary if there exists a verification key fvk
and signature σ = (σ1, σ2, σ3, s) on message m generated by oracle OSign1 or
OSign2, where

H(m∗||σ∗
2||σ∗

3||fvk∗) = H(m||σ2||σ3||fvk).

3.4 Instantiating SFPK 63

It is easy to see that the adversary broke the collision-resistance of function H,
and we can build a reduction R that uses A1 to break collision-resistance of
function H by simulating the system and returning

(m∗||σ∗
2||σ∗

3||fvk∗,m||σ2||σ3||fvk)

as a valid collision.

Type 2: We call the adversary a type 2 adversary if there exists a verification key
fvk and signature σ = (σ1, σ2, σ3, s) on messagem generated by oracle OSign1
or OSign2, where e∗ = H(m∗||σ∗

2||σ∗
3||fvk∗) 6= H(m||σ2||σ3||fvk) = e but

M∗ = ge
∗

1 · ĝs
∗
= ge1 · ĝs =M .

In this case we show that a type 2 can be used to break the discrete logarithm
assumption. We can apply the same reasoning as for Pedersen commitments, i.e.
the reduction can set ĝ as the element for which we want to compute the discrete
logarithm in respect to g1. The reduction can then simply simulate the whole
system for A2 and output (e− e∗)/(s∗ − s).

Type 3: We call the adversary a type 3 adversary in all other cases. In particular,
we ensure thatM∗ is distinct from allM ’s used in the oraclesOSign1 andOSign2.

Let (BG, ga1 , gb1, gc1, gd1 , ga2 , gb2, gc2, gd2) be an instance of the bilinear decisional Diffie-
Hellman problem. We will show that any efficient adversary A3 can be used to
break the above problem instance. To do so, we will build a reduction algorithm
R that uses A3 in a black box manner, i.e. it plays the role of the challenger in
the unforgeability experiment.
First R prepares the common reference string crs by setting Y1 = ga1 , Y2 = ga2 ,
ĝ = gz1 , for some z ← Z∗

p and executes the trapdoor generation algorithm
(KPHF, τPHF)← PHF.tdGen(1λ, ga1 , g1). Note that tdcrs is not publicly known, so
R does not have to know the exponent a but still knows z. Next,R prepares the
verification key fvk and the trapdoor τ . For this it uses the values gb1 and gb2 from
the problem instance. It sets fvk = (g1, g

b
1) and τ = (gb2).

To answer A’s signing queries for messagem and randomness t1 (which is equal
to 1 for oracle OSign1), the reductionR follows the following steps:

1. it chooses random values t2 ← Z∗
p,

2. it computesM = ge
′

1 · ĝs
′ for some e′, s′ ← Z∗

p,
3. it computes (am, bm)← PHF.tdEval(τPHF,M) and aborts if am = 0,

64 3 Signatures with Flexible Public Keys

4. it computes fvk′ ← SFPK.MoveVk(fvk, t1),
5. it computes:

σ1 = (ga1)
t2 · ((gb1)(−a−1

m ·t1) · gt21))bm,

σ2 = (gb1)
−a−1

m ·t1 · gt21 ,

σ3 = (gb2)
−a−1

m ·t1 · gt22
e = H(m||σ2, σ3, fvk′),

s = ((e′ − e) + s′ · z)/z,

6. set the signature
σ := (σ1, σ2, σ3, s).

It is easy to see that this is a valid signature. Note that a valid signature is of
the form (ga·b·t11 · ((ga1)am · gbm1)r, gr1, g

r
2, s). In this case, the reduction has set

r = −a−1
m · b · t1 + t2 and this means that the ga·b·t11 cancels out and the reduction

does not need to compute ga·b1 . Note that this only works because am 6= 0.
It follows that for the forgery (fvk∗,m∗, σ∗, s∗) ofAwe require that (am∗, bm∗)←
PHF.tdEval(τPHF,M∗) and aM∗ = 0, where

M∗ = ge
∗

1 ĝ
s∗ and e∗ = H(m∗||σ2||σ3||fvk∗).

In such a case, the reduction works as follows:
1. parse σ∗ as (σ1, σ2, σ3, s∗),
2. compute

ga·b·t
∗

1 = σ1 · (σ2)−bm∗

=
(
ga·b·t

∗

1 · ((ga1)am∗ · gbm∗
1)r

∗
)
· (gr∗1)−bm∗ ,

3. parse fvk∗, and since for a valid forgery we have fvk∗ ≈exp fvk, we have
fvk∗ = (gt

∗
1 , (g

b
1)

t∗) andR can use gt∗1 ,
4. output 1 iff e(ga·b·t∗1 , gc2) = e(gt

∗
1 , g

d
2).

The probability thatR successfully solves the bilinear decisional Diffie-Hellman
problem depends on the advantage of A and the probability that R’s simu-
lation succeeds. Since the programmable hash function PHF is (1, poly(λ))-
programmable and because this is a type 3 adversary, we conclude that this
probability is non-negligible. Note that since in this case we use A3,M∗ is dis-
tinct from allM ’s used in OSign1 and OSign2, which is not the case for type 1
and type 2 adversaries.

3.4 Instantiating SFPK 65

Proof of Class Hiding

Theorem 3.7: Class Hiding with Key Corruption of Construction 3.4

Construction 3.4 is class hiding with key corruption in the common reference
string model, assuming the decisional Diffie-Hellman assumption holds in G1.

Proof. We start withH0 which is the original class hiding experiment and let S0 be the
event that the experiment evaluates to true, i.e. the adversary wins. We will use Si to
denote the event that the adversary wins the class hiding experiment inHi.

Let fvk = (A,B) be the verification key given to the adversary, fvk0 = (A0, B0) =
(g1, g

x0
1) and fvk1 = (A0, B1) = (g1, g

x1
1) be the public keys that are returned by

SFPK.KeyGen, fsk0 = (Y x0
1 , fvk0) and fsk1 = (Y x1

1 , fvk1) the corresponding secret
keys and b̂ be the bit chosen by the challenger.

H0: The original class hiding game.

H1: In this game we do not use the SFPK.MoveSk algorithm to compute fsk and fvk
but compute them as fvk = (Q,Qxb̂), and fsk = ((Qxb̂)y, fvk), where Y1 = gy1 is
part of the common reference string crs generated by the challenger. In other
words, instead of using the exponent r to randomize the verification key and
signing key, we use a group element Q to do it.

Since the distribution of the keys does not change, it follows that Pr[S1] = Pr[S0].
Note that the oracle can still use fsk to compute valid signatures.

H1: In this game instead of computing fvk = (Q,Qxb̂) as inH1, we sample B′ ← G1

and set fvk = (Q,B′).

We will show that this transition only lowers the adversaries advantage by a
negligible fraction. This can be show by construction using a reductionR that
uses an adversary A that can distinguish between those two games to break the
decisional Diffie-Hellman assumption in G1.
Let (gα1 , g

β
1 , g

γ
1) be an instance of this problem in G1. R samples r0, r1 ← Z∗

p

and sets B0 = (gα1)
r0 , B1 = (gα1)

r1 . Note that in such a case, we also have to
set fsk0 = ((B0)

y, fvk0) and fsk1 = ((B1)
y, fvk1). Additionally, the reduction

uses Q = gβ1 and the public key fvk = (Q, (gγ1)
rb̂). Note that the reduction

66 3 Signatures with Flexible Public Keys

can use the signing key fsk = (((gγ1)
rb̂)y, fvk) to generate signatures and an-

swer signing queries. Now γ = α · β then fvk has the same distribution as in
H1 and otherwise as inH2. Thus, it follows that |Pr[S2]−Pr[S1]| ≤ Adv DDH−1

A (λ).

We will now show that we have Pr[S2] =
1
2
. This follow from the fact that we have

fvk = (Q,B′) and signatures of the form σ = ((B′)y · (PHF.Eval(KPHF,m))r, gr1, g
r
2, s)

for some r ∈ Z∗
p and Q,B′, which are independent of the bit b̂. Thus, we have

Adv Class-Hiding
A,SFPK (λ) = Pr[S0] ≤ Adv DDH−1

A (λ).

3.5 Applications of SFPK to Privacy-Preserving
Signatures

3.5.1 Static Group Signatures
We now present an efficient generic construction of static group signatures that uses
SFPK as a building block and which is secure in the model by Bellare, Micciancio and
Warinschi [BMW03] that we have restated in section 2.3. Let

• SPS = (Setup,KeyGen, Sign,Verify,Move,ValKey) be a structure-preserving
signature scheme on equivalence classes.

• SFPK = (Setup,KeyGen, tdGenSign,Verify,MoveKeys,Check) be a signature
scheme with flexible public keys.

The core idea of the scheme is to use a compatible set of signatures with flexible
public keys and structure-preserving signatures on equivalence classes. To generate
the group keys, the group manager generates a pair of SFPK signing and verification
keys for each user and “certifies” the verification keys with an SPS-EQ signature under
a SPS-EQ verification key, which will be part of the group public key. To give a group
signature on a message, a user changes the representative of their SFPK keys, and also
changes the representation of the SPS-EQ certificate using the same randomizer. The
message is signed with the randomized SFPK signing key. The group signature is then
composed of the SFPK signature, the randomized verification key and the randomized
SPS-EQ certificate.

To enable subsequent opening, the group manager generates the SFPK keys using
SFPK.tdGen and stores the trapdoors. Opening is then performed using the stored
trapdoors with the SFPK.Check algorithm.2 Since the group manager is trusted, it may

2If the SFPK.KeyGen algorithm is used instead of SFPK.tdGen to compute the SFPK key pairs, there is
no efficient opening procedure and the combination of SFPK and SPS-EQ signature scheme yields a
self-blindable certificate scheme [Ver01].

3.5 Applications of SFPK to Privacy-Preserving Signatures 67

also generate ppSFPK ← SFPK.Setup for the SFPK signatures and use it as part of the
group public key. This allows us to use schemes which are secure in the multi-user
setting, e.g. construction 3.4.

Full-anonymity of the scheme follows from the perfect adaptation and unforge-
ability of SPS-EQ signatures, the class hiding property of the SFPK scheme and its
strong existential unforgeability. On the other hand, full-traceability follows from the
unforgeability of SPS-EQ and the existential unforgeability of the SFPK.

Construction 3.5: Static Group Signature Scheme

GS.KeyGen(1λ, n)

ppSPS ← SPS.Setup(1λ)

ppSFPK ← SFPK.Setup(1λ)

(skSPS, vkSPS)← SPS.KeyGen(ppSPS)

foreach user i ∈ [n] :

(fski, fvki, tdi)←SFPK.tdGen(ppSFPK)

σi
EQ ← SPS.Sign(skSPS, fvki)

gpk := (ppSPS, ppSFPK, vkSPS)

gmsk :=
{
(tdi, fvki)

}n

i=1

~gsk :=
{
(fvki, fski, σi

EQ)
}n

i=1

return (gpk, gmsk, ~gsk)

GS.Sign(~gsk[i],m)

parse ~gsk[i] = (fvk, fsk, σEQ)

δ ← ∆

fvk′ ← SFPK.MoveVk(fvk, δ)

fsk′ ← SFPK.MoveSk(fsk, δ)

(fvk′,σ′
EQ)←SPS.Move(vkSPS,fvk,σEQ,δ)

M := m‖σ′
EQ‖fvk′

σSFPK ← SFPK.Sign(fsk′,M)

σ := (fvk′, σSFPK, σ′
EQ)

return σ

GS.Verify(gpk,m, σ)

parse
σ = (fvk, σSFPK, σEQ)

gpk = (ppSPS, ppSFPK, vkSPS)

if SPS.Verify(vkSPS, fvk, σEQ) = false

then return false

M := m‖σEQ‖fvk
return SFPK.Verify(fvk,M, σSFPK)

GS.Open(gmsk,m, σ)

parse
σ = (fvk, σSFPK, σEQ)

gmsk =
{
(tdi, fvki)

}n

i=1

if GS.Verify(gpk,m, σ) = false

then return ⊥
if ∀i ∈ [n] :

SFPK.Check(tdi, fvk) = false

then return ⊥
else let i be s.t.

SFPK.Check(tdi, fvk) = true

return i

68 3 Signatures with Flexible Public Keys

Correctness. Let λ, n ∈ N,m ∈ M. Given (gpk, gmsk, ~gsk)← GS.KeyGen(1λ, n),
we have

gpk = (ppSPS, ppSFPK, vkSPS)

gmsk =
{
(tdi, fvki)

}n

i=1

~gsk =
{
(fvki, fski, σi

EQ)
}n

i=1
.

For any i ∈ [n] a signature onm under ~gsk[i] has the form

σ = (fvk′, σSFPK, σ′
EQ).

From the correctness of the SPS-EQ and SFPK schemes, it follows that

SPS.Verify(vkSPS, fvk
′, σ′

EQ) = true,

since σ′
EQ was derived from σi

EQ with the same randomizer that was used to move
fvki to fvk′. Then, again from the correctness of the SFPK scheme, it follows that
SFPK.Verify(fvk′,M, σSFPK) = true, sinceM was signed with the equally transformed
fsk′. This shows correctness of signing and verification.

From the correctness of SFPK it also follows that for any valid signature as above,

SFPK.Check(tdi, fvk′) = true

and SFPK.Check(tdj, fvk′) = false for any j ∈ [n] \ {i}. This shows correctness of
opening.

Proof of Full Traceability

Theorem 3.8: Full Traceability of Construction 3.5

Construction 3.5 is fully traceable if the SPS-EQ and the SFPK signature schemes
are each existentially unforgeable under chosen-message attack.

The proof relies on the fact that the only way for an adversary to win the full
traceability game is by either creating a new group member (thus directly breaking the
unforgeability of the SPS-EQ scheme) or by creating a forged signature for an existing
group member (thus breaking the unforgeability of the SFPK scheme).

Proof. We will use the game-based approach. Let us denote by Si the event that the
adversary wins the full traceability experiment inHi. Let (m∗, σ∗ = (fvk∗, σ∗, σ∗

EQ)) be
the forgery output by the adversary.

3.5 Applications of SFPK to Privacy-Preserving Signatures 69

H0: The original traceability experiment.

H1: We abort in case GS.Open(gmsk,m∗, σ∗) = ⊥ but GS.Verify(gpk,m∗, σ∗) = 1.
Informally, we exclude the case that the adversary creates a new user from
outside the group, i.e. a new SPS-EQ signature.

We will show that this only decreases the adversary’s advantage by a negligible
fraction. In particular, we will show that any adversary A returns a forgery
for which we abort, can be used to break the existential unforgeability of the
SPS-EQ signature scheme. The reduction algorithm uses the signing oracle
to compute all signature σi

EQ of honest users. Finally, if the adversary returns
(m∗, σ∗ = (fvk∗, σ∗, σ∗

EQ)), the reduction algorithm returns (fvk∗, σ∗
EQ) as a valid

forgery. We note that by correctness of the SFPK scheme, if fvk∗ is in a relation
to a verification key of an honest user, then we can always open this signature. It
follows that fvk∗ is from a different equivalence class and the values returned by
the reduction algorithm are a valid forgery against the SPS-EQ signature scheme.

It follows that |Pr[S1]− Pr[S0]| ≤ Adv `,EQ-EUF-CMA
SPS-EQ,A (λ).

H2: We choose a random user identifier j ← [n] and abort in case
GS.Open(gmsk,m∗, σ∗) 6= j

It is easy to see that Pr[S1] = n · Pr[S2].

We now show that any adversaryA that has non-negligible advantage in winning
full-traceability experiment in H2 can be used by a reduction algorithm R to
break the existential unforgeability of the SFPK scheme.
R computes all the public keys of group members according to protocol, except
for user j. For this user, the algorithm sets fvkj to the verification key given to
R by the challenger in the unforgeability experiment of the SFPK scheme. It
is worth noting, that the adversary A is given the group manager’s secret key
gmsk = ([(τ i, fvki)]ni=1). Fortunately, the reduction R is also given τ j by the
challenger and can compute a valid secret key gmsk that it gives as input to A.
To simulate signing queries for the j-th user,R uses its own signing oracle. By
the change made inH2, A will never ask for the secret key of the j-th user, for
whichR is unable to answer (unlike for the other users).
Finally, A outputs a valid group signature (m∗, σ∗ = (fvk∗, σ∗, σ∗

EQ)) and the
reduction algorithm outputs (m∗||σ∗

EQ||fvk∗, σ∗) as a valid SFPK forgery. By the

70 3 Signatures with Flexible Public Keys

changes made in the previous games we know that fvk∗ and fvkj must be in
a relation. Moreover, the message m∗ could not be used by A in any signing
query made to R. Thus, we know that (m∗||σ∗

EQ||fvk∗) was never queried by
R to its signing oracle, which show that R returns a valid forgery against the
unforgeability of the SFPK scheme.

Finally, we have

Pr[S0] ≤ n · Adv Flex-Unforgeability
A,SFPK (λ) + Adv `,EQ-EUF-CMA

SPS-EQ,A (λ).

Proof of Anonymity

Theorem 3.9: Anonymity of Construction 3.5

Construction 3.5 is fully anonymous if the SPS-EQ signature scheme perfectly
adapts signatures and is existentially unforgeable under chosen-message attacks
and the SFPK scheme is class hiding and strongly existentially unforgeable.

We first use the perfect adaptation of SPS-EQ signatures to re-sign the verification
key fvk′ used in the challenge signature. Then we exclude the case that the adversary
issues an open query that cannot be opened. This means that the adversary created
a new group member and can be used to break the unforgeability of the SPS-EQ
scheme. In the next step we choose one of the users (and abort if they are not part of
the query issued by the adversary to the challenge oracle) for which we change the
way we generate the signing key. Instead of using SFPK.tdGen, we use the standard
key generation algorithm SFPK.KeyGen. Note that in such a case, the open oracle
cannot identify signatures created by this user. However, since signatures cannot be
opened by the oracle for this user we can identify such a case and return their identifier.
Finally, we replace the SFPK verification key and signature in the challenge group
signature by a random one (which is indistinguishable by class hiding). In the end
the challenge signature is independent of the bit b̂. However, the adversary still has
non-zero advantage. This follows from the fact that it can randomize the challenge
signature and our oracle will output ib̂ (because the SFPK verification key is random
in the signature, the oracle will fail to open and return the user’s identifier). However,
if the adversary is able to submit such a query we can break the strong existential
unforgeability of the SFPK scheme.

Proof. We will use the game-based approach. Let us denote by Si the event that the
adversary is successful in experimentHi.

3.5 Applications of SFPK to Privacy-Preserving Signatures 71

H0: The original full-anonymity experiment.

H1: In this game we change the way we compute the challenge signature σ∗ ←
GS.Sign(~gsk[ib],m∗). Let σ∗ = (fvk′, σ, σ′

EQ). We compute (fvk′, σ) as in the
original experiment but instead of randomizing the SPS-EQ signature σEQ, we
compute σEQ ← SPS.Sign(fvk′, skSPS).

Because the SPS-EQ signature scheme perfectly adapts signatures, we have
Pr[S1] = Pr[S0].

H2: We pick a random user identifier j ← [n] and abort in case j 6= ib.

It is easy to see that Pr[S1] = n · Pr[S2].

H3: Wenow abort in case the adversary queries a valid signature (m,σ = (fvk′, σ, σ′
EQ))

to the Open oracle and it fails to open, i.e. the opening algorithm returns ⊥.

By perfect correctness of the SFPK scheme, it follows that the only way an adver-
sary can make the experiment abort if it is able to create a new user, i.e. create a
valid SPS-EQ signature under a public key fvk∗ that is not in relation with any of
the honest public keys. It follows that we can use such an adversary to break the
existential unforgeability of the SPS-EQ signature scheme, i.e. we just use the
signing oracle to generate all σi

EQ and return (fvk′, σ′
EQ) as a valid SPS-EQ forgery.

It follows that |Pr[S3]− Pr[S2]| ≤ Adv `,EQ-EUF-CMA
A,SPS-EQ (λ).

H4: We now change the way, we compute the signing key for user ib. Instead of using
(fvkj, fskj, τ j)← SFPK.tdGen(1λ), we use (fvkj, fskj)← SFPK.KeyGen(1λ).

Obviously, in such a case we cannot answer the Open queries for user j, as the
value τ j is unknown. However, we note that if the adversary’s query (m,σ) is a
valid group signature, then the Open must return a valid user identifier (because
of the change inH3, we do not return ⊥ in such a case). Therefore, if there exists
no identifier i ∈ [n]/{j} for which SFPK.Check(τ i, fvki, fvk′) = 1, we return j.

72 3 Signatures with Flexible Public Keys

It is easy to note that this is just a conceptual change (because of the change in
H3) and we have Pr[S4] = Pr[S3].

H5: We now compute a random SFPK key pair (fvk, fsk)← SFPK.KeyGen(1λ), choose
a randomizer r, compute verification key fvk′ ← SFPK.MoveVk(fvk, r), signing
key fsk′ ← SFPK.MoveSk(fsk, r) and change the way we compute the challenged
signature σ = (fvk′, σ, σEQ) under messagem. We setM = m||σEQ||fvk′ and run
σ ← SFPK.Sign(fsk′,M). In other words, instead of using the secret of user ib to
generate the signature σ, we use a fresh key pair for this (i.e. a user from outside
the system).

We note that any adversary that is able to distinguish betweenH4 andH5, can
be used to break the class hiding property of the SFPK signature scheme. The
reduction algorithm can just set one of the public keys from the class hiding
challenge to be part of the verification key of the j-th user. In case, the signature
given by the challenger in the class hiding game was created by this user, we are
inH4. If it was created by the second user, then we are inH5. Of course, it might
happen that the one of the users in the other group member (other than the j-th
user) has a verification key from the same relation as the second user in the class
hiding experiment. However, this event occurs with negligible probability and
we omit it.

Lastly, we notice that the challenger in the class hiding experiment is given the
random coins used to generate the signing key to the adversary. Thus, our reduc-
tion can reuse those coins and compute the signing key, which it can give to the
distinguishing algorithm, as required to fully simulate the anonymity experiment.

It follows that |Pr[S5]− Pr[S4]| ≤ Adv Class-Hiding
A,SFPK (λ).

The above changes ensure that the challenged signature is independent of the user ib,
i.e. we use a random SFPK verification key and a freshly generated SPS-EQ signature
on it. However, an adversary A can still use the way we implemented the Open inH4.
Note that in case it is somehow able to randomize the signature σ = (fvk, σ, σEQ) and
ask the Open oracle, then we will return ib as the answer.

We will now show that the adversary cannot create a valid and distinct signature from
σ = (fvk, σ, σEQ). Let (m∗, σ∗ = (fvk∗, σ∗, σ∗

EQ)) be the query made by the adversary
and σ∗ is a randomized version of σ.

The first observation is that by the change made inH5, we must have that fvk and
fvk∗ are in a relation, otherwise the above attack does not work. Thus, we can use

3.5 Applications of SFPK to Privacy-Preserving Signatures 73

such an adversary to break the strong existential unforgeability of the SFPK signature
scheme. Note that by the change made in H5, fvk is a fresh verification key and the
reduction algorithm can use the one from the strong existential unforgeability game.
Moreover, in order to generate σ, the reduction algorithm uses its signing oracle. Finally,
the reduction algorithm returns ((m∗||σ∗

EQ||fvk∗), σ∗) as a valid forgery.
It is easy to see that in case fvk 6= fvk∗ or σEQ 6= σ∗

EQ, the reduction algorithm wins
the strong existential unforgeability game. Thus, the only part of the group signature
that the adversary could potentially change is σ. This is the SFPK signature and would
mean that the adversary was able to create a new signature under the message asked
by the reduction algorithm to the signing algorithm. However, the case that σ 6= σ∗

also means that the reduction algorithm breaks the strong existential unforgeability of
the SFPK scheme. We conclude, Pr[S5] = Adv Flex-sUnforgeability

A,SFPK (λ).

Finally, we have

Pr[S0] ≤ n ·
(
Adv `,EQ-EUF-CMA

A,SPS-EQ (λ) + Adv Class-Hiding
A,SFPK (λ) + Adv Flex-sUnforgeability

A,SFPK (λ)
)
.

3.5.2 Ring Signatures
In ring signatures there is no trusted entity such as a group manager and groups are
chosen ad hoc by the signers themselves. Thus, to certify ring members we use a
non-interactive membership proof instead of a SPS-EQ signature. We require this proof
to be perfectly sound even if the common reference string is generated the prover,
in our case the signer. In other words, the actual ring signature is a SFPK signature
(fvk′, σ) and a proof π that there exists a verification key fvk ∈ R that is in relation
to the verification key fvk′, i.e. the signer proves knowledge of the randomizer used
to get fvk′. The signature’s anonymity relies on the class hiding property of SFPK.
Unfortunately, in the proof of anonymity, the reduction does not know a valid witness
for proof π, since it does not choose the randomizer for the challenge signature. Thus,
we extend the signer’s public keys by a tuple of three group elements (A,B,C) and
prove a disjunctive statement which allows the reduction to compute a valid proof π if
(A,B,C) is a non-DDH tuple.

We can instantiate this schemewith amembership proof based on theO(
√
`) size ring

signatures by Chandran, Groth, Sahai [CGS07] and the perfectly sound proof system
for NP languages by Groth, Ostrovsky, Sahai [GOS06]. The resulting membership proof
is perfectly sound and of sub-linear size in the size of the set.

Let Lpk be the set of statements of the form:

{(fvk′,R) | ∃(i, δ, fvk).(i, fvki, ·) ∈ R ∧ SFPK.MoveVk(fvki, δ) = fvk}

74 3 Signatures with Flexible Public Keys

Let further Lnon−DDH be the set of statements of the form:

{ R | ∃(i, I).(i, ·, I) ∈ R ∧ I is not a DDH tuple}

Then we define the following witness relation:

RRS := {((fvk′,R), (i, δ, fvk, I)) | ((fvk′,R), (i, δ, fvk)) ∈ Lpk ∨ (R, (i, I)) ∈ Lnon−DDH}

Let

• NIPRS = (Prove,Verify) be a non-interactive proof system forRRS.

• SFPK = (KeyGen, tdGenSign,Verify,MoveKeys,Check) be a signature scheme
with flexible public keys without setup.

Construction 3.6: Generic Ring Signature Scheme

RS.KeyGen(1λ)

(fsk, fvk)← SFPK.KeyGen(1λ)

I := (A,B,C)← G3
1

rsk := fsk

rvk := (fvk, I)

return (rsk, rvk)

RS.Verify(m, ς,R)

parse ς = (fvk′, σSFPK, π, crs)

x := (fvk′,R)

if NIPRS.Verify(x, π) and
SFPK.Verify(fvk′,m, σSFPK)

then return true

else return false

RS.Sign(m, rsk,R)

δ ← ∆

fsk′ ← SFPK.MoveSk(fsk, δ)

fvk′ ← SFPK.MoveVk(fvk, δ)

σSFPK ← SFPK.Sign(fsk′,m||R)
x := (fvk′,R)

w := (irsk, δ, fvk, ∅)
π ← NIPRS.Prove(x,w)

ς := (fvk′, σSFPK, π)

return ς

Correctness. Let λ, ` ∈ N,m ∈M and (rski, rvki)← RS.KeyGen(1λ) for all i ∈ [`].
Let R = (rvk1, . . . , rvk`) and in particular

rsks = fsk

rvks = (fvk, (A,B,C)).

3.5 Applications of SFPK to Privacy-Preserving Signatures 75

for some rvks ∈ R. A signature onm under rsks has the form

ς = (fvk′, σ, π)

Because of the soundness of the proof system, π shows that fvk′ ≈R fvk via some δ ∈ ∆.
From the correctness of the SFPK scheme it then follows that SFPK.Verify(fvk′,m, σ) =
true, hence verification is successful.

Proof of Unforgeability

Theorem 3.10: Unforgeability of Construction 3.6

The generic construction of ring signatures presented in construction 3.6 is
unforgeable with respect to insider corruption assuming the SFPK scheme is
existentially unforgeable, NIPRS is perfectly sound and the decisional Diffie-
Hellman assumption holds in G1.

In the proof we proceed as follows. We first fix all verification keys of honest users
to contain only DDH tuples. This ensures that the forgery ς∗ = (fvk∗, σ∗, π∗) includes a
perfectly sound proof for the first clause of the statement, i.e. there exists a verification
key fvk ∈ R, which is in relation to fvk∗ (all users in R must be honest). This enables us
to break existential unforgeability of the SFPK scheme. Note that we have to guess the
correct user to execute a successful reduction. Thus, the reduction has a loss of 1/n,
where n is the number of honest users.

Proof. We will use the game based approach to prove this theorem. The first change
we do is to fix the instance I to be a DDH tuple. This way our reduction algorithm (as
well as the adversary) must use a witness that fulfills the first part of the statement
proven by Π. The next step is simple. The reduction algorithm translates this game to
the existential unforgeability experiment of the SFPK scheme. Note that the reduction
algorithm will choose one of the users at random and use the challenged verification
key as the user’s public key. For the other users, the reduction algorithm will use a
randomly choose key pair. This allows the reduction to answer all corruption queries.
More formally. Let us denote by Si the event that the adversary wins the unforgeability
w.r.t insider corruption experiment inHi.

H0: The experiment.

H1: We make a small change in the way we generate the instance I for the public keys
of users. Instead of generating A,B,C as random elements of G1, we first chose

76 3 Signatures with Flexible Public Keys

a, b← Z∗
p and then set A = ga1 , B = gb1 and C = ga·b.

It is obvious that this change only decreases the adversary’s advantage by a
negligible fraction. In particular any distinguishing adversary can be used to
break the decisional Diffie-Hellman assumption. Moreover, note that since any
DDH instance can be randomized (i.e. (Ar, Br, Cr) is a DDH tuple if and only if
(A,B,C) is a DDH tuple) we can apply this change to all honest users at once.
Thus, we get |Pr[S1]− Pr[S0]| ≤ Adv DDH−1

A (λ).

We now show how to use any adversary A that has non-negligible advantage in
winning the unforgeability w.r.t insider corruption experiment inH1 to create a
reduction algorithmR that has non-negligible advantage in winning the existen-
tial unforgeability experiment of the SFPK scheme. Let us by l denote the total
number of users in the unforgeability w.r.t insider corruption experiment. The
reduction algorithm works as follows.

In the first step R chooses a random j ← [l] and generates (rski, rvki) ←
RS.KeyGen(1λ) for all i ∈ [l]/{j}. For the j-th user it uses the verification key
rvkj = fvkj given to it by the challenger in the existential unforgeability exper-
iment for the SFPK scheme for relation R. R is able to answer all corruption
queries of A, beside for the j-th user. However, we hope that the adversary
chooses this user to be part of the ring R∗ for which it has to output a forgery. In
such a case the adversary cannot ask the corruption query for the secret key of
this user. We will later calculate the corresponding probability of the adversary
asking for the j-th user’s key, but nowwe assume that in such a case the reduction
R aborts. The reduction algorithm is also able to answer all signing queries. Note
that for the j-th user instead of using the Sign algorithm, we choose a random
r ← Z∗

p and query the signing oracle OSign2 with input (m, r).

Finally, the adversary A outputs a ring signature ς∗ = (fvk∗, σ∗,Π∗, crs∗Π) under
messagem∗ for ring R∗. The reduction returns (m∗, ς∗) as its forgery for the SFPK
scheme. We will now calculate the success probability ofR. We first notice that
by the change made inH1 and since the proof Π∗ is perfectly sound, it follows
that there exists a verification key fvk ∈ R∗ for which (fvk, fvk∗) ∈ R. Finally,
we have that the probability that fvk = fvkj is 1/l, i.e. from the j-th user’s public
key. Note that in such a case the adversary will not ask for the j-th user public key.

It follows that

Pr[S1] ≤l · Flex-UnforgeabilityASFPK,R(λ), and
Pr[S0] ≤l · Flex-UnforgeabilityASFPK,R(λ) + Adv DDH

A (λ).

3.5 Applications of SFPK to Privacy-Preserving Signatures 77

Proof of Anonymity

Theorem 3.11: Anonymity of Construction 3.6

The generic construction of ring signatures presented in construction 3.6 is
anonymous against full key exposure assuming the SFPK scheme is fully class
hiding and NIPRS system is computationally witness-indistinguishable.

In the proof we proceed as follows. We first fix all verification keys of honest users
to contain only non-DDH tuples I . In the next step we randomly choose a fresh bit
b̂← {0, 1} and use the witness for the tuple Iib̂ in the challenge signature. Note that
the proof is valid for both values of b̂, but now the proof part is independent of the bit
b. Next we change the SFPK verification key fvk′ and signature σ returned as part of
the challenge signature ς = (fvk′, σ′, π). Again we choose a fresh bit b̂← {0, 1} and
compute them using fvk′ ← SFPK.MoveVk(fvkib̂, δ), fsk

′ ← SFPK.MoveSk(fskib̂, δ)
and σ ← SFPK.Sign(fsk′,m||R). Any adversary distinguishing this change can be used
to break the class hiding property of the SFPK scheme. Finally, all elements of ς are
independent of b and the adversary’s advantage is zero.

Proof. Let us denote by Si the event that the adversary wins the anonymity experiment
inHi.

H0: The original experiment.

H1: We make a small change we compute the instance I = (A,B,C) in all the public
keys of users. Instead of choosing A,B,C at random from G1, we first choose
a, b ← Z∗

p and then compute A = ga1 , B = gb1, C = ga·b−1
1 . In other words, we

make sure that I is not a DDH tuple.

Similar as in the proof for unforgeability, |Pr[S1]− Pr[S0]| ≤ Adv DDH-1
A (λ).

H2: We now change the witness that we use to compute the proof Π in the challenged
signature ς . Instead of using the verification key fvkib , we will use a witness for
the second part of the statement. Note that by the change made in the previous
game, all instances I in the public keys of honest users are non-DDH tuples.
Moreover, instead of using the witness for the instance Iib (where b is the chal-
lenged bit b and ib is the identifier of the user for which the experiment generates

78 3 Signatures with Flexible Public Keys

the signature), we will choose a random bit b̂ and use the witness for instance Iib̂ .
Note that the proof inside the signature ς is now valid and independent of the bit b.

Because the proof system is computational witness-indistinguishable, it follows
that |Pr[S2]− Pr[S1]| ≤ AdvWI

Π,A(λ).

H3: We will now change the way we compute the signature ς = (fvk′, σ′,Π, crsΠ). In
particular, we will change the way we compute fvk′ and σ′. Instead of computing
it them using

fvk′ ← SFPK.MoveVk(fvkib, r),

fsk′ ← SFPK.MoveSk(fskib, r),

σ ← SFPK.Sign(fsk′,m||R),

we will choose a fresh random bit b̂ and compute it as

fvk′ ← SFPK.MoveVk(fvkib̂, r),

fsk′ ← SFPK.MoveSk(fskib̂, r),

σ ← SFPK.Sign(fsk′,m||R).

We now show that any adversary A that has non-negligible advantage in distin-
guishing the difference between games 2 and 3, can be used as part of a reduction
algorithmR that breaks the class hiding property of the SFPK scheme. Let us by
l denote the total number of users in the anonymity experiment. The reduction
first chooses j, k ← [l] and generates (rski, rvki) ← RS.KeyGen(1λ, ri) for all
i ∈ [l]/{j, k}. Let (ω∗

0, ω
∗
1) be the random coins given to A by the class hiding

challenger. The reduction R runs (fsk0, fvk0) ← SFPK.KeyGen(1λ, ω∗
0) and

(fsk1, fvk1) ← SFPK.KeyGen(1λ, ω∗
1). Then it computes random (A0, B0, C0)

and (A1, B1, C1) as in H1 and the corresponding random coins ωI0 and ωI1 . It
then sets ri = (ω∗

0, ωI0), rk = (ω∗
1, ωI1) and gives {ri}li=1 to A. The adversary

now outputs (m, i0, i1,R). The reduction R aborts in case i0, i1 6∈ {j, k}. Note
that since, A advantage is non-negligible, we have that i0 6= i1, i0 ∈ R and
i1 ∈ R. R then forwardsm||R to the class hiding challenger and receives a SFPK
signature σ′ under the randomized verification key fvk′. The reduction computes
the ring signature as ς = (fvk′, σ′,Π, crsΠ), where Π is a proof computed as in
H2. Obviously, the success of R depends on the probability of guessing the
correct identifiers i0 and i1. The probability is greater than 2

l2
.

It follows that |Pr[S3]− Pr[S2]| ≤ l2

2
· Adv Class-Hiding

A,SFPK (λ).

3.5 Applications of SFPK to Privacy-Preserving Signatures 79

We now notice that the only value that depends on the challenged bit b in the original
game is the ring signature ς = (fvk′, σ′,Π, crsΠ). By the changes we made inH2, the
values (Π, crsΠ) are independent of b. What is more, by the changes made inH3, the
values (fvk′, σ′) are also independent of b. It follows that:

Pr[S3] = 0

Pr[S0] ≤
l2

2
· Adv Class-Hiding

A,SFPK (λ) + AdvWI
Π,A(λ) + Adv DDH−1

A (λ).

3.5.3 Practical Instantiations
In this section we discuss how to instantiate the generic group signature construction 3.5
and the generic ring signature construction 3.6 with our SFPK instantiations.

Note that in the case of group signatures we can use a SFPK scheme that is strongly
existentially unforgeable in the multi-user setting, since the group manager can be
trusted to perform a setup of public parameters. Thus, a natural candidate is con-
struction 3.4. We also require a SPS-EQ signature scheme, which we instantiate using
the scheme presented in [FG18]. A caveat to this scheme is that it only supports a
one-time adaptation of signatures to a different representative. This does not impact
our use of the scheme since in our application the group member performs the adap-
tation only once per signing. Further, the scheme is only unforgeable under adaptive
chosen-open-message attacks, hence we require the following lemma.

Lemma 3.12: Security of Construction 3.5

Let the verification key of the SFPK scheme consist only of elements sampled
directly fromG1 or computed as gx1 , where x← Z∗

p. Theorem 3.8 and theorem 3.9
still hold if the SPS-EQ scheme is only existential unforgeable under adaptive
chosen-open-message attacks.

Sketch. In the proof of theorem 3.8, instead of excluding the case where the adversary
creates a new user, we can toss a coin and chose the adversary’s strategy (forging the
SPS-EQ or SFPK signature). In case we end up choosing the SPS-EQ, we can freely
choose the SFPK public keys and issue signing oracles to get all σi

EQ. In the proof of
theorem 3.9 we use the unforgeability of SPS-EQ to exclude the case that the adversary
issues an open query for a new user. Because this is the first change, we can again
freely choose the SFPK public keys and issue signing oracles to get all σi

EQ. Finally, we
note that in such proofs we make a non-blackbox use of the SFPK scheme.

For message space (G∗
1)

` the size of the SPS-EQ signature is (4 · `+ 2) elements in
G1 and 4 elements in G2. The security of the SPS-EQ scheme relies on the decisional

80 3 Signatures with Flexible Public Keys

linear assumption and the decisional Diffie-Hellman assumption in G2. The security
of our SFPK relies on the bilinear decisional Diffie-Hellman assumption. All in all,
the proposed instantiation yields a static group signature scheme that is secure under
standard assumptions and has a signature size of 15 elements in G1 (counting elements
in Z∗

q as G1) and 5 elements in G2. It therefore has shorter signatures than the current
state-of-the-art scheme in [LPY15].

Even shorter signatures can be achieved at the expense of introducing stronger
assumptions without relying on Lemma theorem 3.12, by using the scheme found
in [FHS14], which is unforgeable in the generic group model and has signatures of size
2 elements in G1 and 1 element in G2.

We now focus on instantiating our ring signatures construction. Combining construc-
tion 3.3 with a generic perfectly sound proof system would result in a ring signature
scheme that is unlikely to be of interest, as there are already more efficient schemes
with or without a trusted setup. However, using the results presented by Chandran,
Groth and Sahai [CGS07] we can make the membership proof efficient. In the context
of a ring signature scheme with setup, they propose a perfectly sound proof of size
O(
√
n) that a verification key rvk ∈ G1 (or rvk ∈ G2), is contained in a ring R of size

n. The proof itself does not require trusted setup, however, hence this idea can be
applied to arbitrary public keys (i.e. consisting of group elements in different groups)
in combination with a perfectly sound proof system for NP languages. A verification
key of construction 3.3 contains an element in GT and therefore cannot be used with
the proof system from section 3.2.3, which is based on the efficient Groth-Sahai proofs
for pairing product equations. We solve this problem in the following way:

Lemma 3.13: Extended Public Keys

Construction 3.3 is unforgeable and class hiding even if X = gx1 , Y = gy2 are
publicly known, where t = e(Xy, g2) = e(X,Y) is part of the signer’s public
key. Moreover, knowing the signing key one can compute such values.

Proof. Class hiding still holds, because the adversary is given the secret keys fski for
i ∈ {0, 1}, which contain Xi and yi, so it can compute Xi and Yi by itself already. To
show that unforgeability still holds, we first have to note that Y is part of the trapdoor
τ and does not provide new information for the adversary. Finally, in the proof of
unforgeability of construction 3.3 X is set to be gγ1 , where gγ1 is part of the decisional
linear problem instance. This element is not given to the adversary directly but the
same proof works if this value would be given to the adversary.

The idea is that instead of putting the verification key fvk = (t, A,B,C,D,KPHF)
into the ring, we put (A,B,C,D,X, Y,KPHF). Finally, we modify the first part of the

3.6 Related Work 81

statement proven during signing, i.e. we use

∃A,B,C,D,X,X′,Y,KPHF,r (i, (A,B,C,D,X, Y,KPHF), ·) ∈ R ∧ e(X, gr2) = e(X ′, g2) ∧
e(X ′, Y) = t′ ∧ e(A, gr2) = e(A′, g2) ∧
e(B, gr2) = e(B′, g2) ∧ e(C, gr2) = e(C ′, g2) ∧
e(D, gr2) = e(D′, g2) ∧ e(KPHF, g

r
2) = e(K ′

PHF, g2),

instead of ∃fvk,r ((i, fvk, ·) ∈ R ∧ SFPK.MoveVk(fvk, r) = fvk′) , where fvk′ = (t′, A′,
B′, C ′, D′, K ′

PHF) is the randomized SFPK verification key used as part of the ring
signature. Since all elements in the ring are now elements in G1 or G2, we can use
the proof system from section 3.2.3 to efficiently instantiate the proof used in our
ring signature construction. What is more, we can also apply the trick from [CGS07]
and create a membership proof of length only O(

√
n). The resulting ring signature

scheme is the first efficient scheme that is secure under falsifiable assumptions, without
a trusted party and with signature size that depends sub-linearly on the number of ring
members. This solves the open problem stated by Malavolta and Schröder [MS17].

3.6 Related Work
There exist many primitives that allow for a limited malleability of the signed message.
Homomorphic signatures [Bon+09] allow to sign any subspace of a vector space. In
particular, given a number of signatures σi for vectors ~vi, everyone can compute a
signature of

∑
i βi · ~vi for scalars βi.

Chase et al. [Cha+14] discussed malleable signatures, which allow any party knowing
a signature of message m to construct a signature of message m′ = T (m) for some
defined transformation T . One can consider malleable signatures as a generalization of
quotable [ALP13] and redactable signatures [Joh+02].

Signatures on randomized ciphertexts by Blazy et al. [Bla+11] allow any party that is
given a signature on a ciphertext to randomize the ciphertext and adapt the signature
to maintain public verifiability.

Verheul [Ver01] introduces so-called self-blindable certificates. The idea is to use the
same scalar to randomize the signature and corresponding message. Verheul proposed
that one can view the message as a public key, which allows to preserve the validity of
this “certificate” under randomization/blinding. However, the construction does not
yield a secure signature scheme.

As noted above, all the mentioned works consider malleability of the message space.
In our case we consider malleability of the key space. In this regard, signatures with
re-randomizable keys introduced by Fleischhacker et al. [Fle+16] are a related primitive.
They allow a re-randomization of signing and verification keys such that re-randomized
keys share the same distribution as freshly generated keys and a signature created

82 3 Signatures with Flexible Public Keys

under a randomized key can be verified using an analogously randomized verification
key.

They also define a notion of unforgeability under re-randomized keys, which allows
an adversary to learn signatures under the adversaries’ choice of randomization of the
signing key under attack. The goal of the adversary is to output a forgery under the
original key or under one of its randomizations. Regular existential unforgeability for
signature schemes is a special case of this notion, where the attacker does not make
use of the re-randomization oracle.

The difference to signatures with flexible public keys is that re-randomization
in [Fle+16] is akin to sampling a fresh key from the space of all public keys, while
changing the representative in our case is restricted to the particular key’s equivalence
class. Note that one might intuitively think that signatures under re-randomizable
keys are just signatures with flexible keys where there is only one class of keys since
re-randomizing is indistinguishable from fresh sampling. In this case class hiding
would be perfect. However, such a scheme cannot achieve unforgeability under flexible
keys, since it would be enough for an attacker to sample a fresh key pair and use a
signature under that key as the forgery.

In a concurrent and independent line of work to [Bac+18], Lysyanskaya and
Crites [CL19] develop mercurial signatures which are also similar to SPS-EQ and
allow randomization of both messages and public keys. They show its applications
to anonymous credentials. The key difference between mercurial signatures and our
work is that mercurial signatures do not consider the possibility of a trapdoor key
generation as described here for signatures with flexible public keys. As a result the
only known constructions for mercurial signatures have security guarantees in the
generic group model, whereas we show signatures with flexible public keys from
standard assumptions.

4 Membership Privacy for Fully
Dynamic Group Signatures

In this chapter:
4.1 Introduction . 84

4.1.1 Contributions in This Chapter 85
4.2 Chapter Preliminaries . 87

4.2.1 The Fully Dynamic Group Signature Model 87
4.3 Extensions to the Fully Dynamic Model 95

4.3.1 Functional Tracing Soundness 95
4.3.2 Membership Privacy in the Fully Dynamic Model 97

4.4 Generic Construction of Membership-Private Group Signatures 101
4.4.1 Proof of Traceability . 106
4.4.2 Proof of Anonymity . 109
4.4.3 Proof of Non-frameability . 111
4.4.4 Proof of Functional Tracing Soundness 112
4.4.5 Proof of Membership Privacy 113

4.5 Efficient Instantiation . 115
4.6 Related Work . 117

Publication History

The contributions of this chapter are based on and were first published in

Michael Backes, Lucjan Hanzlik, and Jonas Schneider-Bensch. “Mem-
bership Privacy for Fully Dynamic Group Signatures.” In: ACM
CCS 2019: 26th Conference on Computer and Communications Secu-
rity. Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz. ACM Press, Nov. 2019, pp. 2181–2198. doi:
10.1145/3319535.3354257.

In this chapter, we have modified the presentation of the fully dynamic group
signature model to ease understanding.

https://doi.org/10.1145/3319535.3354257

84 4 Membership Privacy for Fully Dynamic Group Signatures

4.1 Introduction
Thefirst formal security model for group signatures, called the static model, was given by
Bellare, Micciancio and Warinschi (BMW) in [BMW03], who also provided a construc-
tion from general assumptions. In the static model, which we have restated in chapter 2,
all members of the group have to be specified during the setup phase of the scheme
and the group manager generates and distributes their signing keys. Further, the group
manager is also responsible for opening signatures.

Later models, notably the ones due to Bellare, Shi, and Zhang (BSZ) [BSZ05], as
well as Kiayias, and Yung (KY) [KY05b; KY06], which we will subsume under the term
dynamic models, generalized the static model in terms of functionality as well as security
considerations:

• Where the static model requires all potential group members to be known at
setup time, the dynamic models allow dynamic enrollment to the group after the
group has been created. Unlike the static model, user keys are generated via a
join/issue protocol, where users jointly generate their signing keys in interaction
with the authorities. This means in particular that the issuing authority may not
learn the user signing key.

• Where the static model places strong trust assumptions on the group manager
by letting them handle users’ signing key generation and opening, the dynamic
models split the group manager into separate issuing and opening (or tracing)
authorities. This strengthens security guarantees by allowing the model to incor-
porate malicious behavior on the part of either of the authorities.

Regarding the opening authority, it has to be ensured that the opening is honestly
created. Otherwise, a malicious opener or even a malicious member of the group could
produce a dishonest opening, that identifies a wrong signer either to claim a specific
signature for themselves, or blame a user for a signature which they did not create. To
this end, the opening is no longer simply a pointer to an entry in a group membership
list, but is typically realized via a proof, that can be publicly verified. The validity of this
proof is covered by the non-frameability requirement of the dynamic models. Sakai et
al. [Sak+12] additionally define a property called opening soundness, which, if achieved,
ensures that it is infeasible to create an opening which points to any but the actual
signer of a valid signature.

A further extension of the dynamic models was recently proposed by Bootle et
al. [Boo+16]. Their model, which we subsequently call the fully dynamic model, addi-
tionally addresses revocation of group membership, incorporates opening soundness
and considers security even under maliciously generated keys. To model the dynamic
nature of addition and revocation of members, the scheme’s lifetime is partitioned into
a series of epochs such that changes in the group membership can only happen during

4.1 Introduction 85

the transition from one epoch to the next. Since the issuing authority still decides who
may join the group and who has to leave, the group’s public information is updated by
the issuing authority for each new epoch. The authors show that their model is general
enough to capture all previously proposed notions, making it the most expressive model
of the security of group signatures to date.

4.1.1 Contributions in This Chapter
In this chapter we revisit the fully-dynamic group signature framework by Bootle et
al. [Boo+16]. We observe that the epoch information published with each modification
of the group (joining or leaving of a member) may leak the identities of members. For
instance in the scheme proposed in [Boo+15], where the epoch information contains
a list of active members, this information is required to verify a signature. This is a
major issue that limits the applications of group signatures and introduces real-world
privacy risks that are not captured by the security model. In particular, let us consider
the use of group signatures as part of a corporate/governmental access control system.
In such a scenario group signatures protect access patterns. On the other hand, leaking
a list of active members of the group can be used by potential adversaries to perform
targeted attacks, e.g. bribery attempts, phishing attacks on private emails or denial
of service attacks. An application that was impossible to formalize using previous
definitions are private groups that can be used to create an electronic authentication
method for private club members. Members of the club are unknown to the public and
other members of the club but the group signatures allows a way to prove membership
if required.

Therefore, as our first contribution for this chapter, we propose a new security notion
for fully dynamic group signatures, namely membership privacy. Informally, when a
group signature scheme offers membership privacy it means that an external observer
cannot tell who joined or left the group in a given epoch, even if a subset of the group’s
members is controlled by the observer.1 The possibility of membership privacy changes
the meaning of a group signature to the external public compared to the previous models.
The public may still verify that the signature was created by a party which received
signing capabilities from the issuing authority, but not only is there no indication who
the signer was specifically, but even the group of potential signers is hidden. As a
consequence, to an external viewer, the group signature scheme is a way for the issuing
authority to dynamically delegate signing capabilities to anonymous signers, who can
be held privately accountable by the opening authority. In extending the model of
Bootle et al. [Boo+16] we give formal definitions of join and leave privacy, which taken

1A similar property was recently put forward by Baldimtsi et al. [Bal+17] for the security of crypto-
graphic accumulators, which are one of the building block of revocation systems for anonymous
credentials. Although based on similar real-world concerns, their definition is specific to crypto-
graphic accumulators and cannot be easily applied to group signatures.

86 4 Membership Privacy for Fully Dynamic Group Signatures

together achieve membership privacy in the most expressive model of group signature
security to date.

Our second contribution is a generic construction of fully-dynamic group signatures
with membership privacy. Our scheme is built upon novel techniques in the area of
signature with flexible public keys (SFPK) and their fruitful combination with signatures
on equivalence classes (SPS-EQ). The former primitive allows signing keys to be re-
randomized within a system of equivalence classes, while the second allows the same
for messages and signatures. We build upon the idea, introduced in chapter 3, to use
the combination of SFPK and SPS-EQ schemes with compatible systems of equivalence
classes in the construction of highly efficient privacy-preserving signature schemes.
Each epoch the issuing authority uses a fresh instance of SPS-EQ to certify the public
keys of members, which live in SFPK equivalence classes. However, instead of using
the original public keys in the epoch information, the group manager first randomizes
the verification key and encrypts the randomization using the signer’s public key for
an encryption scheme. Members can decrypt the randomization and use the SPS-EQ
signature from the epoch information. Additionally, the signer creates a proof of
knowledge of a unique representative of the equivalence class and the randomness
used by the signer. This unique representative can be extracted by the tracing authority
and used to identify the signer because the unique representative is also used as the
signer’s global public key. Membership privacy is ensured because the issuing authority
randomizes the published verification key list.

Lastly we show how to optimize our generic construction and efficiently instantiate it
under standard assumptions without relying on the random oracle model. The resulting
scheme has shorter signatures than state-of-the-art schemes [LPY15; GS08] that are se-
cure under similar assumptions but only allow for partially-dynamic groups. To achieve
this efficiency we make use of SFPK scheme that provides canonical representative
(cf. definition 3.18).

The results presented in this chapter can thus be summarized as follows.

• We extend the existing definitions of Bootle et al. [Boo+16] and show that mem-
bership privacy can be seamlessly integrated in the previous security models for
fully dynamic group signatures.

• We devise a generic construction of fully-dynamic group signatures with mem-
bership privacy that can be instantiated in the standard model.

• We employ a novel technique for the conjunction of SFPK and SPS-EQ, allowing
us to build a highly efficient standard model group signature schemes along the
lines of our generic construction but with shorter signature size than even state-
of-the-art non-private schemes with comparable assumption. This underlines
that membership privacy need not come at additional cost.

4.2 Chapter Preliminaries 87

4.2 Chapter Preliminaries
In this section, we introduce preliminaries relevant in the constructions and arguments
of this chapter. In particular, we give a detailed description of the formal model of fully
dynamic group signatures as established by Bootle et al. [Boo+16].

4.2.1 The Fully Dynamic Group Signature Model
Before giving the formal definitions, we give an informal overview of the operation of
a fully dynamic group signature scheme.

Key Management and Group Authorities. A fully dynamic group signature
scheme has two designated authorities, an issuing authority G and a tracing authority
T , as well as arbitrarily many users, identified by numeric uids. The issuing and tracing
authorities (possibly non-interactively, possibly after completing a common setup
procedure pp← Setup(1λ)) compute their key pairs

((mpk,msk), (tpk, tsk))← 〈KeyGenG(pp),KeyGenT (pp)〉

and users compute their own keys

(usk[uid], upk[uid])← UserKeyGen(1λ).

Dynamic Group Membership via Epochs. Group membership is segmented into
epochs η which are managed by the issuing authority, which publishes a piece of
information infoη for each new epoch. We assume the epoch number τ is encoded in
this information. A user can join the group for the next epoch by executing a

〈Join(infoη, gpk, uid, usk[uid]), Issue(infoη, reg,msk, uid, upk[uid])〉

procedure with the issuing authority, where gpk = (pp,mpk, tpk) is the group public
key, thereby obtaining secret group signing keys ~gsk[uid] and advancing the current
epoch to η+.

Signing for an epoch. The user may then create signatures for the new epoch using
the σ ← Sign(gpk, ~gsk[uid], infoη+,m) algorithm, and this signature may be publicly
verified for η+ using Verify(gpk, infoη+,m, σ).

Publicly Verifiable Tracing. In case of abuse, the tracing authority is equipped with
a registration table reg to produce a tracing proof

(uid, π)← Trace(gpk, tsk, infoη, reg,m, σ)

88 4 Membership Privacy for Fully Dynamic Group Signatures

which can be publicly verified using Judge(gpk, uid, infoη+, πTrace, upk[uid],m, σ).
The interfaces of all parties described above are defined as follows. We recall the

framework of definitions for fully dynamic group signatures established in [Boo+16].
Definition 4.1: Fully Dynamic Group Signature

A fully dynamic group signature scheme DGS is defined by the following set of
efficient algorithms

Setup(1λ):
On input a security parameter, the setup algorithm outputs public parame-
ters pp and initializes the user registration table reg.

〈KeyGenG(pp),KeyGenT (pp)〉:
Given the public parameters pp the issuing authority G and tracing author-
ity T jointly execute a key generation protocol.

• The private output of the issuing authority is a secret manager key
msk, its public output a manager public keympk and the initial group
information info.

• The private output of the tracing authority is a secret tracing key tsk
and a tracing authority public key tpk.

The public outputs together are referred to as the group public key gpk :=
(pp,mpk, tpk).

UserKeyGen(1λ):
On input the public parameters, the user key generation algorithm outputs
a pair of user secret and user public key (usk[uid], upk[uid]), bound to a
fresh user ID uid > 0.

〈Join(infoτ , gpk, uid, usk[uid]), Issue(infoτ , reg,msk, uid, upk[uid])〉:
A user who has executed UserKeyGen, obtaining a user ID uid and key
pair (usk[uid], upk[uid]) may, given the group public key and information
regarding the current epoch infoτ engage the issuing authority in a join-
issue procedure to become a member of the group. If successful, the output
of the Issue algorithm is user registration information which is stored in
reg[uid] the user signing key ~gsk[uid] is updated with the output of Join.

Update(gpk,msk, infoηnow , R, reg):
The issuing authority may advance the current epoch ηnow to the next
epoch η+, at the same time revoking membership of a subsetR of the set of
active group members. If any uid ∈ R is not assigned to an active member
of the group, i.e. was not assigned in a run of the join-issue procedure, the

4.2 Chapter Preliminaries 89

algorithm aborts. The output is the new group information infoη+ and a
possibly updated registration table reg. If the group information does not
change, the algorithm outputs ⊥.

Sign(gpk, ~gsk[uid], infoη,m):
Given their group signing key, current group information and the group
public key, a user may sign a message, producing a signature σ. If the
user-ID uid is not assigned to an active group member in the current epoch
ηnow , the algorithm outputs ⊥ instead.

Verify(gpk, infoη,m, σ):
If the given signature σ is valid for message m in epoch η, verification
outputs true, otherwise false.

Trace(gpk, tsk, infoη, reg,m, σ):
Given a signature, message, group information for epoch η and a registra-
tion table, the tracing authority may output a pair (uid, π) where uid > 0
identifies the user-ID of the group member who produced the signature
and π is a proof of this fact. If tracing is not successful the algorithm will
output a pair (0, π) indicating the failure via the special user-ID 0, which
is not assigned to any regular user.

Judge(gpk, uid, infoη, πTrace, upk[uid],m, σ):
Given a signature for epoch η, the corresponding group information and
a tracing output (uid, π), anyone in possession of the group public key
can deterministically judge the validity of π w.r.t. to the statement, that
σ was created using ~gsk[uid], in which case the algorithm outputs true,
otherwise false.

Remark

In addition to the interface above, we make explicit an algorithm for determining
if a give user was active in a certain epoch that was treated as implicit in previous
works.

Active?(infoη, reg, uid) :
If user uid is a member of the group in epoch η, return true, otherwise
false.

Note that this algorithm is only available to parties with access to the registration
table.

A fully dynamic group signature scheme is secure if it achieves the following proper-

90 4 Membership Privacy for Fully Dynamic Group Signatures

ties:

• Correctness,

• Traceability,

• Anonymity,

• Non-frameability,

• and Tracing Soundness.

These properties are formally defined in the experiment-based style that is used
throughout this thesis. Due to the large number of oracles available to the adversaries
in each of the experiments we give below an informal overview of the functionality of
these oracles instead of reprinting them next to each security experiment.

The experiments may further be stateful and keep lists of the attackers’ actions to
subsequently determine whether the attacker was successful or not. For reference, we
give a short summary of the lists and their purposes below.

H: Honest users added via the AddUser oracle.

C: Users with maliciously generated keys, added via the CorruptUser oracle.

B: Users whose secret keys were revealed to the adversary via the Reveal oracle.

Q: Signature queries, this list is populated by the Sign oracle.

Q∗: Signatures created by the challenge users, this list is populated by the Challenge
oracle.

The full pseudocode for the oracles can be found in section 6.2.2.

AddUser(uid):
If uid is new to the system, run DGS.UserKeyGen(1λ) to honestly generate the
user’s keys (usk[uid], upk[uid]) and add uid to H. Afterwards the honest key
generation is run usingDGS.Join andDGS.Issue. This sets the user group signing
key ~gsk[uid] and the contents of the registration table reg[uid]. The oracle’s output
is the new epoch information infoτ and the user’s public key upk[uid].

CorruptUser(uid, pk):
If uid is new to the system, set upk[uid] to the supplied key pk and add uid to C.
Initiates a join-issue session for uid by setting decisionuidIssue := continue.

4.2 Chapter Preliminaries 91

SendM(uid,Min):
If a join-issue session is running for corrupted user uid, compute the new ses-
sion state and response (stateuidIssue,Mout, decision

uid
Issue) from the issuing author-

ity using Issue(τ, reg,msk, uid, upk[uid],Min). If the output of Issue contains
decisionuidIssue = accept, update the registration table reg[uid] := stateuidIssue. The
oracle’s output is (Mout, decision

uid
Issue).

SendU(uid,Min):
If not already running initiate a join-issue session for a user, compute the
new session state and response (stateuidJoin,Mout, decision

uid
Join) from the user us-

ing Join(τ, gpk, uid, usk[uid],Min). If the output of Join contains decisionuidJoin =

accept, set ~gsk[uid] := stateuidJoin. The oracle’s output is (Mout, decision
uid
Join).

ReadReg(uid):
Return the registration table entry reg[uid].

ModifyReg(uid, val):
Set registration table entry reg[uid] := val.

Reveal(uid):
Return the user secret keys (usk[uid], ~gsk[uid]) and add uid to the set of bad users
B.

Sign(uid,m, η):
If η is a valid epoch, and uid is active in that epoch, create a signature σ ←
DGS.Sign(gpk, ~gsk[uid], infoη,m) and add (uid,m, σ, η) to the set of queried
signatures Q and return σ.

Trace(m,σ, infoη):
If the signature is valid in epoch η and is not part of the challenge set Q∗, return
the output of DGS.Trace(gpk, tsk, infoη, reg,m, σ).

UpdateGroup(R):
Run and return the output of
DGS.Update(gpk,msk, infoτ , R, reg).

Challengeb(infoη, uid0, uid1,m):
If uid0 and uid1 are both active and honest in η, run the signing algorithm
DGS.Sign(gpk, ~gsk[uidb], infoη,m) to obtain signature σ, adding (m,σ, η) to the
challenge signature set Q∗ and returning the signature.

We are now ready to give formal definitions for the security notions outlined above.

92 4 Membership Privacy for Fully Dynamic Group Signatures

Correctness. Rather unusually, we have to consider correctness against adversarial
manipulation of the group. In particular an adversary could, via some interleaving of
joins and revocations corrupt the group configuration, such that verification correctness
does not hold or tracing of honestly generated signatures is no longer possible.

A scheme is correct if this is not possible.
Definition 4.2: Correctness

For a fully dynamic group signature scheme DGS, consider the correctness
experiment between a challenger and an adversary A:

CorrectnessA
DGS(1

λ)

H := ∅
(reg, pp)← DGS.Setup(1λ)

(msk,mpk, info, tsk, tpk)← 〈DGS.KeyGenG(pp),DGS.KeyGenT (pp)〉
gpk := (pp,mpk, tpk)

(uid,m, η)← A(gpk, info)

if uid 6∈ H or ~gsk[uid] = ⊥ or infoη = ⊥
or DGS.Active?(infoη, reg, uid) = false

then return false

σ ← DGS.Sign(gpk, ~gsk[uid], infoη,m)

if DGS.Verify(gpk, infoη,m, σ) = false

then return true

(uid∗, π)← DGS.Trace(gpk, tsk, infoη, reg,m, σ)

if uid 6= uid∗ then return true

if DGS.Judge(gpk, uid, infoη, π, upk[uid],m, σ) = false

then return false

else return true

A may query oracles AddUser,ReadReg,UpdateGroup at any point dur-
ing its runtime.

We define the advantage of A in the above experiment as

Adv Correctness
A,DGS (λ) := Pr

[
CorrectnessA

DGS(1
λ)⇒ true

]
.

We say that DGS is correct if for all PPT adversaries A, we have

Adv Correctness
A,DGS (λ) ≤ negl(λ) .

4.2 Chapter Preliminaries 93

Traceability. Any coalition of group members and the opening authority cannot
produce a signature which would open to an identity not generated in the setup phase
or an identity that was not active in the epoch for which the signature was created.
Note, that this implies correctness.

Definition 4.3: Traceability

For a fully dynamic group signature scheme DGS, consider the traceability
experiment between a challenger and a two-stage adversary A = (A0,A1):

TracingA
DGS(1

λ)

H,C,B,Q := ∅
(reg, pp)← DGS.Setup(1λ)

(state, tsk, tpk)← A〈DGS.KeyGenG(pp),·〉
0 (pp)

if ⊥ ← DGS.KeyGenG(pp) or A’s output invalid
then return false

(msk,mpk, info)← DGS.KeyGenG(pp);

gpk := (pp,mpk, tpk)

(m,σ, η)← A1(state, gpk, info)

if DGS.Verify(gpk, infoη,m, σ) = false

then return false

(uid, π)← DGS.Trace(gpk, tsk, infoη, reg,m, σ)

if DGS.Active?(infoη, reg, uid) = false or uid = 0

or DGS.Judge(gpk, uid, infoη, π, upk[uid],m, σ) = false

then return true

else return false

A1 may query oracles AddUser,CorruptUser, SendM,Reveal, Sign,
ModifyReg, UpdateGroup at any point during its runtime.

We define the advantage of A in the above experiment as

Adv Tracing
A,DGS(λ) := Pr

[
TracingA

DGS(1
λ)⇒ true

]
.

We say that DGS has traceable signatures if for all PPT adversaries A, we have

Adv Tracing
A,DGS(λ) ≤ negl(λ) .

94 4 Membership Privacy for Fully Dynamic Group Signatures

Non-frameability. Any coalition of group members, the issuing authority and the
opening authority cannot produce a signature which opens to an identity of an honest
user from outside the coalition.

Definition 4.4: Non-frameability

For a fully dynamic group signature scheme DGS, consider the non-frameability
experiment between a challenger and a two-stage adversary A = (A0,A1):

Non-FrameabilityA
DGS(1

λ)

H,C,B,Q := ∅
(reg, pp)← DGS.Setup(1λ)

(state, info,msk,mpk, tsk, tpk)← A0(pp)

if msk = ⊥ or mpk = ⊥
then return false

gpk := (pp,mpk, tpk)

(m,σ, uid, π, infoη)← A1(state, gpk)

if DGS.Verify(gpk, infoη,m, σ) = false

or DGS.Judge(gpk, uid, infoη, π, upk[uid],m, σ) = false

then return false

if uid ∈ H \ B and (uid,m, σ, η) 6∈ Q
then return true else return false

A1 may query oracles CorruptUser, Sign, SendU,Reveal,ModifyReg at
any point during its runtime.

We define the advantage of A in the above experiment as

Adv Non-Frameability
A,DGS (λ) := Pr

[
Non-FrameabilityA

DGS(1
λ)⇒ true

]
We say that DGS provides non-frameability if for all PPT adversariesA, we have

Adv Non-Frameability
A,DGS (λ) ≤ negl(λ) .

4.3 Extensions to the Fully Dynamic Model 95

Anonymity. Given a signature, it is infeasible, without a secret trapdoor information,
to distinguish which signer created the signatures.

Definition 4.5: Anonymity

For a fully dynamic group signature scheme DGS, consider the anonymity ex-
periment between a challenger and a two-stage adversary A = (A0,A1):

AnonymityA
DGS(1

λ)

(reg, pp)← DGS.Setup(1λ);H,C,B,Q,Q∗ := ∅

(state,msk,mpk, info)← A〈·,DGS.KeyGenT (pp)〉
0 (pp)

if ⊥ ← DGS.KeyGenT (pp) or A’s output invalid
then return false

(tsk, tpk)← DGS.KeyGenT (pp); gpk := (pp,mpk, tpk)

d← A1(state, gpk)

return d = b

A1 may query oracles AddUser,CorruptUser, SendU,Reveal, Trace,
ModifyReg, Challengeb at any point during its runtime.

We define the advantage of A in the above experiment as

Adv Anonymity
A,DGS (λ) :=

∣∣∣∣Pr[AnonymityA
DGS(1

λ)⇒ true
]
− 1

2

∣∣∣∣ .
We say that DGS is anonymous if for all PPT adversaries A, we have

Adv Anonymity
A,DGS (λ) ≤ negl(λ) .

4.3 Extensions to the Fully Dynamic Model
In this section we present our extensions to the model presented in [Boo+16] and
restated in section 4.2.

4.3.1 Functional Tracing Soundness
Even if all parties in the group collude, they cannot produce a valid signature that traces
to two different members. This property is also called opening soundness.

96 4 Membership Privacy for Fully Dynamic Group Signatures

A subtle point arises in the definition of tracing soundness, namely how is the
uniqueness of group members established? If the adversary controls several users,
they may share the same public key, hence their signatures cannot be distinguished
by an opening which reveals the public key of the signer. Because of this, the opening
instead leads to a specific user identity in the public registration table. This has two-fold
consequences:

1. The user registration table has to be public, otherwise the opening is meaningless.

2. To verify an opening or even a signature, it has to be verified as well that the
group at the time of the creation of the signature was well-formed, i.e. every
member occupies exactly one slot in the registration table.

We propose a relaxation of this notion, which allows us to avoid these implications.
Our notion, functional tracing soundness distinguishes members by their public keys,
i.e. it should not be possible, even in a fully corrupted group to create a valid signature
and two openings for it which indicate conflicting public keys.

We observe that the fully dynamic group signature scheme based on accountable
ring signatures presented in [Boo+16] adheres to this definition already, since its proof
of tracing soundness relies on the tracing soundness of the underlying accountable ring
signature scheme. The property for accountable ring signature schemes requires that
the verification keys provided in the two openings be different.

Note that the construction of fully dynamic group signatures presented later in this
work can be made to achieve the original version of tracing soundness, albeit at the
cost of the above-mentioned group integrity checks and any kind of group membership
privacy.

Definition 4.6: Functional Tracing Soundness

For a fully dynamic group signature scheme DGS consider the tracing soundness
experiment between a challenger and a two-stage adversary A = (A0,A1).

4.3 Extensions to the Fully Dynamic Model 97

Tracing-SoundnessA
DGS(1

λ)

(reg, pp)← Setup(1λ);C := ∅
(state, info,msk,mpk, tsk, tpk)← A0(pp)

if msk = ⊥ or mpk = ⊥
then return false

gpk := (pp,mpk, tpk)

(m,σ,{uidi, πi}2i=1 , infoη)← A1(state, gpk)

if Verify(gpk, infoη,m, σ) = false

then return false

if upk[uid1] = upk[uid2] or ∃i ∈ {1, 2} s.t. upk[uidi] = ⊥
or Judge(gpk, uidi, infoη, πi, upk[uidi],m, σ) = false

then return false else return false

A1 may invoke the oracles CorruptUser, ModifyReg, at any point during
its runtime.

We define the adversary’s advantage in the Tracing-Soundness experiment as

Adv Tracing-Soundness
A,DGS (λ) := Pr

[
Tracing-SoundnessADGS(1

λ)⇒ true
]
.

A group signature scheme DGS has tracing soundness if for all PPT adversaries
A, we have

Adv Tracing-Soundness
A,DGS (λ) ≤ negl(λ) .

4.3.2 Membership Privacy in the Fully Dynamic Model
Formal models of dynamic group signatures thus far implicitly assumed that group
membership is public information. Usually, a registration table is published, such that
the entries are bound to public keys of the members. This is in line with one of the
main application of group signatures: authenticating messages with the authority of a
known group, certifying that someone within the group has seen the signed message
and has taken responsibility on behalf of the group.

In their seminal work Chaum and van Heyst [Cv91], however, did not specify this as
an essential requirement. In fact, they point out that group signatures can be used for
access control, where knowing members of the group is an obvious privacy leak that
could for instance lead to targeted DoS attacks on the group. Therefore, it seems natural
that in some applications we want to hide the identities of active group members.

98 4 Membership Privacy for Fully Dynamic Group Signatures

To address this issue we discuss for the first time membership privacy for group
signatures. Informally, we will say that a group signature scheme has membership
privacy if it protects the identity of users that join or leave the system. This means that
we consider a scenario in which some kind of public identifier about users is known
independently of the scheme (e.g. public key) but it is unknown to a third party who is
part of the group. Moreover, we take into account that some users can be corrupted or
can collude to infer information about the membership status of other users. Even in
these cases, membership should remain private.

To formally define this notion, we propose a pair of security experiments which are
expressed in the fully dynamic framework put forth by [Boo+16]. However, one can
easily specify similar experiments for the partially dynamic models [BSZ05; KY05b;
KY06]. The first one describes join privacy, since it considers the case that two non-
members are known in one epoch and in the next epoch one of them joins the system
and the task is to distinguish who joined the group. The second experiment describes
leave privacy and models the case that there are two known members in one epoch
and in the next epoch one of them leaves the group. Note that this assumes that the
adversary knows out of band that the two users had previously joined the group. In
both cases we allow an adversary to corrupt members of the group, but we consider
both authorities to be honest: The issuing authority always knows who is part of the
group and the tracing authority can open all signatures to extract the identities of
members. In particular, this implies that the registration table reg may not be public
because one could easily infer current members from it. Fortunately, this seems a fairly
natural assumption. This registration table is not necessary in any of the user-centric
algorithms, and it is easier to keep it local to the authorities than publishing it online.
An exception is the scheme [Sak+12] mentioned above, where the registration table is
part of the verification algorithm to ensure that tracing soundness holds with respect
to public user identities rather than in the functional sense we describe.

A different question is whether additionally to the identities of users, we can hide
the size of the group. Unfortunately, since the fully dynamic model in [Boo+16] allows
joining and leaving the group, all efficient constructions fail to hide the size of the
group. Whitelisting immediately leaks the size of the group and can only be alleviated
using dummy users, which incurs large overhead and fixes a constant upper bound
on the group size. This is even the case for cryptographic accumulators, where it is
required by members to update their witness with every epoch. Thus, some kind of
information that is linear is the number of active/inactive members must be published
together with the accumulator.

We formally define join and leave privacy in terms of the two experiments shown
below. Note, that we introduce a new set of privacy challenge users U. In the two
experiments, U is used to restrict the function of oracles which would allow trivial
success for the adversary:

4.3 Extensions to the Fully Dynamic Model 99

• Privacy challenge users may not be removed from the group, i.e. UpdateGroup
returns ⊥ if R ∩ U 6= ∅. This is because Update is defined to return ⊥ if the
group information does not change as result of the revocation, which would be
the case if the user was already removed from the group.

• Privacy challenge users may not be corrupted or have their keys revealed. Note,
that this also prevents an adversary from re-enrolling a challenge user by initiating
a join-issue session for them.

• The signing oracle treats signature requests for user IDs in the privacy challenge
set differently. In the case of join privacy, a signature request for any privacy
challenge user, i.e. uid0 or uid1 will be treated like a signature request for user
uidb who joined the system. In the case of leave privacy, it will be treated like
a signature request for user uid(1−b) who did not leave the group. Additionally,
the queries will be added to the set of challenge queries Q∗, which prevents the
adversary from using the Trace oracle to produce an opening for them.

Definition 4.7: Join Privacy

For a fully dynamic group signature scheme DGS consider the join-privacy
experiment between a challenger and a two-stage adversary A = (A0,A1).

Join-PrivacyADGS(1λ)

(reg, pp)← DGS.Setup(1λ)

(msk,mpk, info, tsk, tpk)← 〈KeyGenG(pp),KeyGenT (pp)〉
gpk := (pp,mpk, tpk)

(state, uid0, uid1)← A0(gpk, info)

if {uid0, uid1} ∩ C 6= ∅ then return false

b← {0, 1}; (info∗, upk[uidb])← AddUser(uidb);

(usk[uid1−b], upk[uid1−b])← UserKeyGen(1λ)

η∗ := ηnow ; U := {uid0, uid1}
d← A1(state, info∗, upk[uid0], upk[uid1])

return b = d

BothA0 andA1 have access to the oracles AddUser, Reveal, CorruptUser,
SendM, Sign, Trace, UpdateGroup at any point during their runtime.

100 4 Membership Privacy for Fully Dynamic Group Signatures

We define the adversary’s advantage in the Join-Privacy experiment as

Adv Join-Privacy
A,DGS (λ) :=

∣∣∣∣Pr[Join-PrivacyADGS(1λ)⇒ true
]
− 1

2

∣∣∣∣ .
A group signature scheme DGS has join privacy if for all PPT adversaries A, we
have

Adv Join-Privacy
A,DGS (λ) ≤ negl(λ) .

Definition 4.8: Leave Privacy

For a fully dynamic group signature scheme DGS consider the join-privacy
experiment between a challenger and a two-stage adversary A = (A0,A1).

Leave-PrivacyADGS(1λ)

(reg, pp)← Setup(1λ)

(msk,mpk, info, tsk, tpk)← 〈KeyGenG(pp),KeyGenT (pp)〉
gpk := (pp,mpk, tpk)

(state, uid0, uid1)← A0(gpk, info)

if {uid0, uid1} ∩H \ (C ∪ B) 6= {uid0, uid1} then return false

b← {0, 1};U := {uid0, uid1}; invert := true; η∗ := ηnow

info∗ ← Update(gpk,msk, infoη∗, uidb, reg)

d← A1(state, info∗)

return b = d

Both A0 and A1 have access to the oracles AddUser, Reveal,
Sign,Trace,UpdateGroup at any point during their runtime.

We define the adversary’s advantage in the Leave-Privacy experiment as

Adv Leave-Privacy
A,DGS (λ) :=

∣∣∣∣Pr[Leave-PrivacyADGS(1λ)⇒ true
]
− 1

2

∣∣∣∣ .
A group signature scheme DGS has leave privacy if for all PPT adversariesA, we
have

Adv Leave-Privacy
A,DGS (λ) ≤ negl(λ) .

4.4 Generic Construction of Membership-Private Group Signatures 101

Definition 4.9: Membership Privacy

We say a fully dynamic group signature scheme has membership privacy, if it has
both join- and leave privacy.

Remark

Note that leave privacy as stated above only seems to ensure privacy when a
single user leaves the group, however, the Update algorithm allows simultaneous
membership revocation for a whole set of users R. A simple hybrid argument
should suffice to extend the join privacy property from one revocation to many
revocations.

4.4 Generic Construction of Membership-Private
Group Signatures

In this section we formalize the group signature proposed in the introduction. We
present the full algorithms in construction 4.1.

The idea of our construction is as follows. The issuer uses signatures on equivalence
classes to certify group members SFPK public keys. As already noted in chapter 3
this forms self-blindable certificates, i.e. each member can randomize the certificate
and their public key which is computationally indistinguishable from the original
public key used during the issuing procedure. To add and revoke members, each
epoch the issuer generates a new SPS-EQ key pair and puts the verification key in
the epoch information. To prevent malicious epoch information, the issuer signs the
SPS-EQ verification key using a standard digital signature scheme. To protect the
identities of members, the issuer does not directly publish the new certificates but uses
a randomization, i.e. certificates for public keys that are in relation to keys of members.
To allow the members to restore the right certificate, the issuer encrypts the random
coins that can be used to restore the original certificate. The encryption is done under
the member’s encryption key. What is more, key-privacy ensures that the ciphertexts
do not leak the identities.

102 4 Membership Privacy for Fully Dynamic Group Signatures

Statement xSign:

∃ (fvk, r) s. t.
SFPK.MoveVk(fvk, r) = fvk′

∧ SFPK.Canonical?(fvk)

∨ ctx = PKE.Enc(tpk, fvk)

To allow tracing of users we use the
canonical representative of SFPK, i.e.
while signing, the group member en-
crypts this canonical representative un-
der the tracing authority public key
and uses proof system NIPSign to prove
in statement xSign that the randomized
SFPK verification key is in relation to
this encrypted key.

In the end, the group signature is composed of a randomized signature on equivalence
classes from the issuer on the randomized SFPK verification key of the member, a
ciphertext of the canonical representative, a proof that this ciphertext is sound and a
SFPK signature on all those values and the message.
Statement xTrace:

∃ (tsk) s. t.
(upk[uid])← PKE.Dec(tsk, ctx)

∧ tsk↔ tpk

Finally, the proof system NIPTrace is
used by the tracing authority to prove
in statement xTrace that the decrypted
public key corresponds to public keys
used during the issuing procedure.

All in all let

• SPS = (Setup,KeyGen, Sign,Verify,Move,ValKey) be a structure-preserving
signature scheme on equivalence classes.

• SFPK = (Setup,KeyGen, tdGenSign,Verify,MoveKeys,Check) be a signature
scheme with flexible public keys.

• DS = (Sign,Verify) be a digital signature scheme.

• PKE = (KeyGen, Enc,Dec) be a public key encryption scheme.

• NIPSign = (Setup,Prove,Verify) be a non-interactive proof system forRTrace.

• NIPTrace = (Setup,Prove,Verify)be a non-interactive proof system forRJudge.

4.4 Generic Construction of Membership-Private Group Signatures 103

Construction 4.1: Fully Dynamic Group Signature

DGS.Setup(1λ)

(crsSFPK, ·)← SFPK.Setup(1λ)

BG← BGGen(1λ)

crsJ ← NIPTrace.Setup(1λ)

crsT ← NIPSign.Setup(1λ)

η := 0; reg := ∅
return pp := (BG, crsSFPK, crsJ , crsT)

DGS.KeyGenG(pp)

(skDS, vkDS)← DS.KeyGen(1λ)

(skSPS, vkSPS)← SPS.KeyGen(BG, `)

σDS ← DS.Sign(skDS, vkSPS)

info := (vkSPS, σDS, ∅)
return (msk := (skDS, skSPS),

mpk := vkDS, info)

DGS.UserKeyGen(1λ)

(fsk, fvk)← SFPK.KeyGen(1λ)

(ek, dk)← PKE.KeyGen(1λ)

return (usk[uid] := (fsk, dk),

upk[uid] := (fvk, ek))

DGS.KeyGenT (pp)

(ek, dk)← PKE.KeyGen(1λ)

tsk := dk

tpk := ek

return (tsk, tpk)

DGS.Trace(gpk,tsk,info,reg,m,σ)

parse
σ = (fvk, σEQ,ΠSFPK, ctxσ)

(fvk)← PKE.Dec(tsk, ctx)

abort if ¬∃uid s. t. reg[uid] = (fvk, ·)
w; = tsk

π←NIPTrace.Prove(crsJ , xTrace,w)

return (uid, π)

DGS.Judge(gpk,info,π,upk[uid],m,σ)

if DGS.Verify(gpk, info,m, σ)= false

then return false

σ = (·, ·,ΠSFPK, ctx·)
upk[uid] = (fvk, ·)
return NIPTrace.Verify(crsJ , xTrace, π)

104 4 Membership Privacy for Fully Dynamic Group Signatures

DGS.Issue(info,msk, uid, upk[uid])

parse msk = (skDS, skSPS)

upk[uid] = (fvkuid, ekuid)

info[uid] = (vkSPS, σDS,Active)

if SFPK.Canonical?(fvk) = false then abort
δ ← ∆

fvk′ ← SFPK.MoveVk(fvkuid, δ)

ctxuid ← PKE.Enc(ekuid, δ);

σuid
EQ ← SPS.Sign(skSPS, fvk′)

Active′ := Active ∪ {(ctxuid, σuid
EQ)}

info[uid] := (vkSPS, σDS,Active′)

reg[uid] := upk[uid]

return

DGS.Update(gpk,msk, info, R, reg)

parse msk = (skDS, skSPS)

info = (vkSPS, σDS,Active)

(skSPS′, vkSPS′)← SPS.KeyGen(ppSPS)

σ′
DS ← DS.Sign(skDS, vkSPS′)

msk := (skDS, skSPS′)

A := {uid | uid is active}
foreach uid ∈ A \R
parse reg[uid] = (fvkuid, ekuid)

δ ← ∆

ctxuid ← Enc(ekuid, δ)

fvk′ ← SFPK.MoveVk(fvkuid, δ)

σuid
EQ ← Sign(skSPS′, fvk′)

Active′ := Active′ ∪ (ctxuid, σuid
EQ)

infoη+ := (vkSPS′, σ′
DS,Active

′)

return infoη+

4.4 Generic Construction of Membership-Private Group Signatures 105

DGS.Sign(gpk, ~gsk[uid], infoη,m)

parse infoηnow = (vkSPS, σDS,Active)

~gsk[uid] = (fsk, dk)

gpk[uid] = (fvk, ek)

if ¬∃ (ctx, σEQ) ∈ Active s.t.
δ ← Dec(dk, ctx)

and fvk′ ← SFPK.MoveVk(fvk, δ)

and SPS.Verify(vkSPS, fvk′, σEQ) = true

then abort
γ ← ∆

(fsk′, fvk′)← SFPK.MoveKeys(fsk, fvk, γ′)

σ′
EQ ← SPS.Move(vkSPS, fvk, σEQ, γ · δ−1)

ctx′ ← PKE.Enc(tpk, fvk)

w := (fvk, r)

ΠSFPK ← NIPSign.Prove(crsT , xSign,w))

σ ← SFPK.Sign(fsk′,m||ηnow ||fvk′||σ′
EQ||ΠSFPK||ctx)

return σ := (fvk′, σ′
EQ,ΠSFPK, ctx, σ)

DGS.Verify(gpk, infoη,m, σ)

parse infoη = (vkSPS, σDS, ·);
mpk = vk

σ = (fvk, σEQ,ΠSFPK, ctx, σ)

if DS.Verify(vk, vkSPS, σDS) = false or
NIP.Verify(crsΠ, xSign,ΠSFPK) = false or
SPS.Verify(vkSPS, fvk, σEQ) = false

then return false

M := m||η||fvk||σEQ||ΠSFPK||ctx
return SFPK.Verify(fvk,M, σ)

106 4 Membership Privacy for Fully Dynamic Group Signatures

4.4.1 Proof of Traceability

Theorem 4.1: Traceability

Our construction is traceable if the SPS-EQ scheme is existential unforgeable
under chosen-message attacks, the SFPK scheme is existential unforgeable and
the signature scheme used by the Issuer is existential unforgeable under chosen-
message attacks.

Proof. Let us denote by Si the event that the adversary wins the traceability experiment
inHi. Let

m∗,

σ∗ = (fvk∗, σ∗
EQ,Π

∗
SFPK, ctx

∗
SFPK, σ

∗),

info∗η = (vkSPS
∗, σ∗,Active∗)

be the forgery outputted by the adversary. Moreover, let u be the maximum number of
oracle queries to UpdateGroup made by the adversary and n the number of queries to
the AddUser oracle.

H0: The original experiment.

H1: We abort in the case that DS.Verify(vk, vkSPS∗, σ∗) = true but the signature σ∗

was not created by the UpdateGroup oracle. Informally, we exclude the case that
the adversary creates a custom SPS-EQ verification key and uses it to create its
own epoch information.

It is easy to see that this change only decreases the adversary’s advantage by a
negligible fraction. In particular, we can simply use any adversary A to break
the existential unforgeability of the digital signature scheme used by the Issuer.
Thus, it follows that |Pr[S1]− Pr[S0]| ≤ Adv EUF-CMA

A,DS (λ).

H2: We abort in case the proof for statement xSign is invalid, i.e. there exists no random
coins r such that SFPK.MoveVk(fvk, r) = fvk′.

It is easy to see that this would mean that we can use an adversary outputting
such proof to break the soundness property of the proof system NIPSign. We have
shown that |Pr[S2]− Pr[S1]| ≤ Adv Soundness

NIPSign,A (λ).

4.4 Generic Construction of Membership-Private Group Signatures 107

H3: Choose u∗ ← {1, . . . , u} and abort if info∗η is not the output of the u∗-th call to
the UpdateGroup oracle.

Because of the changes made by the previous game we know that the adver-
sary can only use epoch information outputted by this oracle. Thus, we have
Pr[S2] = u · Pr[S3].

H4: We abort in case DGS.Trace(gpk, tsk, info∗η, reg,m
∗, σ∗) = ⊥ but

DGS.Verify(gpk, info∗η,m
∗, σ∗) = true. Informally, we exclude the case that the

adversary creates a new user from outside the group, i.e. a new SPS-EQ signature.

We will show that any adversary A returns a forgery for which we abort, can be
used to break the existential unforgeability of the SPS-EQ signature scheme. The
reductionR algorithm on input of the verification key vkSPS performs as follows.
It first sets infou∗ = (vkSPS,DS.Sign(sk, vkSPS),Active). For every active user
i is this epoch, Active contains a tuple (PKE.Enc(eki, ki), σi

EQ), where σi
EQ is a

signature generated forR by the signing oracle on input SFPK.MoveVk(fvki, ki).
It then runs the system for A according to description.

After some interactions, the adversary returns the forgery. Note that because of
the changes in the previous games, we know that vkSPS∗ = vkSPS, i.e. the forgery
is created for an epoch that uses our challenged SPS-EQ public key to certify
members. Finally, the reductionR returns (fvk∗, σ∗

EQ) as a valid forgery. It is easy
to see that this is a valid solution. Note that since opening failed, this means that
the trusted authority decrypted a verification key fvk that is not a verification
key of any honest user.
We conclude that |Pr[S4]− Pr[S3]| ≤ Adv `,EQ-EUF-CMA

SPS-EQ,A (λ).

Finally, we will show hat any adversary A that has non-negligible advantage in
winning traceability experiment inH3 can be used by a reduction algorithmR
to break the existential unforgeability of the SFPK scheme for a verification key
fvk.

The reduction simulator works as follows. It generates all values according to
description but for i← [n] the reduction answers the i-th queries of the adversary
to AddUser by setting upk[] = (fvk, ek) for some (dk, ek) ← PKE.KeyGen(1λ).
The reduction aborts if at some point the adversary asks for the group signing
key of this member.

To answer signing queries Sign(i,m, η) for this member, the reduction parses
infoη = (vkSPS, ·,Active). Then it returns ⊥ if for all tuples (E, σEQ) in Active

108 4 Membership Privacy for Fully Dynamic Group Signatures

the decryption k ← PKE.Dec(dk, E) fails. R chooses random coins r ← r,
randomizes the flexible public key fvk′ ← SFPK.MoveVk(fvk, r), the signature
σ′
EQ ← SPS.Move(vkSPS, fvk, σEQ, r · k−1) and computes ciphertext ctxSFPK ←

Enc(tpk, fvk). It then creates a proof ΠSFPK for the statement:

x = { ∃fvk,r SFPK.MoveVk(fvk, r) = fvk′

∧ SFPK.Canonical?(fvk) = true

∧ ctxSFPK = Enc(tpk, fvk) }

using witness w = (fvk, r). It then uses its own signing oracle OSign2((m||η||
fvk′||σ′

EQ||ΠSFPK||ctxSFPK), r), receiving signature σ. Finally, it outputs σ =
(fvk′, σ′

EQ,ΠSFPK, ctxSFPK, σ). Note that since values required to perform the above
computations are known toR, it can efficiently compute valid group signatures
for this member.
Finally, A outputs a valid group signature

m∗,

σ∗ = (fvk∗, σ∗
EQ,Π

∗
SFPK, ctx

∗
SFPK, σ

∗),

info∗η = (vkSPS
∗, σ∗,Active∗)

and the reduction algorithm outputs

((m∗||η∗||fvk∗||σ∗
EQ||Π∗

SFPK), σ
∗)

as a valid SFPK forgery. Note that this is only true if fvk∗ and fvk are in the same
equivalence class. By the changes made in the previous games we know that
fvk∗ is in a relation with a public key of an honest user and with probability 1/n
we guessed the correct member for which Trace(m∗, σ∗, info∗η) = i, and we have
set their verification key to fvk. Note that also in such a case we do not have to
worry about a corruption query for this member, since the forgery must be for
non-corrupted users. We conclude that sincem∗ was never queried previously,
the reduction also never used the prefixm∗ in its oracle queries. In the end we
have:

Pr[S0] ≤u ·
(
n · Adv Flex-Unforgeability

A,SFPK (λ) + Adv `,EQ-EUF-CMA
SPS-EQ,A (λ)

)
+ Adv EUF-CMA

A,DS (λ) + Adv Soundness
NIPSign,A (λ).

Corollary 4.2: Correctness

Since our construction fulfills traceability, and traceability implies correctness,
our construction is also correct.

4.4 Generic Construction of Membership-Private Group Signatures 109

4.4.2 Proof of Anonymity

Theorem 4.3: Anonymity

Our construction is anonymous if the SPS-EQ signature scheme perfectly adapts
signatures, the SFPK scheme is adaptively class hiding with key corruption and
strongly existential unforgeable, the proof system used by signers is witness-
indistinguishable and the proof system used by the tracing authority is zero-
knowledge.

Proof. We will use the game base approach. Let us denote by Si the event that the
adversary wins the anonymity experiment in Hi. Moreover, let n be the number of
queries to the AddUser oracle made by the adversary and let (info∗η, uid

∗
1, uid

∗
2,m

∗) be
the query made to the Challengeb oracle, which outputs

σ∗ = (fvk∗, σ∗
EQ,Π

∗
SFPK, ctx

∗
SFPK, σ

∗).

H0: The original experiment.

H1: We simulate the proof generated in Trace by the tracing authority.

Obviously, we only lower the advantage of the adversary by a negligible frac-
tion because of the zero-knowledge property of this proof. Thus, we have
|Pr[S1]− Pr[S0]| ≤ Adv ZK

A,NIPTrace(λ).

H2: We change the way the Trace oracle works. Instead of using tsk to decrypt fvk
from ctxSFPK, we first extract the witness (fvk, r) and use fvk instead. What is
more, we simulate the proof Π∗

SFPK, which is part of the challenge signature.

Note that since the proof systemNIPSign is simulation-sound extractable it follows
that |Pr[S2]− Pr[S1]| ≤ Adv SSE

A,NIPSign(λ).

H3: We change the way the ciphertext ctx∗SFPK is computed. Instead of encrypting the
canonical representative, we encrypt the value0.

Note that because of the changes made in the previous game, the Trace oracle
works as inH2. Thus, we have that |Pr[S3]− Pr[S2]| ≤ Adv IND-CPA

PKE,A (λ)

110 4 Membership Privacy for Fully Dynamic Group Signatures

H4: We now change the way we compute σ∗
EQ. Instead of using the Move algorithm to

change representation of an old signature, we compute the SPS-EQ signature
directly on fvk∗.

Since the SPS-EQ signature scheme perfectly adapts signatures, we have Pr[S4] =
Pr[S3]

H5: Given the experiments bit b, we choose index i← [n] and abort if uidb does not
correspond to the user created in the i-th query of the adversary to AddUser.

We have Pr[S4] = n · Pr[S5].

H6: Let fvk be the SFPK verification key of the user chosen in the previous game.
We now instead of using fvk to create fvk∗, we use a fresh key generated using
SFPK.KeyGen.

We will now show that any adversary A that can distinguish those games, can
be used to brake the weak class hiding of the SFPK scheme. We will show how
to build a reductionR that does this. Let (fsk0, fvk0), (fsk1, fvk1) and fvk′ be the
inputs given toR by the challenger in the adaptive class hiding experiment. The
reduction then sets fvk0 as the i-th honest user SFPK public key. All other key
material for those users is constructed as described in the scheme. Now in order to
answer the query (info∗η, uid

∗
1, uid

∗
2,m

∗) to the Challengeb oracle, the reduction:
sets fvk∗ = fvk′, computes σ∗

EQ as in H3, computes Π∗
SFPK as in H2, computes

ctx∗SFPK ← PKE.Enc(tpk, fvk′), asks its signing oracle for σ∗ under message
m∗||η∗||fvk∗||σ∗

EQ||Π∗
SFPK||ctx∗SFPK, and returns σ∗ = (fvk∗, σ∗

EQ,Π
∗
SFPK, ctx

∗
SFPK, σ

∗).
Note that since it knows fsk0 and fsk1 it can easily answer all corruption queries
made by A. In the end A outputs a bit b, which is also returned byR. It follows
that we have |Pr[S6]− Pr[S5]| ≤ Adv Class-Hiding

A,SFPK (λ).

We now argue that the only way the adversary A can break anonymity is by
creating a randomization

σ′ = (fvk′, σ′
EQ,Π

′
SFPK, ctx

′
SFPK, σ

′)

of the signature σ∗ = (fvk∗, σ∗
EQ,Π

∗
SFPK, ctx

∗
SFPK, σ

∗) and use σ′ in a query to the
Trace oracle. Since in H5 we changed the verification key fvk∗ to a random
one, this is the only part of the simulation, where the adversary can notice
something. Thus, for this to work the adversary must use a valid signature σ′

for fvk′ ∈ [fvk∗]R. We distinguish two cases: σ′ = σ∗ and σ′ 6= σ∗. If σ′ = σ∗

4.4 Generic Construction of Membership-Private Group Signatures 111

this means that fvk′ = fvk∗ and either σ′
EQ 6= σ∗

EQ or Π′
SFPK 6= Π∗

SFPK. Since fvk
∗

is set to random verification key in H6 we can use an adversary that creates
such a signature σ′ to break strong existential unforgeability of the SFPK scheme.
In case σ′ 6= σ∗, we notice that in order for the adversary to see that this is a
simulation the verification key fvk′ must be in relation to fvk∗. Thus, we can
again use the adversary to break the strong existential unforgeability of the SFPK
scheme, even if σ′

EQ = σ∗
EQ, Π′

SFPK = Π∗
SFPK and fvk′ = fvk∗.

In other words, the only way the adversary can randomize the challenged signa-
ture is by randomizing the SFPK signature because the other values are signed.
However, since the scheme is strongly unforgeable the adversary has negligible
chances to do so. It follows that Pr[S6] = Adv Flex-sUnforgeability

A,SFPK (λ). In the end we
have:

Pr[S0] ≤n ·
(
Adv Class-Hiding

A,SFPK (λ) + Adv Flex-sUnforgeability
A,SFPK (λ)

)
+ Adv IND-CPA

PKE,A (λ) + Adv SSE
A,NIPSign(λ) + Adv ZK

A,NIPTrace(λ).

4.4.3 Proof of Non-frameability

Theorem 4.4: Non-frameability

Our construction is non-frameable if the SFPK scheme is existential unforgeable
and the proof system used by the tracing authority is sound.

Proof. We again use the game base approach. Let us denote by Si the event that the ad-
versary wins the anonymity experiment inHi. Moreover, let n be the number of queries
to the CorruptUser oracle made by the adversary and let (m∗, σ∗, uid∗, π∗

Trace, info
∗
η) be

the output of the adversary A.

H0: The original experiment.

H1: Let σ∗ = (fvk∗, σ∗
EQ,Π

∗
SFPK, ctx

∗
SFPK, σ

∗). We decrypt fvk′ from ctx∗SFPK using
the tracing authorities secret key tsk. We abort if fvk′ 6= upk[uid∗] but the
DGS.Judge(gpk, uid∗, info∗η, π

∗
Trace, upk[uid

∗],m∗, σ∗) outputs true.

We will show that this lowers the adversaries advantage only by a negligible
fraction. In particular, this means that π∗

Trace is a valid proof for the statement:

∃tsk (upk[uid∗])← PKE.Dec(tsk, ctxSFPK) ∧ tsk↔ tpk

112 4 Membership Privacy for Fully Dynamic Group Signatures

However, since we know that fvk′ 6= upk[uid∗] it follows that π∗
Trace is a proof

that breaks the soundness property of the proof used by the tracing authority.
We have shown that |Pr[S1]− Pr[S0]| ≤ Adv Soundness

A,NIPTrace(λ).

H2: We now choose a random j ∈ [n] and abort in case j 6= uid∗.
It is easy to see that Pr[S1] = n · Pr[S2].

We will now show that any adversary A that breaks the non-frameability of the
scheme can be used to break the existential unforgeability of the SFPK scheme.
To do so, we construct a reduction R that plays the role of the adversary in
the existential unforgeability experiment. Let fvk be the verification key given
to R. The reduction sets upk[j] = fvk, where j is the identifier from H2. To
answer the queries to the Sign oracle for uid = j, the reduction outputs group
signature σ′ = (fvk′, σ′

EQ,Π
′
SFPK, ctx

′
SFPK, σ

′). To do so, the reduction can choose
the randomization r freely and randomize the verification key fvk by running
fvk′ ← SFPK.MoveVk(fvk, r). It can also randomize the SPS-EQ signature to
receive σ′

EQ and compute the proof Π′
SFPK. Finally, it uses its own signing oracle

OSign2 to compute the SFPK signature σ′.
In the end, the adversary returns a group signature σ∗ = (fvk∗, σ∗

EQ,Π
∗
SFPK, ctx

∗
SFPK,

σ∗) under messagem∗ and for epoch info∗η , for which we know (byH2) that fvk∗ is
from the same relation as the verification key fvk from the existential unforgeabil-
ity experiment. Since this is a valid forgery, it follows that (uid∗,m∗, σ∗, η∗) 6∈ Q
and that

((m∗||η∗||fvk∗||σ∗
EQ||Π∗

SFPK||ctx∗SFPK), σ∗)

is a valid forgery against the SFPK scheme.
We conclude that Pr[S0] = n · Adv Flex-Unforgeability

A,SFPK (λ) + Adv Soundness
A,NIPTrace(λ).

4.4.4 Proof of Functional Tracing Soundness

Theorem 4.5: Functional Tracing Soundness

Our construction has functional tracing soundness if the underlying SFPK scheme
has canonical representatives, the proof system used by the Judge is sound and
the proof system used by the signers is a proof of knowledge.

Proof. Let A be an adversary against the tracing soundness of our scheme. We show
how to construct a reduction B against the soundness of NIPTrace.

4.4 Generic Construction of Membership-Private Group Signatures 113

Given the CRS crsJudge, the reduction generates the remaining parameters according
to Setup and forwards them to the adversary. At some point the adversary will out-
put the group and tracing manager’s key material and the initial group information
(info,msk,mpk, tsk, tpk). Let us further denote by (m,σ, {uidi, πi}2i=1, infoη) the ad-
versary’s final output. We will assume that upk[uid1] and upk[uid2] are both defined and
not equal. Assume additionally that Judge(gpk, uidi, infoη, πi, upk[uidi],m, σ) = 1 for
both i = 1 and i = 2, i.e. we have in particularNIPTrace.Verify(crsJudge, xTrace, πi) = true
for both i. We now consider the following cases:

Case I: The tracing authority’s secret key is not properly generated, i.e. we have
(τ ′, crs′)← NIPTrace.ExtSetup(1λ;ω) for (τ ′, crs′) 6= (τPPE, crsPPE). The reduction
can check this, since the adversary provides the ω as part of the tracing authority’s
secret key. In this case, either of the two proofs πi breaks the soundness ofNIPTrace.

Case II: The tracing authority’s secret key is properly generated. In this case, the
reduction uses the extraction trapdoor to obtain the witness used for the proof
ΠSFPK contained in the signature. There are two possibilities:

1. The extraction does not produce a valid witness. We bound this case by the
advantage of A against the extractor.

2. The extraction is successful, yielding a valid witness (fvk, r, w1, w2). Since
the witness is valid, fvk is the unique canonical representative of the key that
created the signature. Since the keys upk[uid1] and upk[uid2] are different,
at most one of them can be equal to the extracted fvk. The reduction thus
returns (xTrace, πi) such that upk[uidi] 6= fvk again breaking the soundness
of NIPTrace.

4.4.5 Proof of Membership Privacy

Theorem 4.6: Membership Privacy

Our construction has membership privacy if the encryption scheme used by the
signers is IND-CPA secure and has IND-PK key privacy and the SFPK scheme is
adaptively class hiding with key corruption.

Proof. We have to show that our construction achieves both join and leave privacy. We
begin with the proof of join privacy.

114 4 Membership Privacy for Fully Dynamic Group Signatures

Theorem 4.7: Join Privacy

Our construction has private joins if the encryption scheme used by the signers is
IND-CPA secure and has IND-PK key privacy and the SFPK scheme is adaptively
class hiding with key corruption.

Proof. We consider a series of games. In the following let uidb be the challenge user
who is inserted into the group and let gpk[uidb] = (fvk, ek) be their public key and
~gsk[uidb] = (fsk, dk) be their signing key. Let Si denote the event that the adversary
wins inHi.

H0 Is the original join privacy game, so Pr[S0] = Adv Join-Privacy
GS,A (λ).

H1 We modify how the challenge group information is created. For this we generate
a fresh public key encryption key pair (ek, dk) ← PKE.KeyGen(1λ). After
the challenge user uidb is added using AddUser, we replace their entry (ctx =
PKE.Enc(ekb, k), σEQ) in the epoch information with (PKE.Enc(ek, k), σEQ),
i.e. we replace the encryption key of the randomness to a fresh key. It
is easy to see that, since the encryption scheme has key privacy we have
Pr[S1] ≤ Pr[S0] + Adv IND-PK

PKE,A (λ).

H2 In this game we further modify the ciphertext in the challenge user’s part of info∗

by encrypting the value 0 instead of the randomness used to change the SFPK
key signed in σEQ. Because the encryption scheme is IND-CPA secure it holds
that Pr[S2] ≤ Pr[S1] + Adv IND-CPA

PKE,A (λ).

H3 Instead of changing the representative of user uidb’s SFPK public key, we generate
a fresh verification key and change its representative. The signature in info∗ will
now be on this fresh representative. We will also use this fresh key to sign in the
queries made to Privacy. We observe that Pr[S3] ≤ Pr[S2] + Adv Class-Hiding

SFPK,A (λ).
Further, we have Pr[S3] =

1
2
, since the updated epoch information and the signa-

tures received from the challenge signing oracle are completely independent of
the challenge users.

Putting it all together we thus have

Adv Join-Privacy
GS,A (λ) ≤ Adv IND-PK

PKE,A (λ) + Adv IND-CPA
A (λ) + Adv Class-Hiding

SFPK,A (λ).

4.5 Efficient Instantiation 115

Now we prove leave privacy of our construction.

Theorem 4.8: Leave Privacy

Our construction has leave privacy if the encryption scheme used by the signers is
IND-CPA secure and has IND-PK key privacy and the SFPK scheme is adaptively
class hiding with key corruption.

Proof. This proof follows similar steps as the proof for join privacy. We consider a
series of games, where in the first game b is fixed to 0 and in the last game, b is fixed to
1. Let Si denote the event that A’s final output inHi is 0.

H0 The Leave-Privacy game, where bit b is fixed to 0.

H1 We change the public key used to encrypt the epoch data for user uid0 using the
public key of user uid1. We have |Pr[S0]− Pr[S1]| ≤ Adv IND-PK

A,PKE (λ).

H2 We now change the randomness encrypted in this ciphertext to the randomness
for user uid1. Because of IND-CPA security of the encryption scheme we have
|Pr[S1]− Pr[S2]| ≤ Adv IND-CPA

A,PKE (λ).

H3 We change the SFPK verification key to the verification key of uid1, also changing
the signatures in Privacy to this signing key. The game is now the same as the
Leave-Privacy game with the bit fixed to 1. Because of adaptive class hiding we
have |Pr[S2]− Pr[S3]| ≤ Adv Class-Hiding

A,SFPK (λ).

This concludes the proof of membership privacy.

4.5 Efficient Instantiation
The generic construction presented above can be easily instantiated in the standard
model, without random oracles, using known schemes. In particular, we can use the
standard model signatures on equivalence classes by Fuchsbauer and Gay [FHS15]
and a compatible SFPK signature schemes from chapter 3. For the encryption scheme
one can use ElGamal encryption and standard model digital signatures. Finally, both
proof systems can be instantiated using the simulation-sound system by Groth [Gro06].

116 4 Membership Privacy for Fully Dynamic Group Signatures

However, due to the simulation-sound proof system and the large public keys of the
SFPK schemes, the signature size is not competitive with existing schemes. We will
now show how to minimize the signature size, while still using only building blocks
that are secure under standard assumptions and without random oracles. The objective
is to instantiate our construction in a way that it has shorter signatures than the current
state-of-the-art scheme by Libert-Peters-Yung [LPY15] presented at Crypto’15, which
is only secure in a weaker model.

Optimization. To decrease the signature size we have to solve the following prob-
lems:

1. The proof system NIPSign must allow the security reduction for the anonymity ex-
periment to simulate the challenged proof and at the same time extract witnesses
to properly simulate the Trace oracle,

2. The verification key of the SFPK signature must be short and allow for a simple
proof of canonical representation,

3. If possible, simplification of the statement proven in NIPSign.

First, we replace the simulation-sound system with a simple NIWI proof system. In
fact, we instantiate all building blocks such that we can use the popular Groth-Sahai
proofs for pairing product equations. To do so, we introduce a trapdoor witness that
can be used by the reduction to simulate the proof, while still being able to extract the
witness. Of course, we have to prevent the adversary from using this trapdoor to create
valid proofs. We achieve this by introducing a new element K2 = gk2 as part of the
groups public key that will be part of the statement. The trapdoor witness are then two
values w1 and w2, such that e(w1, K2) = e(w2, g2). It is easy to see that any adversary
that is able to compute such a witness can be used to break the DDH assumption in G2.

To solve the second problem we use construction 3.4 as our SFPK instantiation. The
scheme uses public keys inG1×G1 with the established projective equivalence relation,
i.e. (fvk, fvk′) ∈ R if there is a µ ∈ Z∗

p such that fvkµ1 = fvk′1 and fvkµ2 = fvk′2. For such
classes of public keys, we define the canonical representative as the verification key for
which the first element is just g1.

To simplify the statement proven in NIPSign, we get rid of the ciphertext cSFPK, that
is used by the tracing authority to identify signers. To preserve this functionality, we
allow the tracing authority to generate the parameters for the proof system NIPSign,
including an extraction trapdoor which allows to extract the used witness and compute
the corresponding canonical representative.

When applying all the above techniques the statement proven by the signer will

4.6 Related Work 117

have the form:

∃ (fvk, r, w1, w2) s. t.
SFPK.MoveVk(fvk, r) = fvk′ ∧ SFPK.Canonical?(fvk)

∨ e(w1, K2) = e(w2, g2).

Efficiency of the Instantiation. The signature itself is composed of an SFPK veri-
fication key fvk′, an SFPK signature σ, an SPS-EQ signature σ′

EQ and proof ΠSFPK. To
instantiate SFPK signatures we use Scheme construction 3.4, which means that fvk′ is
2 elements in G1 and σ is 2 elements in G1, 1 in G2 and 1 in Z∗

p. This means that the
SPS-EQ signature takes 10 elements in G1 and 4 elements in G2.

Taking into account that we will use construction 3.4, the above statement can
be instantiated as follows. Let fvk′ = (fvk′1, fvk

′
2) and fvk = (fvk1, fvk2), we can

then express this proof by the pairing product equations: e(w1, K2) = e(w2, g2) and
e(fvk′1, g

r−1

2) = e(g1, g2) · e(w1, g2). It is easy to see that the witness (r, w1, w2) =
(0, (g1)

−1, (K1)
−1) is a trapdoor witness that can be used in the security proof to create

a valid proof for an arbitrary fvk′. The canonical representative fvk is only used by the
tracing authority to open signatures. However, by extracting the witness R = gr

−1

2

it can still do this because if fvk′2 = gx·r1 , then e(fvk′2, R) = e(gx1 , g2) is a static value
that is common for all public keys in relation with fvk′. Since the tracing authority has
access to the registration table that contains public keys in canonical form of active
members it can correctly open signatures.

Instantiating those equations using the fine-tuned Groth-Sahai proofs presented
in [EG14] (assuming decisional Diffie-Hellman), the proof size is 10 elements in G1 and
8 elements in G2. This is constituted by: 2 group elements in G2 for the first equation,
which is linear; 4 elements in G1 and G2 for the second equation; 6 elements in G1

for the three witnesses in G1; 2 elements in G2 for the witness r. Overall the group
signature is composed of 28 elements in G1, 15 in G2 and 1 in Z∗

p.
The digital signature scheme DS and the public key encryption scheme PKE are

standard components, an example of a key private PKE scheme is ElGamal encryption.
The proof system NIPTrace can also be instantiated using Groth-Sahai proofs for pairing
product equations [EG14]. Note that this means that the tracing authority has to
prove correct decryption of a ciphertext (witnesses are encoded in form of ElGamal
encryptions) and that its public key was generated using a DDH tuple, which can easily
be expressed as pairing product equations.

4.6 Related Work
A related property to our membership privacy was proposed for the partially dynamic
setting by Kiayias and Zhou in Hidden Identity-Based Signatures [KZ07] and efficiently

118 4 Membership Privacy for Fully Dynamic Group Signatures

instantiated by Chow et al. [CZZ17]. In these works, group membership lists are
avoided altogether, enabling to hide the identity of group members even from the
opening authority. We stress that in the fully dynamic model some form of group
membership list is necessary to implement membership revocation, separating these
approaches from ours.

The generic constructions of group signatures from [BMW03] and [BSZ05] established
a design paradigm, which is sometimes called the sign-and-encrypt-and-prove paradigm
(SEP). It is used in a number of constructions and may be informally described as
follows: a signature consists of an encryption under the opener’s public key of both a
signature of the message under the member’s signing key and the member’s identity,
as well as a non-interactive zero-knowledge proof that the identity contained in the
encryption is valid and is indeed that of the signer of the message. The identity of
the group member is typically a signature issued by the group manager. Thus, relying
on the unforgeability of this signature, such a group signature scheme achieves non-
frameability and traceability. Beside this design paradigm and generic construction,
which are also based on this paradigm, Abdalla and Warinschi proved in [AW04] that
group signatures are actually equivalent to IND-CPA secure encryption schemes.

In [Bic+10], Bichsel et al. identify the SEP design paradigm as a source of inefficiency
in group signatures. Then they propose a new approach based on re-randomizable
signature schemes and provide an efficient construction without encryption secure in
the random oracle model. In this work we follow that idea, however we do not rely on
the random oracle model to prove security of our scheme. By nowmany group signature
schemes were designed for both the static and dynamic case in the random oracle model
which utilize the RSA crypto-system [Ate+00; TX03; CG05; KY05a], discrete logarithm
setting [AM03; FY05], and bilinear setting [BBS04; CL04].

One of the first standard model constructions was introduced by Ateniese et
al. [Ate+05a]. The scheme is highly efficient, it utilizes bilinear maps and the sig-
nature consists only of 8 group elements. However, the scheme does not provide
full-anonymity in sense of the definition in the BMW model [BMW03]. In particular,
the adversary is not allowed to see the private keys of honest users.

Boyen and Waters [BW06; BW07] proposed standard model schemes that use com-
posite order bilinear groups, but in contrast to [Ate+05a] allows key exposure attacks.
However, the adversary cannot see any openings of signatures. This restricted version
of full-anonymity is also called CPA-anonymity.

The introduction of the Groth-Sahai (GS) proof system [GS08] allowed for the design
of new and efficient group signature schemes in the standard model. Groth [Gro07] was
the first to introduce a standard model group signature with a constant size verification
key and signatures, which preserve the full-anonymity property. The security of the
scheme relies on a q-type assumption. The GS proof system was also used by Libert et
al. [LPY12b; LPY12a], who designed standard model group signatures with revocation

4.6 Related Work 119

capabilities.
At Crypto’15 Libert, Peters and Yung [LPY15] introduced two efficient group signature

schemes that rely on simple assumptions. The first scheme is secure in the static BMW
model [BMW03]. On the other hand, the second construction is less efficient, but secure
in the dynamic security model from [KY06].

Bootle et al. [Boo+15] propose a generic construction of group signatures from
accountable ring signatures. They instantiate it using a scheme based on a sigma
protocol in the random oracle model. Later, Bootle et al. [Boo+16] show that this
construction is a fully dynamic group signature scheme. The idea is to include the
description of the ring as part of the epoch information. This way only users in the
ring are member of the group in the current epoch. Security follows directly from the
security of accountable ring signatures.

Derler and Slamanig proposed a generic construction for dynamic group signatures
based on structure preserving signatures on equivalence classes (SPS-EQ) [DS16].
SPS-EQ define a relationR that induces a partition on the message space. By signing
one representative of a partition, the signer in fact signs the whole partition. Then,
without knowledge of the signing key we can transform the signature to a different
representative of the partition. Their group signatures make use of signatures of
knowledge (as part of the group signature) and non-interactive zero-knowledge proof
systems (in the issuing procedure and to ensure opening soundness). The authors
present an efficient instantiation in the random oracle model. The main disadvantage
of their construction is that there currently exists no standard model instantiation.

Group signatures can also be constructed from lattice-based assumptions [Lin+18] or
symmetric primitives [BEF18]. The former is the only scheme secure under lattice-based
assumptions for which the signature size does not depend on the number of group
members. Unfortunately, it is only secure in the partially dynamic model [BSZ05] and
in the random oracle model. The latter scheme is also instantiated in the random oracle
model.

5 Logarithmic Size (Linkable) Ring
Signatures

In this chapter:
5.1 Introduction . 121

5.1.1 Technical Overview of Logarithmic Ring Signatures 121
5.1.2 On Linkable Ring Signatures . 126
5.1.3 Contributions in This Chapter 129

5.2 Chapter Preliminaries . 129
5.2.1 Non-interactive Proof Systems 130
5.2.2 Non-interactive Commitment Schemes 130
5.2.3 Public Key Encryption . 132
5.2.4 Somewhere Perfectly Binding Hashing 132

5.3 Logarithmic Size Ring-Signatures . 135
5.3.1 Proof of Unforgeability . 137
5.3.2 Proof of Anonymity . 141

5.4 Linkable Ring Signatures, Revisited . 145
5.5 Construction of Linkable Ring Signatures 149

5.5.1 Proof of Unforgeability . 153
5.5.2 Proof of Linkable Anonymity 155
5.5.3 Proof of Linkability . 161
5.5.4 Proof of Non-Frameability . 163

5.6 Related Work . 164

5.1 Introduction

5.1.1 Technical Overview of Logarithmic Ring Signatures
To describe our scheme, it is instructive to recall the standard model ring signature
scheme of Bender, Katz, and Morselli [BKM06]. In the BKM scheme, a ring verification
key rvk = (vk, ek) consists of a verification key vk for a standard signature scheme
and an encryption key ek for a public key encryption scheme. The ring signing key

122 5 Logarithmic Size (Linkable) Ring Signatures

Publication History

The contributions of this chapter are based on and were first published in

Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Kluczniak,
and Jonas Schneider. “Ring Signatures: Logarithmic-Size, No Setup
- from Standard Assumptions.” In: Advances in Cryptology – EU-
ROCRYPT 2019, Part III. ed. by Yuval Ishai and Vincent Rijmen.
Vol. 11478. Lecture Notes in Computer Science. Darmstadt, Ger-
many: Springer, Heidelberg, Germany, May 2019, pp. 281–311. doi:
10.1007/978-3-030-17659-4_10.

is just the corresponding signing key of the digital signature scheme sk. To sign a
messagem given a ring signing key rsk and a ring R = (rvk1, . . . , rvk`), one proceeds
as follows. In a first step, locate verification key rvki∗ = (vki∗, eki∗) corresponding to
the signing key sk in the ring R. Now compute a signature σ ofm using the signing
key sk and encrypt σ under eki∗ to obtain a ciphertext ctxi∗ . Next, for all i 6= i∗

compute filler ciphertexts ctxi as encryptions of 0λ under eki, where rvki = (vki, eki).
Finally, use a non-interactive1 witness-indistinguishable proof π for the statement
(m, ctx1, . . . , ctx`, rvk1, . . . , rvk`) to show that there exists an index i∗ such that ctxi∗
encrypts a signature σ and that σ verifies for the messagem under the verification key
vki∗ . The ring signature is now given by ς = (ctx1, . . . , ctx`, π). To verify a signature
ς for a messagem and ring R, use the NIWI verifier to verify that π is a proof for the
statement (m, ctx1, . . . , ctx`, rvk1, . . . , rvk`).

We also briefly review how unforgeability and anonymity of this scheme are estab-
lished. To establish unforgeability, note that by the perfect soundness of the NIWI proof
π one of the ctxi must actually be an encryption of a signature on m under vki. The
security reduction can therefore set up all the eki such that it knows the corresponding
secret keys and can decrypt the signature. Establishing anonymity relies on witness
indistinguishability of the NIWI proof system. That is, the reduction can set up the
signature ς such that, in fact, two different ciphertexts ctxi0 and ctxi1 encrypt a valid
signature (each under their corresponding verification key). We can now use witness
indistinguishability to switch the witness from index i0 to i1. Thus, we can establish that
signatures computed using ski0 are computationally indistinguishable from signatures
computed using ski1 . The size of the signature is linear in the ring size `. There are two
major obstacles in making the size of the signatures sub-linear:

1. The signature contains all the ciphertexts ctx1, . . . , ctx`.

1Bender et al. [BKM06] actually use 2-message public-coin witness-indistinguishable proofs (ZAPs)
rather than NIWI proofs, which is a slightly weaker primitive than NIWI proofs.

https://doi.org/10.1007/978-3-030-17659-4_10

5.1 Introduction 123

2. The statement over (m, ctx1, . . . , ctx`, rvk1, . . . , rvk`) is also of size linear in `
since it includes a disjunction over all verification keys in the ring.

Reducing the number of ciphertexts. Starting from the BKM scheme, our first
idea is that if we use an appropriate public key encryption scheme PKE, then we do
not need to include all the ciphertexts ctx1, . . . , ctx` in the signature, but only two
ciphertexts ctx and ctx′. The additional property we need from PKE is that a ciphertext
ctx cannot be linked to the public key ek that was used to compute ctx, unless one is
in the possession of the corresponding decryption key dk. This property immediately
holds if the public key encryption scheme PKE has pseudorandom ciphertexts. In fact,
many constructions of public key encryption have pseudorandom ciphertexts, e.g. the
classic ElGamal scheme based on the DDH problem [ElG84] or Regev’s scheme based
on the LWE problem [Reg05].

Our first modification is thus to compute ctx by encrypting the signature σ under
eki∗ and choosing ctx′ uniformly at random. We also compute the proof π differently.
Namely, we prove that for a statement of the form (m, ctx, ctx′, rvk1, . . . , rvk`) it holds
that there exist indices i∗ and i† such that either ctx is an encryption of a signature
σ∗ of m with respect to the verification key vki∗ under the public key eki∗ , or ctx′ is
an encryption of a signature σ† of m with respect to the verification key vki† under
the public key eki† . In this modified scheme, a signature ς = (ctx, ctx′, π) consists of
the two ciphertexts ctx, ctx′ and the proof π. Verification checks that π is a proof for
the statement (m, ctx, ctx′, rvk1, . . . , rvk`). We will briefly argue that this scheme is
still unforgeable and anonymous. First observe that if the proof π for the statement
(m, ctx, ctx′, rvk1, . . . , rvk`) verifies, then by the perfect soundness of the NIWI proof
system either ctx or ctx′ must encrypt a signature under a public key eki∗ or eki† respec-
tively. Therefore, we can again construct a reduction which knows all the secret keys
corresponding to the eki. This way, the reduction will be able to decrypt the signature σ
from ctx or ctx′. To show anonymity, we transform a signature computed with ski0 into
a signature computed with ski1 via a sequence of hybrids. In the first hybrid step we
will make ctx′, which was uniformly random before, an encryption of a signature σ1 of
m with respect to the key vki1 under the public key ek1. This change is possible as the
ciphertexts of PKE are pseudorandom. Next, we will use witness indistinguishability
of NIWI to switch the witness for the statement (m, ctx, ctx′, rvk1, . . . , rvk`). The new
witness shows that ctx′ encrypts a valid signature ofm. This means that we do not need
a witness for ctx anymore. Thus, in the next hybrid steps, we replace the ciphertext
ctx by a random string, and then replace this random string by an encryption of the
signature σ1 under the public key eki1 . In the next steps, we can switch the witness we
use to compute the proof π back to using the witness for ctx, and in the last hybrid we
make ctx′ uniformly random again. Thus, ς is now computed using ski1 .

124 5 Logarithmic Size (Linkable) Ring Signatures

Compressing the membership proof. The bigger challenge, however, is reducing
the size of the membership proof to linear in log(`). A natural approach would be to
prove membership of the verification key rvki in the ring via a Merkle tree accumulator
(as e.g. in the ROM-scheme of [Dod+04]). In this approach, one first hashes the ring
R into a succinct digest ζ , and can then prove membership of rvki in the ring via a
log(`)-sized root-to-leaf path. To sign a message under a ring R, the signer first hashes R
into a digest ζ and computes a NIWI proof π which simultaneously proves membership
of their own key rvki in R via a succinct membership witness and that ctx encrypts a
signature for rvki. To verify such a signature, the verifier recomputes the root hash
ζ for the ring R and verifies the proof π. While this idea seems to resolve the above
issue at first glance, it raises serious issues itself. First and foremost, we will not be
able to prove unforgeability as above, as membership proofs for Merkle trees only have
computational soundness, but in order to prove unforgeability as above we need perfect
soundness. The problem is that an adversary might also produce a proof by finding a
collision in the Merkle tree instead of forging a signature. If, in fact, we could use an
NIZK proof of knowledge, then this proof strategy can be implemented with routine
techniques. NIZK proofs however need a setup, and we only have NIWI proofs at our
disposal. Moreover, for a Merkle tree to be binding it is necessary that the hashing key
is honestly generated, as unkeyed hash functions are insecure against non-uniform
adversaries, which could have a collision as part of their advice. Thus, it is also unclear
where the hashing key for the Merkle tree should come from. Consequently, the Merkle
tree approach seems fundamentally stuck in the standard model.

There is, however, a loophole in the above argument. Upon closer inspection, we
actually do not need the Merkle tree hash function to be collision resistant. Instead,
we need a guarantee that the hash value ζ binds to at least one specific value in the
database, which is under the control of the signer. The key ingredient we use to make
the construction work is somewhere statistically binding (SSB) hashing [HW15]. An SSB
hash function allows to compress a database into a digest ζ such that ζ uniquely binds
to a specific database entry, in our case to a verification key in a ring. More specifically,
the key generator for an SSB hash function takes as an additional input an index i∗
and produces a hashing key hk. When a database db is hashed into a digest ζ using
the hashing key hk, the digest ζ uniquely defines dbi∗ . In other words, any database
db′ with db′i∗ 6= dbi∗ hashes to a digest ζ ′ 6= ζ . To enable short membership proofs,
we require an SSB hash function with local opening. That is, given a hashing key hk,
a digest ζ of a database db, an index i and a value x, there is witness τ of size linear
in log(|db|) which demonstrates that dbi = x. Besides the somewhere statistically
binding property, we also require that the SSB hash function is index-hiding, i.e. the
hashing key hk computationally hides the index i at which it is binding. Finally, as
there is no trusted setup which could define the key for the SSB hash function, we
must let the signer generate the hashing key hk itself. This introduces an additional

5.1 Introduction 125

problem, the standard notion of SSB hashing requires that the somewhere binding
property holds with overwhelming probability over the coins of the key generator, but
not with probability 1. However, as we let the signer generate the hashing key, the
signer may in fact choose bad random coins for which the hashing key is not binding.
We address this problem by using somewhere perfectly binding (SPB) hashing instead
of SSB hashing. In fact, many constructions of SSB hashing are already SPB, e.g. the
LWE-based construction of [HW15] can be made SPB via standard error-truncation
techniques, and the DDH- and DCR-based constructions of [Oka+15] are immediately
SPB. One additional aspect we require is that generating a hashing key hk for a database
db of size ` can be performed by a circuit of size linear in log(`), but this is the case for
the instantiations above. Equipped with SPB hashing, we can now construct succinct
membership proofs with perfect soundness as follows. The signer generates a hashing
key hk binding at position i (where rvki is the signer’s verification key) and uses hk
to compress R into a digest ζ . The membership witness shows that hk is binding at
position i and that ζ opens to rvki at position i. Essentially, a pair (hk, ζ) of SPB hashing
key hk and digest ζ form a perfectly binding commitment to rvki, where we can prove
that (hk, ζ) opens to rvki at position i using a witness of size linear in log(`).

Relaxing the requirements on SPB hashing. It turns out that we do not need the
opening witnesses for the SPB hashing scheme to be publicly computable. Indeed, we
may allow the opening witness to depend on the private coins used by the key generator
as we need to prove that hk is binding at position i anyway. We therefore define a
slightly weakened notion called Somewhere Perfectly Binding Hashing with private local
Opening. As observed in [Oka+15], this notion can immediately be realized from any
private information retrieval (PIR) scheme with fully efficient client (i.e. the clients
overhead is logarithmic in the database-size). Such a PIR scheme can be immediately
constructed from fully homomorphic encryption [Gen09; BV11; GSW13], avoiding the
Merkle tree based approach of [HW15].

Our Scheme. Armed with these techniques, we can now provide our ring signature
scheme. Key generation is as described above. To sign a message m with a signing
key ski, the signer computes a signature σ on m using ski and encrypts σ under eki
obtaining a ciphertext ctx. The ciphertext ctx′ is chosen uniformly at random (as in
the scheme above). The signer now generates two hashing keys hk and hk′ which are
binding at position i and computes the hash of R = (rvk1, . . . , rvk`) under both hk
and hk′, obtaining hash values ζ and ζ ′. Finally, the signer computes a NIWI proof π
which proves that either (hk, ζ) binds to a key rvki and that ctx encrypts a signature
of m for rvki or (hk′, ζ ′) bind to a key rvki′ and that ctx′ encrypts a signature of m
for rvki′ . The signer then outputs the signature ς = (ctx, ctx′, hk, hk′, π). To verify a
signature ς = (ctx, ctx′, hk, hk′, π) for a message m and a ring R = (rvk1, . . . , rvk`),

126 5 Logarithmic Size (Linkable) Ring Signatures

the verifier first computes the hashes ζ and ζ ′ of R using hk and hk′ respectively.
Now it checks if the NIWI proof π verifies for (m, ctx, ctx′, hk, hk′, ζ, ζ ′), and if so it
outputs 1. Unforgeability of this scheme is established in the same way as described
above: If the proof π verifies, then by the somewhere perfectly binding property of
SPB and the perfect soundness of the NIWI proof, one of the two ciphertexts ctx, ctx′
must encrypt a valid signature. The unforgeability reduction can now recover this
signature by setting up the eki such that it knows a secret key for each of them and
can therefore recover a forgery. The idea of establishing anonymity can be outlined
as follows. From a high level proof perspective, SPB hashing allows us to collapse a
ring R of ` verification keys into a ring of just two keys. In other words, we only care
about the keys to which (hk, ζ) and (hk′, ζ ′) bind. With this in mind, we can essentially
implement the same proof strategy as before, pretending that our ring just consists of
two keys. As before, we will transform a signature computed using a signing key ski0
into a signature computed using ski1 via a sequence of hybrids. In the first hybrid, we
use the index-hiding property of the SPB hash function to move the binding index of
hk′ from i0 to i1. Next, we proceed similarly as above, namely compute a signature σ′

using ski1 and encrypt σ′ under eki1 obtaining a ciphertext ctx′. Indistinguishability of
this hybrid from the previous hybrid can be argued via the pseudorandom ciphertexts
property of PKE. In the next step, we switch the witness used to compute the NIWI
proof π. That is, instead of proving that ctx encrypts a valid signature under eki0 , we
prove that ctx′ encrypts a valid signature under eki1 . Both are valid witnesses as we
are proving an or-statement. Therefore, witness indistinguishability of NIWI yields
that this hybrid is indistinguishable from the last one. We can now perform the same
hybrid modifications to hk and ctx and finally switch the witness again. Therefore, in
the last hybrid we get a signature ς computed using ski1 .

5.1.2 On Linkable Ring Signatures
Linkable Ring Signatures are an extension of ring signatures, which allow signatures
by the same signer to be linked. This requirement emerged in the context of electronic
voting, where a vote would be cast via a ring signature in the name of all eligible voters.
Then, a linking algorithm could prevent one voter from casting more than one vote, or
could indicate a change in preference over a series of votes. The presence of the linking
algorithm naturally diminishes anonymity and several ideas exist how the spirit of
unlinkable anonymity could be kept in linkable ring signatures.

Definitions of Linkable Anonymity. The exact definition of linkable anonymity
seems to vary between different authors. However, it seems that all these definitions
assume that there always remain unspent verification keys in an anonymity set. Take
for instance the definition of linkable anonymity in [LAZ19] (Definition 10 on page
13). Their definition of linkable anonymity is the same as the definition of unlinkable

5.1 Introduction 127

anonymity, with the difference that the adversary is not given access to a signing oracle.
We propose a simple definition for linkable anonymity similar in spirit to the blindness
definition of blind signatures. The experiment is identical to the anonymity experiment
for unlinkable ring signatures, with the following modification:

• The adversary is not allowed to corrupt the challenge keys rvki0 and rvki1 .

• In the challenge phase, the adversary submits two message-ring pairs (m0,R0)
and (m1,R1) such that both R0 and R1 contain both rvki0 and rvki1 .

• The experiment flips a bit b ←$ {0, 1}, computes ς0 ← Sign(rskib,m0,R0) and
ς1 ← Sign(rski1−b

,m1,R1) and returns (ς0, ς1) to the adversary.

• The adversary must now guess bit b.

Note that the signature ς0 is computed exactly as in the experiment for unlinkable
anonymity, but nowwe additionally provide the adversary with a signature ς1 computed
with the signing key rski1−b

. Consequently, this definition immediately implies e.g. the
definition of [LAZ19], but does not impose the restriction that no signatures under
rvki1−b

can be issued. Like the blindness definition for blind signatures, our definition
naturally extends to larger challenge spaces, i.e. considering challenges of size 2 is
complete.

A Linkable Ring Signature Scheme. We will now extend our techniques to the
setting of linkable ring signatures. The underlying idea is rather basic. Every verification
key rvk contains a commitment com to a random tag τ . When a signer signs a message
m, they include τ into the signature ς and prove that com unveils to τ . This proof can
naturally be included in the NIWI proof for the validity of the encrypted signature.
Now, whenever a secret key rsk is used to sign a messagem, its corresponding tag τ is
spent. Thus, we can link signatures by checking whether they have the same tag.

While this idea seems to check out at first glance, we run into trouble when trying
to prove linkable anonymity. In the linkable anonymity experiment the adversary gets
to see the tags of both challenge signatures. This means the reduction must be able
to provide witnesses that both the commitment in rvki0 and the commitment in rvki1
open to the respective tags τi0 and τi1 . The fact that we need to be able to open both
commitments, however, makes it apparently impossible to use the hiding property of
the commitments in order to flip the challenge bit in the security proof. Once again,
the situation could be resolved easily if we had NIZK proofs at our disposal, yet we can
only use witness indistinguishability.

Our way out of this conundrum is based on the following observation. To achieve
linkability, we do not actually need that every verification key has a unique tag. Instead,
a weaker condition is sufficient. Namely, for a ring of size ` it should not be possible to

128 5 Logarithmic Size (Linkable) Ring Signatures

generate ` + 1 valid signatures with pairwise distinct tags. We leverage this idea by
allowing the commitments in the verification keys to be malformed in a controlled way.
More specifically, instead of putting only one commitment to a tag τ in the verification
key rvk, we put 3 commitments to τ in rvk.

As before, each signature contains two hashing keys and two hash values. Moreover,
in the linkable anonymity proof we will set up things in a way such that for both
challenge signatures ς0 and ς1, one of (hk, ζ) and (hk′, ζ ′) will point to rvki0 and the
other one to rvki1 . Assume that a signature ς contains a tag τ and that the SPB hash
(hk, ζ) points to rvki, whereas (hk′, ζ ′) points to rvki′ . We will make the following
consistency requirement: If i = i′ we will require that all three commitments in rvki
unveil to the same tag τ . However, if i 6= i′, then we only require that out of the six
commitments in rvki and rvki′ that

• at least two unveil to τ ,

• at least two unveil to a tag τ ′ 6= τ ,

• at most one commitment does not unveil correctly.

This relaxed binding condition now allows us to exchange the tags of rvki and rvki′
even though we are handing out signatures which use these tags! We prove linkable
anonymity via a sequence of hybrids. As above, it is instructive to think that SPB
hashing collapses a ring R of ` keys into a ring of just two verification keys. Call these
verification keys rvk0 and rvk1. In the linkable anonymity experiment, there are two
signatures, ς0 and ς1 form0 andm1 respectively. In the first hybrid the challenge bit
of the experiment is 0, that is ς0 is computed using the signing key rsk0 whereas ς1
is computed using rsk1. In the final experiment, ς0 will be computed using rsk1 and
ς1 will be computed using rsk0. The critical part of this proof is to switch the tags.
Our proof strategy relies critically on the fact that the tags τ0 and τ1 are identically
distributed. Namely, we will not switch the tags in the signatures, but switch the tags in
the verification keys. More specifically, in the first hybrid rvki0 contains commitments
to τ0 and rvki1 contains commitments to tag τ1. In the last hybrid, rvk0 will commit
to τ1 and rvk1 will commit to τ0. But since the tags are identically distributed we can
now simply rename them. Therefore, this hybrid is identical to the linkable anonymity
experiment with challenge bit 1. In a first step we make both signatures ς0 and ς1
use both keys rvk0 and rvk1 by modifying the binding indices in hk′ appropriately for
both signatures. Now, our relaxed binding condition allows us to exchange the tags
between rvk0 and rvk1 one by one. That is, the relaxed binding condition allows us
to forget the unveil information of one of the six commitments in rvk0 and rvk1. Say
we forget the unveil information of the first commitment in rvk0. We can then turn
this commitment into a commitment of τ1. Next, we change the first commitment in
rvk1 into a commitment of τ0. We continue like this alternating between rvk0 and rvk1,

5.2 Chapter Preliminaries 129

until we have completely swapped τ0 and τ1. Note that in each step the relaxed binding
condition holds, thus we can argue via witness indistinguishability and the hiding
property of the underlying commitments. Finally, using random tags τ alone does not
achieve the strongest notion of non-frameability, where the adversary is allowed to
steal tags. Thus, we use an idea due to Dolev, Dwork and Naor [DDN91] commonly
used to achieve non-malleability2: We replace the tag τ by the verification key vk of a
signature scheme DS and additionally sign (m, ς)with respect to vk. This, however, has
the somewhat surprising consequence that we do not need the encrypted signatures
anymore, we can rely entirely on the unforgeability of DS!

5.1.3 Contributions in This Chapter
In this chapter, we provide the first construction of ring signatures which simultaneously

• does not rely on a trusted setup or the random oracle heuristic,

• can be proven secure under falsifiable standard assumptions, namely the existence
of non-interactive witness-indistinguishable proofs [DN00b; BOV03; GOS06;
BP15] and additional standard assumptions such as the hardness of the Decisional
Diffie Hellman problem [ElG84] or the Learning with Errors problem [Reg05],

• has signatures of size log(`) · poly(λ), where ` is the size of the ring of signers
and λ the security parameter.

Furthermore, we extend our techniques to the domain of linkable ring signatures,
i.e. we construct linkable ring signatures of size log(`) · poly(λ) without setup and in
the standard model. To avoid any trusted setup, or random oracles, our constructions
cannot rely on non-interactive zero-knowledge (NIZK) proofs and instead use non-
interactive witness-indistinguishable (NIWI) proofs which do not require trusted setup.
The techniques that enable us to use NIWI proofs instead of NIZK proofs may be of
independent interest.

As an additional contribution, we propose a strengthened security model for linkable
ring signatures and prove that our linkable ring signature scheme is secure in this
model.

5.2 Chapter Preliminaries
In this section, we introduce preliminaries relevant in the constructions and arguments
of this chapter. In particular, we recall the notions of non-interactive commitment
schemes and somewhere perfectly binding hashing.

2e.g. in the construction of IND-CCA secure encryption schemes, or recently in the context of cryp-
tocurrencies [Ruf+18].

130 5 Logarithmic Size (Linkable) Ring Signatures

5.2.1 Non-interactive Proof Systems
We make the following efficiency assumption about proof systems we consider in this
chapter.

Definition 5.1: Efficiency of Non-interactive Proof Systems

For π = NIP.Prove(1λ, x,w) it holds that |π| = |Cx| · poly(λ), where Cx is a
verification circuit for the statement x, i.e. (x,w) ∈ R iff Cx(w) = 1.

5.2.2 Non-interactive Commitment Schemes
Definition 5.2: Non-interactive Commitment

Commit(1λ,m)→ (com, γ)
Takes as input a security parameter 1λ and a messagem. Outputs a pair
com, γ of commitment and decommitment information.

Decommit(com,m, γ)→ r ∈ {true, false}
Takes as input a commitment com, a messagem and a piece of decommit-
ment information γ. Outputs either true or false.

A commitment scheme Com is correct, if it holds for all security parameters
λ ∈ N and all messages m ∈ M that given (com, γ) ← Commit(1λ,m), we
have that Verify(com,m, γ) = true.

We require the following properties of a non-interactive commitment scheme.
Definition 5.3: Perfect Binding

For a non-interactive commitment scheme Com consider the binding experiment
between a challenger and an adversary A.

BindingA
Com(1

λ)

(com,m0, γ0,m1, γ1)← A(1λ)
ifm0 = m1 then return false

if Com.Decommit(com,m0, γ0) = true

and Com.Decommit(com,m1, γ1) = true

then return true

else return false

5.2 Chapter Preliminaries 131

We define the advantage of A in the above experiment as

Adv Binding
A,Com (λ) := Pr

[
BindingA

Com(1
λ)⇒ true

]
.

We say that a commitment scheme Com is perfectly binding if for all λ ∈ N and
all unbounded adversaries A we have

Adv Binding
A (λ) = 0.

Definition 5.4: Computational Hiding

For a non-interactive commitment scheme Com consider the hiding experiment
between a challenger and a two-stage adversary A = (A0,A1).

HidingA
Com(1

λ)

(state,m0,m1)← A0(1
λ)

b← {0, 1}
(com, γ)← Com.Commit(1λ,mb)

b′ ← A1(state, com)

if b′ = b then return true

else return false

We define the advantage of A in the above experiment as

Adv Hiding
A,Com(λ) :=

∣∣∣∣Pr[HidingA
Com(1

λ)⇒ true
]
− 1

2

∣∣∣∣ .
We say that a commitment scheme Com is computationally hiding if for all λ ∈ N
and all PPT adversaries A we have

Adv Hiding
A,Com(λ) ≤ negl(λ) .

Non-interactive commitment schemes can be constructed from any injective one-way
function via the Goldreich-Levin hardcore bit [GL89].

132 5 Logarithmic Size (Linkable) Ring Signatures

5.2.3 Public Key Encryption
We introduce strengthenings of the security properties described in section 2.2.2.

Definition 5.5: Pseudorandom Public Keys

We require that public keys are computationally indistinguishable from uniform.

Definition 5.6: Pseudorandom Ciphertexts

We require that it holds for every messagem that

(ek, u) ≈c (ek, Enc(ek,m)),

where ek and u are chosen uniformly at random.

We denote the advantages of A in breaking pseudorandom public keys and pseu-
dorandom ciphertexts as Adv IND-PK

A (λ) and Adv IND-ENC
A (λ), respectively. Note that the

pseudorandom public keys and pseudorandom ciphertext properties together immedi-
ately imply the standard notion of IND-CPA security.

Such public key encryption schemes can be constructed e.g. from the DDH problem
[ElG84] or the LWE problem [Reg05].

5.2.4 Somewhere Perfectly Binding Hashing
Somewhere statistically binding (SSB) hashing [HW15] allows a negligible fraction
of hashing-keys to be non-binding. For our constructions we actually only require
something slightly weaker, a primitive we call somewhere perfectly binding hashing
with private local opening. This notion relaxes the definition of somewhere perfectly
binding hashing in that we allow the Gen algorithm to output a private key shk which
the Open algorithm takes as additional input. Below we give our relaxed definition
which we use throughout this chapter.

Definition 5.7: Hash Family with Private Local Opening

Gen(1λ, n, ind)→ (hk, shk)
Takes as input a security parameter 1λ, a database size n and an index ind.a
Outputs a hashing key hk and a private key shk.

Hash(hk, db)→ ζ
Takes as input a hashing key hk and a database db. Outputs a digest ζ .

Open(hk, shk, db, ind)→ τ
Takes as input a hashing key hk, a private key shk a database db and an

5.2 Chapter Preliminaries 133

index ind. Outputs a witness τ .

Verify(hk, ζ, ind, x, τ)→ r ∈ {true, false}
Takes as input a hashing key hk, a digest ζ , an index ind, a value x and a
witness τ . Outputs either true or false.

aTo simplify notation, we will usually not provide the block size of databases as an input to
SPB.Gen but rather assume that the block size for the specific application context is hardwired
in this function.

We say that SPB = (Gen,Hash,Open,Verify) is correct, if it holds for all λ ∈ N,
all n = poly(λ), all databases db of size n and all indices ind ∈ [n] that given
that

(hk, shk)← SPB.Gen(1λ, n, ind),

ζ ← SPB.Hash(hk, db) and
τ ← SPB.Open(hk, shk, db, ind),

it holds that

Pr[SPB.Verify(hk, ζ, ind, dbind, τ) = true] = 1.

Definition 5.8: Efficiency of Hashing

A hash family with local opening SPB is efficient, if the hashing keys hk generated
by Gen(1λ, n, ind) and the witnesses τ generated by Open(hk, shk, db, ind) are
of size log(n) · poly(λ). Moreover, Verify(hk, ζ, ind, x, τ) can be computed by a
circuit of size log(n) · poly(λ).

Definition 5.9: Somewhere Perfectly Binding

A hash family with local opening SPB is somewhere perfectly binding, if it holds
for all λ ∈ N, all n = poly(λ), all databases db of size n, all indices ind ∈ [n], all
database values x and all witnesses τ that if

ζ ← SPB.Hash(hk, db) and
Verify(hk, ζ, ind, x, τ) = true,

then it holds that x = dbind.

Notice that this definition provides a stronger somewhere perfectly binding guarantee
in that we do not have to require that hk has been generated correctly.

134 5 Logarithmic Size (Linkable) Ring Signatures

Definition 5.10: Computational Index Hiding

For any hash family with private local opening SPB consider the index-hiding
experiment Index-Hiding between a challenger and a two-stage adversary A =
(A0,A1):

Index-HidingA
SPB(1

λ)

(state, n, ind0, ind1)← A0(1
λ)

b← {0, 1}
(hk, shk)← SPB.Gen(1λ, n, indb)

b′ ← A1(state, hk)

if b′ = b

then return true

else return false

We define the advantage of A in this experiment as

Adv Index-Hiding
A,SPB (λ) :=

∣∣∣∣Pr[Index-HidingA
SPB(1

λ)⇒ true
]
− 1

2

∣∣∣∣ .
A hash family with local opening SPB is computationally index hiding, if for any
PPT adversary A, we have

Adv Index-Hiding
A,SPB (λ) ≤ negl(λ) .

We can immediately construct an SPB hash family SPB with private local opening
from any SPB hash family SPB′ with local opening via the following construction.

Construction 5.1: Private-Opening SPB

SPB.Gen(1λ, n, ind)

r ← {0, 1}λ

hk← SPB′.Gen(1λ, n, ind; 1λ; r)

shk := r

return (hk, shk)

SPB.Hash(hk, db)

return SPB′.Hash(hk, db)

5.3 Logarithmic Size Ring-Signatures 135

SPB.Open(hk, shk, db, ind)

τ ′ ← SPB′.Open(hk, db, ind)

τ ← (τ ′, shk)

return τ

SPB.Verify(hk, ζ, ind, x, τ)

parse τ = (τ ′, r)

ĥk← SPB′.Gen(1λ, n, ind; r)

if ĥk 6= hk then
return false

else
return SPB′.Verify(hk, ζ, ind, x, τ ′)

Correctness and index-hiding of SPB follow directly from the corresponding prop-
erties of SPB′, the somewhere perfectly binding property follows from the fact that
SPB.Verify ensures explicitly that hk is perfectly binding at index ind. Consequently,
also this property follows from the corresponding property of SPB′. Moreover, we
can also realize a SPB hash family with private local opening from any 2-message
private information retrieval scheme with fully efficient verifier and perfect correctness.
This was also observed by [Oka+15]. The construction is straightforward: A hashing
key hk for index i consists of the PIR receiver message, to hash a database db run
the PIR sender algorithm on hk and db. The index-hiding property follows by PIR
receiver privacy, whereas the SPB property follows form perfect correctness. Finally,
the receivers private coins serve as succinct private membership witness.

5.3 Logarithmic Size Ring-Signatures
In this section we will provide a construction of a ring signature scheme. Let

• PKE = (KeyGen, Enc,Dec) be a public key encryption scheme with pseudoran-
dom keys and ciphertexts,

• DS = (KeyGen, Sign,Verify) be a signature scheme,

• SPB = (Gen,Hash,Open,Verify) be a somewhere perfectly binding hash func-
tion with private local opening and,

• NIP = (Prove,Verify) be a NIWI-proof system for the language L defined
as follows. We define a witness-relation R: If x = (m, ctx, hk, ζ) and w =
(rvk, ind, τ, σ, rctx), where rvk = (rvk, ek), let

R(x,w)⇔ SPB.Verify(hk, ζ, ind, rvk, τ) = true

and PKE.Enc(ek, σ; rctx) = ctx

and DS.Verify(vk,m, σ) = true

136 5 Logarithmic Size (Linkable) Ring Signatures

and let L′ be the language accepted byR. Now, define the language L by

L = {(m, ctx1, ctx2, hk1, hk2, ζ1, ζ2) | (m, ctx1, hk1, ζ1) ∈ L′ or
(m, ctx2, hk2, ζ2) ∈ L′}.

Our ring signature scheme RS = (KeyGen, Sign,Verify) is given as follows.
Construction 5.2: Logarithmic Ring Signatures

RS.KeyGen(1λ)

(vk, sk)← DS.KeyGen(1λ)

ek← [PKE.KeyGen(1λ)]

rvk := (vk, ek)

rsk := (sk, rvk)

return (rvk, rsk)

RS.Verify(R,m, ς)

parse ς = (ctx1, ctx2, hk1, hk2, π)

ζ ′1 ← SPB.Hash(hk1,R)

ζ ′2 ← SPB.Hash(hk2,R)

x := (m, ctx1, ctx2, hk1, hk2, ζ ′1, ζ
′
2)

return NIP.Verify(x, π)

RS.Sign(rsk,m,R)

parse rsk = (sk, rvk); rvk = (vk, ek)

σ ← DS.Sign(sk,m)

ind := i ∈ [|R|] such that rvki = rvk

(hk1, shk1)← SPB.Gen(1λ, |R|, ind)
(hk2, shk2)← SPB.Gen(1λ, |R|, ind)
ζ1 ← SPB.Hash(hk1,R)

ζ2 ← SPB.Hash(hk2,R)

τ ← SPB.Open(hk1, shk1,R, ind)

ctx1 ← PKE.Enc(ek, σ; rctx)

ctx2 ← {0, 1}λ

x := (m, ctx1, ctx2, hk1, hk2, ζ1, ζ2)

w← (rvk, ind, τ, σ, rctx)

π ← NIP.Prove(x,w)

return ς ← (ctx1, ctx2, hk1, hk2, π)

Correctness. We will first show that our scheme is correct. Assume that rvk =
(vk, ek) and rsk = (sk, rvk)were generated by RS.KeyGen and ς = (ctx1, ctx2, hk1, hk2,
π) is the output of RS.Sign(rsk,m,R), where R = (rvk1, . . . , rvk`). We will show that
it holds that RS.Verify(R,m, ς) = true. First note that since SPB.Hash is deterministic,
it holds that ζ ′1 = ζ1 and ζ ′2 = ζ2. Also, it holds that rvk = rvkind (where ind is the
index of rvk in R). Now, notice further that by the correctness of SPB it holds that
SPB.Verify(hk1, ζ1, ind, rvkind, τ) = true. Moreover, by the correctness of DS it holds
that DS.Verify(vk,m, σ) = true. Consequently, (m, ctx1, ctx2, , hk1, hk2, ζ1, ζ2) ∈ L
and w = (rvk, ind, τ, σ, rctx) is a witness for membership. Thus, by the correctness of
NIP it holds that

NIP.Verify((m, ctx1, ctx2, hk1, hk2, ζ1, ζ2), π) = true

5.3 Logarithmic Size Ring-Signatures 137

and consequently RS.Verify(R,m, ς) outputs true.

Signature Size. For a signature ς = (ctx1, ctx2, hk1, hk2, π), the size of the cipher-
texts ctx1, ctx2 is poly(λ) and independent of the ring-size `. By the efficiency property
of SPB the sizes of the hashing keys hk1, hk2 is bounded by log(`) · poly(λ). Also,
by the efficiency property of SPB this size of the witness τ is log(`) · poly(λ) and
SPB.Verify can be computed by a circuit of size log(`) · poly(λ).

Consequently, the verification circuit Cx for the language L and statement x =
(m, ctx1, ctx2, hk1, hk2, ζ1, ζ2) has size log(`) · poly(λ). By the proof-size property of
the NIWI proof it holds that |π| = |Cx| · poly(λ) = log(`) · poly(λ). All together, the
size of signatures ς is log(`) · poly(λ).

5.3.1 Proof of Unforgeability

We will turn to showing that RS is unforgeable.

Theorem 5.1: Unforgeability of Construction 5.2

Construction 5.2 is unforgeable, if NIP is perfectly sound, SPB is somewhere
perfectly binding, PKE is perfectly correct, PKE has pseudorandom public keys
and DS is unforgeable.

The main idea of the proof is that since the NIWI proof has perfect soundness, it must
either hold that (m, ctx1, hk1, ζ1) ∈ L′ or (m, ctx2, hk2, ζ2) ∈ L′. If the first statement
is true, then hk1 corresponds to an index ind1 and A must have produced a forgery for
a key rvkind1 in R. Likewise, if the second statement is true, thenAmust have produced
a forgery for a key rvkind2 in R.

Proof. Let A be a PPT adversary against the unforgeability experiment of RS and let
further q = poly(λ) an upper bound on the number of key queries of A. Consider the
following two hybrids.

H0: This is the real experiment.

H1: The same asH0, except that for all i ∈ [q] the challenger generates the public keys
eki in rvki by (eki, d̂ki)← PKE.KeyGen(1λ) instead of choosing eki uniformly
at random. Moreover, the challenger stores all the secret keys (d̂ki)i∈[q].

We will first argue thatH0 andH1 are computationally indistinguishable given that
the public keys of PKE are pseudorandom.

138 5 Logarithmic Size (Linkable) Ring Signatures

Claim 5.1:H0 ≈c H1

There exists a reductionR1 such that

Adv IND-PK
RA

1
(λ) ≥ | Pr[H0(A) = true]− Pr[H1(A) = true]|.

The reductionR1 is given as follows.

ReductionRA
1 (ek

∗)

• Choose an index i∗ ←$ [q] uniformly at random.
• SimulateH0 with the followingmodifications. For all indices i < i∗ generate
(rvki, rski) as inH0. For i > i∗ generate (rvki, rski) as inH1.

• Generate (rvki∗, rski∗) as follows:
– Compute (vki∗, ski∗)← DS.KeyGen(1λ; rDS)

– Set rvki∗ ← (vki∗, ek
∗) and rski∗ ← (ski∗, rvki∗)

• Output whatever the simulated experiment outputs.

LetPK0 be the uniform distribution andPK1 be a distribution sampled by computing
(ek∗, d̂k

∗
)← PKE.KeyGen(1λ) and outputting ek∗. First observe that when i∗ = q − 1

and ek∗ was chosen from PK0, thenRA
1 perfectly simulatesH0(A). On the other hand,

if i∗ = 0 and ek∗ was chosen from PK1, thenRA
1 perfectly simulatesH1(A). Moreover,

observe that for j = 1, . . . , q − 1 it holds thatRA
1 (PK0)|i∗=j−1 andRA

1 (PK1)|i∗=j are
identically distributed. Consequently, we get that

Adv IND-PK
RA

1
(λ) = | Pr[RA

1 (PK0)]− Pr[RA
1 (PK1)]|

= |
q−1∑
j=0

Pr[i∗ = j] · (Pr[RA
1 (PK0)|i∗ = j]− Pr[RA

1 (PK1)|i∗ = j])|

=
1

q
· |(Pr[RA

1 (PK0)|i∗ = q − 1]− Pr[RA
1 (PK1)|i∗ = 0]

+

q−1∑
j=1

(Pr[RA
1 (PK1)|i∗ = j]− Pr[RA

1 (PK0)|i∗ = j − 1]))|

=
1

q
· |(Pr[H0(A) = true]− Pr[H1(A) = true])|.

Claim 5.2: Reduction to EUF-CMA of DS

There exists a reductionR2 such thatRA
2 breaks the EUF-CMA security of DS

with probability AdvH1
A (λ)/q.

5.3 Logarithmic Size Ring-Signatures 139

The reductionR2 is given as follows.

ReductionRA
2 (rvk

∗)

• Guess an index i∗ ←$ [q]. For all i 6= i∗ generate rvki and rski as in H1.
Generate rvki∗ = rvk∗ as follows. Generate (ek∗, d̂k

∗
)← PKE.KeyGen(1λ)

and set rvk∗ ← (vk∗, ek∗), where vk∗ is the verification key provided by the
EUF-CMA experiment. Moreover, store d̂ki∗ = d̂k

∗
.

• If A asks to corrupt rvk∗, abort.

• If A sends signature query (m, rvk∗,R), sendm to the signing oracle of the
EUF-CMA game to obtain a signature σ. Compute the signature ς by

– Let ind∗ be the index of rvk∗ in R.

– Computing (hk1, shk1)← SPB.Gen(1λ, |R|, ind∗)
– Computing (hk2, shk2)← SPB.Gen(1λ, |R|, ind∗)
– Computing ζ1 ← SPB.Hash(hk1, R)

– Computing ζ2 ← SPB.Hash(hk2, R)

– Computing τ ← SPB.Open(hk1, shk1, R, ind
∗)

– Computing ctx1 ← PKE.Enc(ek∗, σ; rctx)

– Computing ctx2 ←$ {0, 1}λ

– Computing

π ← NIP.Prove((m, ctx1, ctx2, , hk1, hk2, ζ1, ζ2), (rvk
∗, ind∗, τ, σ, rctx))

– Output ς ← (ctx1, ctx2, hk1, hk2, π)

• Once A outputs a forgery ς∗ for (m∗,R∗), check if it is valid, that is in the
query phaseA has not requested a signature ofm∗ for any key in R∗, none of
the keys in R∗ has been corrupted and it holds that RS.Verify(R,m∗, ς∗) =
true. If the forgery is valid proceed.

• Parse ς∗ as ς∗ = (ctx∗1, ctx
∗
2, hk

∗
1, hk

∗
2, π

∗).

• Let |R∗| = ` and let i1, . . . , i` be the indices of the keys in R∗, i.e. R =
(rvki1, . . . , rvki`).

• For j = 1, . . . , `:

– Compute σ̌1 ← PKE.Dec(d̂kij , ctx
∗
1) and σ̌2 ← PKE.Dec(d̂kij , ctx

∗
2).

– If DS.Verify(vk∗,m∗, σ̌1) = true stop and output σ̌1.

– If DS.Verify(vk∗,m∗, σ̌2) = true stop and output σ̌2.

140 5 Logarithmic Size (Linkable) Ring Signatures

First note that the key-pair (eki∗, d̂ki∗) is correct for all messages. Notice further that,
unless A asks to corrupt rvk∗,H1 and the simulation ofR2 are identically distributed
from the view of A. Observe that with probability at least 1/q the adversary A does
not trigger an abort. Thus, conditioned that no abort happened, from the view of A
the index i∗ is distributed uniformly random. Assume now that A outputs a valid
forgery ς∗ for (m∗,R∗) with R∗ = (rvki1, . . . , rvki`). By the perfect soundness of NIP, it
holds that either (m∗, ctx∗1, hk

∗
1, ζ

∗
1) ∈ L′ or (m, ctx∗2, hk

∗
2, ζ

∗
2) ∈ L′. Assumew.l.o.g. that

(m, ctx∗1, hk
∗
1, ζ

∗
1) ∈ L′. That is, there exist (rvk†, ind†, τ †, σ†, rctx)with rvk† = (vk†, ek†)

such that

SPB.Verify(hk∗1, ζ
∗
1 , ind

†, ˇrvk, τ̌) = true

and PKE.Enc(ek†, σ†; rctx) = ctx∗1
and DS.Verify(vk†,m∗, σ†) = true

As SPB.Verify(hk∗1, ζ∗1 , ind
†, ˇrvk, τ̌) = true and ζ∗1 = SPB.Hash(hk∗1,R) it holds by the

somewhere perfectly binding property of SPB that rvk† = rvkiind† , i.e. vk
† = vk†iind† and

ek† = ekiind† . Moreover, by the above it also holds that ctx∗1 = PKE.Enc(ekiind† , σ
†; rctx)

and DS.Verify(vkiind† ,m
∗, σ†) = true.

Now observe that, as i∗ is uniformly random from the view ofA, it holds that iind† = i∗

with probability at least 1/q. Assume therefore that iind† = i∗. As (eki∗, d̂ki∗) are correct
for all messages, it holds that σ̌1 = PKE.Dec(d̂ki∗, ctx∗1) = σ†. Therefore, it holds that
DS.Verify(vkiind† ,m

∗, σ̌1) = true for the signature σ̌1 decrypted byRA
2 , i.e. σ̌1 is a valid

signature ofm∗ under vk∗. We conclude that Adv EUF-CMA
RA

2
(λ) ≥ 1

q
|AdvH1

A (λ)− ν|.
All together, as AdvH1

A (λ) ≥ |AdvH0
A (λ) − q · Adv IND-PK

RA
1

(λ)| and AdvH0
A (λ) =

Adv RUF-IC
A (λ), we can conclude that

Adv RUF-IC
A (λ) ≤ q · Adv IND-PK

RA
1

(λ) + q · Adv EUF-CMA
RA

2
(λ) + ν.

This concludes the proof.

On Tightness. Using a public key encryption scheme with tight multi-user security,
we can improve the bound on the advantage above to

Adv RUF-IC
A (λ) ≤ Adv IND-PK

RA
1

(λ) + q · Adv EUF-CMA
RA

2
(λ) + ν.

However, getting rid of the q factor for q · Adv EUF-CMA
RA

2
(λ) seems beyond the scope of

current techniques.

5.3 Logarithmic Size Ring-Signatures 141

5.3.2 Proof of Anonymity
We will now turn to establishing anonymity of RS.

Theorem 5.2: Anonymity of Construction 5.2

Construction 5.2 is anonymous, if SPB is index-hiding, PKE has pseudorandom
ciphertexts and NIP is computationally witness-indistinguishable.

Our strategy is to first move the index of hk2 from i0 to i1 and argue indistinguisha-
bility via the index-hiding property of SPB. Next we switch ctx2 to an encryption
of a signature σ′ of m for the verification key rvki1 . This modification will not be
detected due to the pseudorandom ciphertexts property of the PKE. Now, we can
switch the NIWI witness to a witness for (m, ctx2, hk2, ζ2) ∈ L′. Next, we perform the
first two changes above for hk1 and ctx1, switch the witness back to the witness for
(m, ctx1, hk1, ζ1) ∈ L′, and finally replace ctx2 with a random string. The signature in
the last experiment is now a real signature ofm under rvki1 .

Proof. Let A be a PPT-adversary against the anonymity of RS. Assume that A makes
at most q = poly(λ) key queries. Let in the following ind0 be the index of rvki0 in R
and ind1 be the index of rvki1 ind R, where (i0, i1,m∗,R) is the challenge query of A.
Consider the following hybrids:

H0: This is the real experiment with challenge-bit b∗ = 0.

H1: Same as H0, except that in ς∗ we compute hk∗2 by (hk∗2, shk
∗
2)← SPB.Gen(1λ,

|R|, ind1) instead of computing (hk∗2, shk
∗
2)← SPB.Gen(1λ, |R|, ind0). Moreover,

also compute τ ′ ← τ ← SPB.Open(hk2, shk2,R, ind1).

H2: Same asH1, except that we compute ctx∗2 by

• σ′ ← DS.Sign(ski1,m
∗)

• ctx∗2 ← PKE.Enc(eki1, σ
′; rctx2)

instead of ctx∗2 ←$ {0, 1}λ.

H3: The same as H2, except that we use the witness w′ ← (rvki1, ind1, τ
′, σ′, rctx2)

instead of w ← (rvki0, ind0, τ, σ, rctx1) to compute π, i.e. we compute π ←
NIP.Prove(x,w′).

H4: The same asH3, except that we compute ctx∗1 by ctx∗1 ←$ {0, 1}λ.

H5: The same asH4, except that we compute hk∗1 by (hk∗1, shk
∗
1)← SPB.Gen(1λ, |R|,

ind1) instead of (hk∗1, shk
∗
1)← SPB.Gen(1λ, |R|, ind0). Moreover, also compute

τ by τ ← SPB.Open(hk1, shk1,R, ind1).

142 5 Logarithmic Size (Linkable) Ring Signatures

H6: The same asH5, except that we compute ctx∗1 by

• σ ← DS.Sign(ski1,m
∗)

• ctx∗1 ← PKE.Enc(eki1, σ; rctx1)

instead of ctx∗1 ←$ {0, 1}λ.

H7: The same as H6, except that we use the witness w′′ ← (rvki1, ind1, τ, σ, rctx1)
instead of w′ ← (rvki1, ind1, τ

′, σ′, rctx2) to compute π, i.e. we compute π ←
NIP.Prove(x,w′′).

H8: The same asH7 except that we compute ctx∗2 by ctx∗2 ←$ {0, 1}λ. This is identical
to the real experiment with b∗ = 1.

We will show indistinguishability of the hybrids via a sequence of claims.

Claim 5.3:H0 ≈c H1

H0 andH1 are computationally indistinguishable, given that SPB is index-hiding.
More specifically, there exists a reductionR1 such that

Adv Index-Hiding
RA

1
(λ) = | Pr[H1(A) = true]− Pr[H0(A) = true]|.

We will provide an informal description of R1. R1 simulates H0 faithfully, until
A announces the challenge query (i0, i1,m

∗,R). R1 now provides (i0, i1, |R|) to the
index-hiding experiment and receives a hashing key hk∗. R1 continues the simulation
ofH0 faithfully, except that in the challenge ciphertext it sets hk2 ← hk∗. In the end,
R1 outputs whatever the simulatedH0 outputs.

Clearly, if the challenge bit of the index-hiding experiment is 0 thenRA
1 simulates

H0 perfectly. On the other hand, if the challenge bit of the index-hiding experiment is
1 thenRA

1 simulatesH1 perfectly. The claim follows.

Claim 5.4:H1 ≈c H2

We claim thatH1 andH2 are computationally indistinguishable, given that the
ciphertexts of PKE are pseudorandom. More specifically, there exists a reduction
R2 against the pseudorandomness of ciphertexts of PKE such that

q · Adv IND-ENC
RA

2
(λ) ≥ | Pr[H2(A) = true]− Pr[H1(A) = true]|.

The reduction R2 receives as input a public key ek∗. R2 simulates H1 faithfully,
except for the following. Before the simulation starts, R2 guesses an index i∗1 and
sets rvki∗1 ← (vki∗1 , ek

∗), where vki∗1 is generated as in H1 and ek∗ is the input of
R2. R2 continues the simulation of H1 until A announces (i0, i1,m∗,R). If it holds

5.3 Logarithmic Size Ring-Signatures 143

i1 6= i∗1,R2 outputs ⊥. Otherwise,R2 computes σ′ ← DS.Sign(ski1,m
∗) and sends σ′

to the experiment and receives a ciphertext ctx∗. In the computation of the challenge
signature it sets ctx∗2 ← ctx∗. R2 now continues the simulation and outputs whatever
the simulatedH1 outputs.

Clearly, if the challenge bit of the pseudorandom ciphertexts experiment is 0, then
from the view of A the simulation ofR2 is identically distributed toH0. On the other
hand, if the challenge bit of the pseudorandom ciphertexts experiment is 1, then the
view of A is identically distributed as in H2. Finally, the guess of i∗1 of R2 is correct
with probability at least 1

q
, thus with probability 1

q
no abort happens and therefore

Adv IND-ENC
RA

2
(λ) ≥ 1

q
· | Pr[H2(A) = true]− Pr[H1(A) = true]|.

Claim 5.5:H2 ≈c H3

We claim thatH2 andH3 are computationally indistinguishable, given that NIP
is computationally witness-indistinguishable. More specifically, there exists a
reductionR3 against the witness indistinguishability of NIP such that

AdvWI
R3
(λ) = | Pr[H3(A) = true]− Pr[H2(A) = true]|.

The reduction R3 simulates H2 faithfully, until the challenge signature is com-
puted. Instead of computing the proof π itself, R3 sends the statement x =
(m, ctx1, ctx2, hk1, hk2, ζ1, ζ2) and the witnesses w0 ← (rvki0, ind0, τ, σ, rctx1) and
w1 ← (rvki1, ind1, τ

′, σ′, rctx2) to the witness indistinguishability experiment. The
experiment returns a proof π∗, and R3 uses the proof π∗ in the challenge signature.
R3 continues the simulation ofH2 faithfully and outputs whatever the simulatedH2

outputs.
Clearly, if the challenge-bit of the witness indistinguishability experiment is 0, then
RA

3 simulates H2(A) perfectly. On the other hand, if the challenge bit is 1 then RA
3

simulatesH3(A) perfectly. The claim follows.

Claim 5.6:H3 ≈c H4

We claim thatH3 andH4 are computationally indistinguishable, given that the
ciphertexts of PKE are pseudorandom. More specifically, there exists a reduction
R4 against the pseudorandomness of ciphertexts of PKE such that

q · Adv IND-PK
RA

4
(λ) ≥ | Pr[H4(A) = true]− Pr[H3(A) = true]|.

The proof of claim follows analogously to the proof of claim 5.4, except that we
perform the change on ctx1.

144 5 Logarithmic Size (Linkable) Ring Signatures

Claim 5.7:H4 ≈c H5

H4 andH5 are computationally indistinguishable, given that SPB is index-hiding.
More specifically, there exists a reductionR5 such that

Adv Index-Hiding
RA

5
(λ) = | Pr[H4(A) = true]− Pr[H5(A) = true]|.

The proof follows analogously to the proof of claim 5.3.

Claim 5.8:H5 ≈c H6

We claim thatH6 andH5 are computationally indistinguishable, given that the
ciphertexts of PKE are pseudorandom. More specifically, there exists a reduction
R6 against the pseudorandomness of ciphertexts of PKE such that

q · Adv IND-PK
RA

6
(λ) ≥ | Pr[H6(A) = true]− Pr[H5(A) = true]|.

The proof follows analogously to the proof of claim 5.4.

Claim 5.9:H6 ≈c H7

We claim thatH7 andH6 are computationally indistinguishable, given that NIP
is computationally witness-indistinguishable. More specifically, there exists a
reductionR7 against the witness indistinguishability of NIP such that

AdvWI
R7
(λ) = | Pr[H7(A) = true]− Pr[H6(A) = true]|.

The proof follows analogously to the proof of claim 5.5, except that we perform the
change on ctx1.

Claim 5.10:H7 ≈c H8

We claim thatH8 andH7 are computationally indistinguishable, given that the
ciphertexts of PKE are pseudorandom. More specifically, there exists a reduction
R8 against the pseudorandomness of ciphertexts of PKE such that

q · Adv IND-ENC
RA

8
(λ) ≥ | Pr[H8(A) = true]− Pr[H7(A) = true]|.

The proof follows analogously to the proof of claim 5.4.

5.4 Linkable Ring Signatures, Revisited 145

5.4 Linkable Ring Signatures, Revisited
In this section we introduce our new model for linkable ring signatures and their
security.

Linkable ring signatures provide a public linking algorithm that allows anyone
to check whether two signatures were created by the same signer. Beyond the e-
voting application sketched in the chapter introduction, this is useful in the setting
of cryptocurrencies. Here, on a high level, funds are assigned to public signature
verification keys, or addresses in a public ledger. Transactions of funds work by giving
a signature under the signing key that belongs to the source of the funds and including
the target address in the signed message. The transaction can then be checked for
validity, i.e. it can be checked on the public ledger that sufficient funds are available at
the source.

A privacy focused transaction scheme could allow the sender of a transaction to sign
in the name of a ring of potential signers, in order to hide the source of the transaction.3
To prevent double spending of funds, linkable ring signatures can be employed to link
any transactions under the same key.

A similar approach is taken by the Monero cryptocurrency.

Definition 5.11: Linkable Ring Signatures

A ring signature scheme is called linkable if, in addition to the interface presented
in definition 2.17 there is an algorithm Link as follows:

Link(m1,m2, ς1, ς2)→ r ∈ {true, false}
Takes as input two messages m1,m2 and two signatures ς1, ς2. Outputs
either true or false.

The correctness property remains unchanged in the presence of a Link algorithm.

Linkability

We begin our definition of the security properties of linkable ring signatures with the
core property called linkability. Informally, we may think of it as the requirement that
any two or more uses of a signing key can be publicly linked. We model this property
by letting an adversary output q verification keys and signatures, where none of the
signatures link with each other. In order to break linkability the adversary has to output
one additional signature which does not link with any of the former signatures. Note
that producing q signatures which do not link is easy. The adversary only has to use

3A different mechanism is then required to ensure that transaction senders are actually in possession
of the claimed amount they want to move.

146 5 Logarithmic Size (Linkable) Ring Signatures

the q different signing keys. But producing the one additional signature without an
additional signing key, is required to be infeasible.

Definition 5.12: Linkability

For a linkable ring signature scheme LRS consider the linkability experi-
ment Linkability between a challenger and a multi-stage adversary A =
(A1, . . . ,Aq+1) for any q = poly(λ).

Linkability LRS
A (1λ, q)

VK := ∅; state0 := 1λ

for i = 1 . . . q do
statei, (rvki, ςi,mi,Ri)← Ai(statei−1)

VK := VK ∪ {rvki}
(ς∗,m∗,R∗)← Aq+1(stateq)

if R∗ ⊆ VK
and LRS.Verify(m∗, ς∗,R∗) = true

and ∀i ∈ [q]. (Ri ⊆ VK
and LRS.Verify(mi, ςi,Ri) = true

and LRS.Link(mi,m
∗, ςi, ς

∗) = false)

and ∀i, j ∈ [q], s.t. i 6= j. LRS.Link(mi,mj , ςi, ςj) = false

then return true

else return false

We define the advantage of A in the above experiment as

Adv Linkability
A,LRS,q (λ) = Pr

[
Linkability LRS

A (1λ, q)⇒ true
]
.

A linkable signature scheme LRS satisfies linkability if for all PPT adversaries A,
and all q = poly(λ) we have

Adv Linkability
A,LRS,q (λ) ≤ negl(λ) .

Anonymity

We now turn to anonymity. Since, in linkable ring signatures, there is a public link
function, it is easy to tell whether multiple signatures were produced by the same
signer or not. However, it should still be infeasible to tell which exact user from a ring

5.4 Linkable Ring Signatures, Revisited 147

produced the signature. We argue that, in contrast to the state-of-the-art definitions,
in our definition anonymity is not lost at the moment an adversary obtains the first
signature of a user. In reality, even when an adversary obtains multiple signature
from the same member, identity of the signer should still be unknown, i.e. it should
be infeasible to associate the signatures with a verification key. We model this by
letting the adversary choose two users, which need to be always in the same rings, and
imposing a permutation on the secret keys. If an adversary was able to associate a
signature of one of these users with its verification key, then the adversary would also
be able to guess the permutation.

Definition 5.13: Linkable Anonymity

For linkable ring signature scheme LRS consider the linkable anonymity ex-
periment Linkable-Anonymity between a challenger and a two-stage adversary
A = (A0,A1) for any q = poly(λ).

Linkable-Anonymity LRS
A (1λ, q)

VK := ∅
for i = 1 . . . q do

(rski, rvki)← LRS.KeyGen(1λ; ri)

VK := VK ∪ {rvki}
b← {0, 1}
(state,U , i0, i1)← A0(VK)
if U 6⊂ VK

or rvki0, rvki1 6∈ VK \ U
then abort
RU := {ri | rvki ∈ U}
b′ ← A1(RU)

if b = b′ then return true

else return false

A1 may queryOSign at any point
during its runtime.

OSign(m, rvks,R)

if rvks 6∈ VK \ U
or rvks 6∈ R

then return ⊥
let S = {rvki0, rvki1}
if not (S ∩ R = ∅

or S ∩ R = S)

then abort Linkable-Anonymity

if rvks 6∈ S then
return LRS.Sign(rsks,m,R)

if rvks = rvki0 then
return LRS.Sign(rskib,m,R)

if rvks = rvki1 then
return LRS.Sign(rski(1−b)

,m,R)

We define the advantage of A in the above experiment as

Adv Linkable-Anonymity
A,LRS,q (λ) =

∣∣∣∣Pr[Linkable-Anonymity LRS
A (1λ, q)⇒ true

]
− 1

2

∣∣∣∣ .

148 5 Logarithmic Size (Linkable) Ring Signatures

A linkable ring signature scheme LRS is linkably anonymous if for all PPT adver-
saries A, and all q = poly(λ) we have

Adv Linkable-Anonymity
A,LRS,q (λ) ≤ negl(λ) .

Non-Frameability

Finally, we require that a linkable ring signature is non-frameable. This property
guarantees that it is infeasible for an adversary to forge a signature which would
link with an honest users’ signature, even when the adversary saw a number of their
signatures in the past.

Definition 5.14: Non-frameability

For a linkable ring signature scheme LRS consider the non-frameability ex-
periment Non-Frameability between a challenger and two-stage adversary
A = (A0,A1) for any q = poly(λ).

Non-Frameability LRS
A (1λ, q)

VK := ∅; C := ∅; Q := ∅
for i = 1 . . . q do

(rski, rvki)← LRS.KeyGen(1λ; ri)

VK := VK ∪ {rvki}
(R∗,m∗, ς∗)← A0(VK)
(R†,m†, ς†)← A1(r1, . . . rq)

if LRS.Verify(m∗, ς∗,R∗) = true

and LRS.Verify(m†, ς†,R†) = true

and R∗ ⊆ VK and R∗ ∩ C = ∅
and ς∗ 6∈ Q

and LRS.Link(m∗,m†, ς∗, ς†)

then return true

else return false

A0 may query OSign and
OCorrupt at any point during its
runtime.

OSign(rvki,m,R)

if rvki 6∈ R

then return ⊥
ς ← LRS.Sign(rski,m,R)

Q := Q ∪ {ς}
return ς

OCorrupt(rvki)

C := C ∪ {rvki}
return ri

5.5 Construction of Linkable Ring Signatures 149

We define the advantage of A in the above experiment as

Adv Non-Frameability
A,LRS,q (λ) = Pr

[
Non-Frameability LRS

A (1λ, q)⇒ true
]
.

A linkable signature scheme LRS is non-frameable if for all PPT adversaries A,
and all q = poly(λ) we have

Adv Non-Frameability
A,LRS,q (λ) ≤ negl(λ) .

Remark

Beside the properties defined above, we also require the standard unforgeability
property from ring signatures to hold for linkable ring signatures.

5.5 Construction of Linkable Ring Signatures

We will now provide a construction of linkable ring signatures from the following
primitives. Let

• Com = (Commit,Decommit) be a non-interactive commitment scheme.

• DS = (KeyGen, Sign,Verify) be a signature scheme.

• SPB = (Gen,Hash,Open,Verify) be a somewhere perfectly binding hash func-
tion with private local opening.

• NIP = (Prove,Verify) be a NIWI-proof system for the language L and with
witness-relationR which we will both define shortly.

Before we describe the NIWI-proof system NIP in detail, we will define an algo-
rithm CheckValidity. The algorithm takes as input two commitment triples rvk =
(comj)j∈[3] and rvk′ = (com′

j)j∈[3], two inputs vk and vk′ as well as two decommitment
triples Γ = (γj)j∈[3], Γ′ = (γ′j)j∈[3]. The algorithm checks that of the commitments
com1, com2, com3, com′

1, com
′
2, com

′
3 at least two open to vk and at least two open to

vk′ and at least 5 open to either vk or vk′. The last condition can be rephrased as at most
one of the 6 commitments does not verify and all the others open to either vk or vk′. As
the name suggests, the algorithm verifies if the triples rvk and rvk′ jointly commit to
the values vk and vk′, but we allow some leeway which of the 6 commitments actually
commit to which value.

150 5 Logarithmic Size (Linkable) Ring Signatures

Definition 5.15: Validity Check

For the purposes of this algorithm, we bend our rules of notation by identifying
the outputs of Com.Decommit with natural numbers as follows:

true 7→ 1, false 7→ 0.

CheckValidity(rvk, rvk′, vk, vk′,Γ,Γ′)

parse rvk = (comj)j∈[3] and rvk′ = (com′
j)j∈[3]

parse Γ = (γj)j∈[3] and Γ′ = (γ′j)j∈[3]

s←
3∑

j=1

(Com.Decommit(comj , vk, γj) + Com.Decommit(com′
j , vk, γ

′
j))

s′ ←
3∑

j=1

(Com.Decommit(comj , vk′, γj) + Com.Decommit(com′
j , vk

′, γ′j))

if s ≥ 2 and s′ ≥ 2 and s+ s′ ≥ 5

then return true

else return false

We remark that the expression

CheckValidity(rvk, rvk′, vk, vk′,Γ,Γ′) = true

can be unrolled into a short (constant size) sequence of conjunctions and disjunctions
over expressions of the form

Com.Decommit(comj, vk, γj) = true

Com.Decommit(com′
j, vk, γ

′
j) = true,

Com.Decommit(comj, vk
′, γj) = true,

and Com.Decommit(com′
j, vk

′, γ′j) = true

for j ∈ {1, 2, 3}.4
Continuing to our description of NIP, for

x = (vk, (hk(i), ζ(i))i∈[3])

w = ((ind(i), rvk(i), τ (i),ΓΓΓ(i))i∈[3], vk
′)

4The expression can be unrolled into a disjunction of 6 ·
((

5
2

)
+
(
5
3

))
= 480 clauses, where each clause

is a conjunction of 5 Com.Decommit statements

5.5 Construction of Linkable Ring Signatures 151

where

rvk(i) = (com(i)
1 , com

(i)
2 , com

(i)
3) and

Γ(i) = (γ
(i)
1 , γ

(i)
2 , γ

(i)
3)

for i ∈ {1, 2, 3}, let

R(x,w)⇔ SPB.Verify(hk(1), ζ(1), ind(1), rvk(1), τ (1)) = true

and ∀j ∈ [3] : Com.Decommit(com(1)
j , vk, γ(1)j) = true

or

ind(2) 6= ind(3)

and ∀i ∈ {2, 3} : SPB.Verify(hk(i), ζ(i), ind(i), rvk(i), τ (i)) = true

and CheckValidity(rvk(2), rvk(3), vk, vk′,Γ(2),Γ(3)) = true.

And let L be the language accepted byR.

Construction 5.3: Linkable Ring Signatures

LRS.KeyGen(1λ)

(vkDS, skDS)← DS.KeyGen(1λ)

for i = 1, 2, 3 do
(comi, γi)← Com.Commit(vkDS)

rvk← (comi)i∈[3]

Γ← (γi)i∈[3]

rsk← (skDS, rvk, vkDS,Γ)

return (rvk, rsk)

LRS.Link(m1,m2, ς1, ς2)

parse

ς1 = (vkDS,1, (hk
(i)
1)i∈[3], π1, σ1)

ς2 = (vkDS,2, (hk
(i)
2)i∈[3], π2, σ2)

if vkDS,1 = vkDS,2
then return true

else return false

152 5 Logarithmic Size (Linkable) Ring Signatures

LRS.Sign(rsk,m,R)

parse
rsk = (skDS, rvk, vkDS,Γ)

rvk = (comj)j∈[3]

R = (rvk1, . . . , rvk`)

let ind ∈ [`] s. t. rvkind = rvk

for i = 1, 2, 3 do

(hk(i), shk(i))←SPB.Gen(1λ, `, ind)

ζ(i) ← SPB.Hash(hk(i),R)

τ (1)←SPB.Open(hk(1), shk(1),R, ind)

x← (skDS, (hk(i), ζ(i))i∈[3])

w← ((ind, rvk, τ (1),Γ), ∅, ∅, ∅)
π ← NIP.Prove(x,w)

M := m‖(hk(i), ζ(i))i∈[3]‖π
σDS ← DS.Sign(skDS,M)

ς := (skDS, (hk(i))i∈[3], π, σDS)

return ς

LRS.Verify(m, ς,R)

parse ς = (skDS, (hk(i))i∈[3], π, σDS)

for i ∈ [3] do

ζ̃(i) ← SPB.Hash(hk(i),R)

x← (skDS, (hk(i), ζ̃(i))i∈[3])

M := m‖(hk(i), ζ̃(i))i∈[3]‖π
if NIP.Verify(x, π) = false

then return false

if DS.Verify(skDS,M, σ) = false

then return false

return true

Correctness. Again, we will first show correctness of our scheme. Assume that rvk
= (com1, com2, com3) and rsk = (sk, rvk, vk,Γ) with Γ = (γ1, γ2, γ3) were generated
by LRS.KeyGen and

ς := (vk, hk(1), hk(2), hk(3), π, σ)← LRS.Sign(rsk,m,R),

where R = (rvk1, . . . , rvk`). We will show that it holds that LRS.Verify(m, ς,R) = true.
Because SPB.Hash is deterministic, it holds for the hashes ζ̃(1), ζ̃(2), ζ̃(3) computed by

LRS.Verify(R,m, ς) that ζ̃(i) = ζ(i) (for i = 1, 2, 3), where the ζ(i) are the hashes com-
puted by LRS.Sign(rsk,m,R). Also, it holds that rvk = rvk(1). Now, notice further that
by the correctness of SPB it holds that SPB.Verify(hk(1), ζ(1), ind, rvk, τ (1)) = 1. By the
correctness of the commitment scheme, it holds that Com.Decommit(comj, vk, γj) =
true for j = 1, 2, 3. Thus, w = ((ind, rvk, τ (1),Γ)), ∅, ∅, ∅) is a valid witness for the
statement x = (vk, (hk(i), ζ(i))i∈[3]). Consequently, by the correctness of NIP it holds
thatNIP.Verify(x, π) = true. Finally, by the correctness ofDSwe get thatDS.Verify(vk,
(m, (hk(i), ζ(i))i∈[3], π), σ) = true and LRS.Verify(R,m, ς) outputs true.

5.5 Construction of Linkable Ring Signatures 153

Signature Size. For a signature ς = (vk, (hk(i))i∈[3], π, σ), the size of the signature
component σ is poly(λ) and independent of the ring-size `. By the efficiency property
of SPB the sizes of the hashing keys hk(1), hk(2), hk(3) is bounded by log(`) · poly(λ).
Furthermore, for a statement x = (vk, (hk(i), ζ̃(i))i∈[3]), the size of the verification circuit
Cx is dominated SPB.Verify, which by the efficiency property of SPB can be computed
by a circuit of size log(`) · poly(λ). All other algorithms can be computed by circuits of
size poly(λ) and independent of `. Consequently, it holds that |Cx| = log(`) · poly(λ).
By the efficiency property of the NIWI proof, it holds that |π| = |Cx| · poly(λ) =
log(`) · poly(λ). All together, we can conclude that |ς| = log(`) · poly(λ).

5.5.1 Proof of Unforgeability
We will turn to showing that LRS is unforgeable. Basically, LRS inherits its unforgeabil-
ity directly from DS.

Theorem 5.3: Unforgeability of Construction 5.3

Construction 5.3 is unforgeable, given that NIP has perfect soundness, SPB is
somewhere perfectly binding, Com is perfectly binding and DS is unforgeable.

The main idea of the proof is as follows. As all keys in the ring R chosen by the
adversary are well-formed, and further as Com is perfectly binding and NIP is perfectly
sound, the verification key vk used by the adversary A to produce a forgery must be
one of the keys committed to in one of the verification keys rvki of R. Thus, we can
leverage A to forge a signature under vk.

Proof. Let A be a PPT-adversary against the unforgeability experiment of LRS and let
further q = poly(λ) be an upper bound on the number of key queries made by A. Let
Linkable-Unforgeability be the unforgeability experiment of LRS and EUF-CMA be the
unforgeability experiment of DS. We will construct a reductionR such that it holds
that Adv EUF-CMA

RA (λ) ≥ 1
q
·Adv Linkable-Unforgeability

A (λ). The reductionR is given as follows.

ReductionRA(vk∗)

• Guess an index k∗ ←$ [q]. On the k-th key query of A, if k 6= k∗, answer
the query as in Linkable-Unforgeability. For the k∗-th key query, proceed
as follows.

– For j = 1, 2, 3 compute (com∗
j , γ

∗
j)← Com.Commit(1λ, vk∗)

– Set Γ∗ ← (γ∗j)j∈[3]

– Output rvk∗ ← (com∗
j)j∈[3] and rsk∗ ← (∅, rvk∗,Γ∗)

• If A asks to corrupt rvk∗ abort.

154 5 Logarithmic Size (Linkable) Ring Signatures

• If A sends a signature query of the form (m, rvk∗,R), proceed as follows.

– Parse R = (rvk1, . . . , rvk`)

– Retrieve rsk∗ = (∅, rvk∗, vk∗,Γ∗)

– Parse rvk∗ = (com∗
j)j∈[3]

– Find an index ind∗ ∈ [`] such that rvkind∗ = rvk∗

– For i = 1, 2, 3 compute (hk(i), shk(i)) ← SPB.Gen(1λ, |R|, ind∗) and
ζ(i) ← SPB.Hash(hk(i),R).

– Compute τ (1) ← SPB.Open(hk(1), shk(1),R, ind∗)

– Set x← (vk∗, (hk(i), ζ(i))i∈[3])

– Set w← ((ind∗, rvk∗, τ (1),Γ), ∅, ∅, ∅).

– Compute π ← NIP.Prove(x,w).

– Send (m, (hk(i), ζ(i))i∈[3], π) to the signing oracle and receive a signa-
ture σ.

– Output ς ← (vk∗, (hk(i))i∈[3], π, σ)

• Once A outputs a forgery ς∗ for (m∗,R∗), check if it is valid, that is in the
query phaseA has not requested a signature ofm∗ for any key in R∗, none of
the keys in R∗ has been corrupted, and it holds that LRS.Verify(R,m∗, ς∗) =
true. If the forgery is valid proceed, otherwise abort.

• Parse ς∗ as ς∗ = (ṽk, (hk(i))i∈[3], π∗, σ∗).

• If ṽk = vk∗, output message (m∗, (hk(i), ζ(i))i∈[3], π∗) and signature σ∗,
otherwise abort.

First notice that unless A asks to corrupt rvk∗, the Linkable-Unforgeability experi-
ment and the simulation ofR are identically distributed from the view of A. Therefore,
from the view of A the index of the key rvk∗ is distributed uniformly at random. Con-
sequently, with probability at least 1/q the adversary A does not trigger an abort by a
corruption query to rvk∗.

Assume now that A outputs a valid forgery ς∗ = (ṽk, (hk(i))i∈[3], π, σ∗) for (m∗,R∗)

with R∗ = (rvk1, . . . , rvk`). Let ζ(i) = SPB.Hash(hk(i),R∗) for i = 1, 2, 3. As
LRS.Verify(R,m∗, ς∗) = true, it holds that NIP.Verify((ṽk, (hk(i), ζ(i))i∈[3]), π) = true
and DS.Verify(ṽk, (m∗, (hk(i), ζ(i))i∈[3], π), σ∗) = true. Consequently, it holds by the
perfect soundness of NIP that (ṽk, (hk(i), ζ(i))i∈[3]) ∈ L. Thus, there exists a witness
w = ((ind(i), rvk(i), τ (i),Γ(i))i∈[3], vk

′) where rvk(i) = (com(i)
1 , com(i)

2 , com(i)
3) and

5.5 Construction of Linkable Ring Signatures 155

Γ(i) = (γ
(i)
1 , γ

(i)
2 , γ

(i)
3) for i = 1, . . . , 3 such that it holds that

SPB.Verify(hk(1), ζ(1), ind(1), rvk(1), τ (1)) = true

and ∀j ∈ [3] : Com.Decommit(com(1)
j , ṽk, γ(1)j) = true

or

ind(2) 6= ind(3)

and ∀i ∈ {2, 3} : SPB.Verify(hk(i), ζ(i), ind(i), rvk(i), τ (i)) = true

and CheckValidity(rvk(2), rvk(3), ṽk, vk′,Γ(2),Γ(3)) = true.

Now recall that all the keys in R∗ are honestly generated. That is, the expression

CheckValidity(rvk(2), rvk(3), ṽk, vk′,Γ(2),Γ(3)) = true

implies that either

∀j ∈ [3] : Com.Decommit(com(2)
j , ṽk, γ(2)j) = true

or
∀j ∈ [3] : Com.Decommit(com(3)

j , ṽk, γ(3)j) = true.

Thus, it must hold for an i∗ ∈ [3] both SPB.Verify(hk(i
∗), ζ(i∗), ind(i

∗), rvk(i
∗), τ (i∗)) =

true and ∀j ∈ [3] : Com.Decommit(com(i∗)
j , ṽk, γ(i

∗)
j) = true.

Now, by the somewhere perfectly binding property of SPB it holds that rvk(i
∗) is in

the ring R∗ and by the perfectly binding property of Com it holds that ṽk is the key
that rvk(i

∗) = (com(i∗)
1 , com(i∗)

2 , com(i∗)
3) commits to.

Finally, observe that the index k∗ of the key rvk∗ is uniformly random in the view of
A, thus it holds with probability at least 1/q that rvk(i

∗) = rvk∗ and therefore ṽk = vk∗.
If this event happens, thenRA outputs a valid forgery σ∗ for vk∗.

We conclude that Adv EUF-CMA
RA (λ) ≥ 1

q
·Adv Linkable-Unforgeability

A (λ), which concludes the
proof.

5.5.2 Proof of Linkable Anonymity
We will now turn to establishing linkable anonymity of LRS.

Theorem 5.4: Linkable Anonymity of Construction 5.3

Construction 5.3 is linkably anonymous, given that SPB is index-hiding, Com is
computationally hiding and NIP is computationally witness-indistinguishable.

Proof. Let A be a PPT-adversary against the linkable anonymity of LRS. Assume that
A makes at most q = poly(λ) key queries. Consider the following hybrids:

156 5 Logarithmic Size (Linkable) Ring Signatures

H0 : This experiment is identical to the real experiment Linkable-Anonymity, except
for the following modification. Before interacting withA, the experiment guesses
two key indices i∗0, i∗1 ∈ [q]. Later, when A announces two indices i0, i1 in the
challenge phase, the experiment aborts if (i0, i1) 6= (i∗0, i

∗
1).

It follows immediately that AdvH0
A (λ) ≥ 1

q2
AdvH′

0
A (λ). We will now show via a

sequence of hybrids that show that AdvH0
A (λ) is negligible.

For convenience, let in the following hybrids rvk0 be the verification key at key-index
i∗0 and rvk1 be the verification key at key-index i∗1. We will briefly review how rvk0, rvk1
and ς0, ς1 are computed inH0. rvkβ for β = 0, 1 is computed by

• (vkβ, skβ)← DS.KeyGen(1λ)

• For i = 1, 2, 3 compute (comβ,j , γβ,j)← Com.Commit(1λ, vkβ)

• Γβ ← (γβ,j)j∈[3]

• rvkβ ← (comβ,j)j∈[3] and rskβ ← (skβ, rvkβ, vkβ,Γβ).

Moreover, let ς0 be challenge signature of m0 under R0 and ς1 be the challenge
signature ofm1 under R1. To facilitate notation let indc,d be the index of rvkd in ring
R∗
c for c, d ∈ {0, 1} (these 4 indices will be used frequently in the proof). We will also

briefly review how ς0 and ς1 are computed.
The signature ςβ for β = 0, 1 is computed by

• For i ∈ [3] compute (hk(i)β , shk
(i)
β) ← SPB.Gen(1λ, |Rβ|, indβ,β) and ζ(i)β ←

SPB.Hash(hk(i)β ,Rβ)

• τ (1)β ← SPB.Open(hk(1)β , shk(1)β ,R, indβ,β)

• xβ ← (vkβ, (hk
(i)
β , ζ

(i)
β)i∈[3])

• wβ ← ((indβ,β, rvkβ, τ
(1)
β ,Γβ), ∅, ∅, ∅).

• πβ ← NIP.Prove(xβ,wβ)

• σβ ← DS.Sign(skβ, (mβ, (hk
(i)
β , ζ

(i)
β)i∈[3], πβ))

• ςβ ← (vkβ, (hk
(i)
β)i∈[3], πβ, σβ).

This concludes the review of the structure of rvk0, rvk1 and ς0, ς1. Now consider the
following hybrids.

H0
0 : This is the experimentH0 with challenge bit b = 0.

5.5 Construction of Linkable Ring Signatures 157

H1 : This experiment is identical toH0
0, except for the following conceptual change.

We will compute rvk0 and rvk1 simultaneously before the experiment begins.
• (vk0, sk0)← DS.KeyGen(1λ)

• (vk1, sk1)← DS.KeyGen(1λ)

• For i = 1, 2, 3 compute (com0,j, γ0,j)← Com.Commit(1λ, vk0)

• For i = 1, 2, 3 compute (com1,j, γ1,j)← Com.Commit(1λ, vk1)

• Γ0 ← (γ0,j)j∈[3]

• Γ0 ← (γ0,j)j∈[3]

• rvk0 ← (com0,j)j∈[3] and rsk0 ← (sk0, rvk0, vk0,Γ0).
• rvk0 ← (com0,j)j∈[3] and rsk0 ← (sk0, rvk0, vk0,Γ0).

That is, in the computation of rvk0 and rvk1 we first choose vk0 and vk1 before
computing anything else. Looking ahead, this will be important later on when
we change the roles of vk0 and vk1. This change is only conceptual and therefore
H0

0 andH1 are identically distributed from the view of A.

H2 : Identical toH1, except that we compute hk(2)0 , hk(3)0 , hk(2)1 , hk(3)1 as follows:

(hk(2)0 , shk(2)0)← SPB.Gen(1λ, |R0|, ind0,0)
(hk(3)0 , shk(3)0)← SPB.Gen(1λ, |R0|, ind0,1)
(hk(2)1 , shk(2)1)← SPB.Gen(1λ, |R1|, ind1,0)
(hk(3)1 , shk(3)1)← SPB.Gen(1λ, |R1|, ind1,1).

That is, we move the binding index of hk(3)0 from ind0,0 to ind0,1 and of hk(2)1

from ind1,1 to ind1,0. hk
(2)
0 and hk(3)1 are computed as before and only stated here

for convenience. The secret keys shk(2)0 , shk(3)0 , shk(2)1 , shk(3)1 are not needed to
compute information which is used in the witnesses w0 and w1 in the experi-
mentsH1 andH2. Therefore, we can argue thatH1 andH2 are computationally
indistinguishable via the index-hiding property of SPB.

H3 : In this hybrid we also compute

τ
(2)
0 ← SPB.Open(hk(2)0 , shk(2)0 , rvk0, ind0,0)

τ
(3)
0 ← SPB.Open(hk(3)0 , shk(3)0 , rvk0, ind0,1)

in the computation of ς0 and

τ
(2)
1 ← SPB.Open(hk(2)1 , shk(2)1 , rvk0, ind1,0)

τ
(3)
1 ← SPB.Open(hk(3)1 , shk(3)1 , rvk0, ind1,1)

158 5 Logarithmic Size (Linkable) Ring Signatures

in the computation of ς1. The values τ (2)0 , τ
(3)
0 , τ

(2)
1 , τ

(3)
1 are not used further in

H3. Thus, this modification is only conceptual and we get that H2 and H3 are
identically distributed from the view of A.

H4 : In this hybrid we switch the witnesses w0 and w1 used for the computation of ς0
and ς1. Specifically, instead of computing

w0 ← ((ind0,0, rvk0, τ
(1)
0 ,Γ0), ∅, ∅, ∅)

w1 ← ((ind1,1, rvk1, τ
(1)
1 ,Γ1), ∅, ∅, ∅)

we compute

w0 ← (∅, (ind0,0, rvk0, τ (2)0 ,Γ0), (ind0,1, rvk1, τ
(3)
0 ,Γ1), vk1)

w1 ← (∅, (ind1,0, rvk0, τ (2)1 ,Γ0), (ind1,1, rvk1, τ
(3)
1 ,Γ1), vk0).

First notice that w0 is also a witness for the statement x0 = (vk0, (hk
(i)
0 , ζ

(i)
0)i∈[3])

as CheckValidity(rvk0, rvk1, vk0, vk1,Γ0,Γ1) = true holds. Recall that this pred-
icate holds if at least two out of the six commitments correctly open to vk0,
at most one commitment does not open correctly, and the remaining commit-
ments open to vk1. Likewise, the witness w1 is a witness for the statement
x1 = (vk1, (hk

(i)
1 , ζ

(i)
1)i∈[3]) as CheckValidity(rvk0, rvk1, vk1, vk0, Γ0, Γ1) = true.

We can argue via the computational witness indistinguishability of NIP thatH3

andH4 are computationally indistinguishable form the view of A.

In the following hybrids H5, . . . ,H17, we will simultaneously modify rvk0 =
(com0,1, com0,2, com0,3) and rvk1 = (com1,1, com1,2, com1,3) such that rvk0 commits
to vk1 and rvk1 commits to vk0. In other words, we will switch the roles of rvk0 and
rvk1. The configuration in each hybrid is given in table table 5.1. Recall that the joint
verification algorithm CheckValidity tolerates one incorrect/missing unveil. In order to
use the hiding property of Com, in each hybrid we will forget the unveil γ for (at most)
one commitment. The commitment for which the unveil is missing is given in a gray
box. As a brief explanation, inH4 all unveils γ are present. InH5 we forget the unveil
γ0,1 of the commitment com0,1, i.e. we set γ0,1 ← ∅. Indistinguishability between H4

and H5 follows by the witness indistinguishability of NIP. In H6, we change com0,1

into a commitment of vk1 and can argue indistinguishability of H5 and H6 via the
hiding property of Com. InH7 we erase the unveil information γ1,1 of com1,1 instead
of γ0,0 indistinguishability ofH6 andH7 follows again by the witness indistinguisha-
bility of NIP. The remaining steps follow analogously, observing that in each row
of table table 5.1 it holds both CheckValidity(rvk0, rvk1, vk0, vk1,Γ0,Γ1) = true and
CheckValidity(rvk0, rvk1, vk1, vk0,Γ0,Γ1) = true.

5.5 Construction of Linkable Ring Signatures 159

Hybrid com0,1 com0,2 com0,3 com1,1 com1,2 com1,3

H4 vk0 vk0 vk0 vk1 vk1 vk1
H5 vk0 vk0 vk0 vk1 vk1 vk1
H6 vk1 vk0 vk0 vk1 vk1 vk1
H7 vk1 vk0 vk0 vk1 vk1 vk1
H8 vk1 vk0 vk0 vk0 vk1 vk1
H9 vk1 vk0 vk0 vk0 vk1 vk1
H11 vk1 vk1 vk0 vk0 vk1 vk1
H11 vk1 vk1 vk0 vk0 vk1 vk1
H12 vk1 vk1 vk0 vk0 vk0 vk1
H13 vk1 vk1 vk0 vk0 vk0 vk1
H14 vk1 vk1 vk1 vk0 vk0 vk1
H15 vk1 vk1 vk1 vk0 vk0 vk1
H16 vk1 vk1 vk1 vk0 vk0 vk0
H17 vk1 vk1 vk1 vk0 vk0 vk0

Table 5.1: The hybrids

H18 : Identical toH17, except that we compute hk(1)0 and hk(1)1 differently. Instead of
computing hk(1)0 and hk(1)1 by

(hk(1)0 , shk(1)0)← SPB.Gen(1λ, |R0|, ind0,0)
(hk(1)1 , shk(1)1)← SPB.Gen(1λ, |R1|, ind1,1)

we compute

(hk(1)0 , shk(1)0)← SPB.Gen(1λ, |R0|, ind0,1)
(hk(1)1 , shk(1)1)← SPB.Gen(1λ, |R0|, ind1,0).

That is, we move the binding index of hk(1)0 from ind0,0 to ind0,1 and of hk(1)1

from ind1,1 to ind1,0. The secret keys shk(1)0 , shk(1)1 are not needed to compute
information which is used in the witnesses w0 and w1 inH17 andH18. Therefore,
we can argue that H17 and H18 are computationally indistinguishable via the
index-hiding property of SPB.

In the remaining hybrids, we essentially mirror the modification in hybrids
H1, . . . ,H4.

H19 (mirroringH4): The same asH18, except that we switch the witnesses w0 and w1

used for the computation of ς0 and ς1. Specifically, instead of computing

w0 ← (∅, (ind0,0, rvk0, τ (2)0 ,Γ0), (ind0,1, rvk1, τ
(3)
0 ,Γ1), vk1)

w1 ← (∅, (ind1,0, rvk0, τ (2)1 ,Γ0), (ind1,1, rvk1, τ
(3)
1 ,Γ1), vk0)

160 5 Logarithmic Size (Linkable) Ring Signatures

we compute

w0 ← ((ind0,1, rvk1, τ
(1)
0 ,Γ1), ∅, ∅, ∅)

w1 ← ((ind1,0, rvk0, τ
(1)
1 ,Γ0), ∅, ∅, ∅).

First notice that w0 is also a witness for the statement x0 = (vk0, (hk
(i)
0 , ζ

(i)
0)i∈[3])

as it holds ∀j ∈ [3] : Com.Decommit(com(1)
1,j , vk0, γ

(1)
1,j) = true. Likewise, the

witness w1 is a witness for the statement x1 = (vk1, (hk
(i)
1 , ζ(i)1)i∈[3]) as it holds

∀j ∈ [3] : Com.Decommit(com(1)
0,j , vk1, γ

(1)
0,j) = true. We can argue via the

computational witness indistinguishability of NIP thatH18 andH19 are compu-
tationally indistinguishable form the view of A.

H20 (mirroringH3): In this hybrid we drop the computation of τ (2)0 , τ
(3)
0 in the compu-

tation of ς0 and we also drop the computation of τ (2)1 , τ
(3)
1 in the computation of ς1.

The values τ (2)0 , τ
(3)
0 , τ

(2)
1 , τ

(3)
1 are not used further inH19. Thus, this modification

is only conceptual and we get thatH19 andH20 are identically distributed from
the view of A.

H21 (mirroringH2): Identical toH20, except that we compute hk(2)0 , hk(3)0 , hk(2)1 , hk(3)1

as follows:

(hk(2)0 , shk(2)0)← SPB.Gen(1λ, |R0|, ind0,1)
(hk(3)0 , shk(3)0)← SPB.Gen(1λ, |R0|, ind0,1)
(hk(2)1 , shk(2)1)← SPB.Gen(1λ, |R0|, ind1,0)
(hk(3)1 , shk(3)1)← SPB.Gen(1λ, |R0|, ind1,0).

That is, we move the binding index of hk(2)0 from ind0,0 to ind0,1 and of hk(3)1

from ind1,1 to ind1,0. hk
(3)
0 and hk(2)1 are computed as before and only stated here

for convenience. The secret keys shk(2)0 , shk(3)0 , shk(2)1 , shk(3)1 are not needed to
compute information which is used in the witnessesw0 andw1 in the experiments
H20 and H21. Therefore, we can argue that H20 and H21 are computationally
indistinguishable via the index-hiding property of SPB.

H22 (mirroringH1): Identical toH21 except that we compute rvk0 and rvk1 as follows.
We compute rvkβ for β = 0, 1 is computed by

• (vk1−β, sk1−β)← DS.KeyGen(1λ)

• For i = 1, 2, 3 compute (comβ,j , γβ,j)← Com.Commit(1λ, vk1−β)

• Γβ ← (γβ,j)j∈[3]

5.5 Construction of Linkable Ring Signatures 161

• rvkβ ← (comβ,j)j∈[3] and rskβ ← (sk1−β, rvkβ, vk1−β,Γβ).
InH21 we have computed rvk0 and rvk1 simultaneously. However, as the com-
putation of rvk0 and rvk1 has no shared information, we can compute them
independently of one another. Thus, this modification is only conceptual and we
get that from the view of A H21 andH22 are identically distributed.

We now observe that from the view ofA,H22 is identically distributed toH1
0, i.e.H0

with challenge bit b = 1. Consequently, we get that

AdvH0
A (λ) = | Pr[H0

0(A) = true − Pr[H1
0(A) = true]| < negl(λ) ,

which concludes the proof.

5.5.3 Proof of Linkability
Before we provide the proof of linkability of the scheme LRS we need the following
lemma about the algorithm CheckValidity (cf. definition 5.15).

We will first introduce some terminology that will facilitate notation.
Definition 5.16: Yielding Elements and Partner Keys

• We say that a key rvk = (com1, com2, com3) yields an element x, if there ex-
ist γ1, γ2, γ3 such that Com.Decommit(comj, x, γj) = true for i = 1, 2, 3.

• We say that a pair of keys (rvk, rvk′) yield x, if there exist y and Γ,Γ′ such
that CheckValidity(rvk, rvk′, x, y,Γ,Γ′) = true.

• Furthermore, we say that a ring R = (rvk1, . . . , rvkn) yields a set S , if for
every x ∈ S there exists a rvki ∈ R such that rvki yields x or there exist
distinct rvki1, rvki2 such that (rvki1, rvki2) yield x.

• We say that rvk∗ ∈ R has a partner in R, if there exists a ˜rvk ∈ R such that
(rvk∗, ˜rvk) yield an element in S .

In abuse of notation, we also say that rvk is of the form (com(x), com(y), com(z)),
if one of the commitments in rvk commits to x, one to y and one to z, where we allow
x, y, z to be the same.

Lemma 5.5: Yield Size

Assume that a ring R = (rvk1, . . . , rvkn) yields a set S . Then it holds that
|S| ≤ |R|.

162 5 Logarithmic Size (Linkable) Ring Signatures

In other words, a ring of size n yields at most n distinct elements.

Proof. We will prove the lemma by induction over the size of R. For the base case of
|V| = 2, it follows immediately from the definition of CheckValidity that R yields at
most 2 elements. Assume that the assertion holds for rings of size at most n− 1. We
will now show that it also holds for rings of size n. Let therefore R be any ring of size
n. We will distinguish three cases.

Case 1: In this case R contains a rvk∗ of the form (com(x), com(x), com(x)).

Let S ′ be the set yielded by R\{rvk∗}. Assume that R\{rvk∗} and rvk∗ together
yield k elements outside of S ′. Call the set of these elements T . We will show
that there exists a sub-ring R′ ⊆ R of size n− k which yields S ′. As |R′| ≤ n− 1
we will conclude by the induction hypothesis that |S ′| ≤ |R′| ≤ n− k, which in
turn will imply that |S| ≤ |S ′|+ |T | ≤ n− k + k = n.

For all t ∈ T with t 6= x there must exist a rvk∗t ∈ R\{rvk∗} such that (rvk∗, rvk∗t)
yield t. But this means that rvk∗t is of the form (com(t), com(t), ∗), and this
implies that rvk∗t does not have a partner in R\{rvk∗}, as otherwise it would
hold t ∈ S ′. Moreover, for t′ 6= t it we immediately get by the above that
rvk∗t′ 6= rvk∗t . Thus, we can remove at least k − 1 elements from R\{rvk∗} (i.e. all
rvk∗t corresponding to the elements in T \{x}) and obtain a ring R′ of size n− k
while guaranteeing that the resulting ring still yields S ′. Using the induction
hypothesis we conclude that |S ′| ≤ |R′| ≤ n− k and therefore S ≤ n.

Case 2: In this case R does not contain any rvk of the form (com(x), com(x), com(x)),
but it does contain a rvk∗ of the form (com(x), com(x), com(y)). Let S ′ be the
set yielded by R\{rvk∗}. Again assume that R\{rvk∗} and rvk∗ yield k elements
outside of S ′ and call this set T . As in case 1 we will show that there exists a
sub-ring R′ ⊆ R of size n− k which yields S ′. As |R′| ≤ n− 1 we will conclude
by the induction hypothesis that |S ′| ≤ |R′| ≤ n− k, which in turn will imply
that |S| ≤ |S ′|+ |T | ≤ n− k + k = n.

For every t ∈ T different from x and y there exists a rvk∗t ∈ R\{rvk∗}
such that rvk∗t and rvk∗ yield t. Such a rvk∗t must be of the form rvk∗t =
(com(t), com(t), com(x)). Consequently, rvk∗t cannot have a partner in R\{rvk∗},
as this would imply that t ∈ S ′. For two distinct t′ 6= t ∈ T , it must hold that
rvk∗t 6= rvk∗t′ by the above.

If y /∈ T we are done, and will be able to argue as in case 1. If y ∈ T , then there
exists a rvk∗y ∈ R\{rvk∗} such that rvk∗y and rvk∗ yield y. But this means that rvk∗y
must be of the form (com(x), com(y), ∗). If rvk∗y has no partner in R\{rvk∗} we
are done and can argue as before. If rvk∗y has a partner in R\{rvk∗y} then it holds
that x ∈ S ′, as y /∈ S ′ (as it is in T). Consequently, in any of these cases we can

5.5 Construction of Linkable Ring Signatures 163

remove k − 1 elements from R\{rvk∗} and obtain a ring R′ of size n− k which
yields S ′. Using the induction hypothesis we conclude that |S ′| ≤ |R′| ≤ n− k
and therefore S ≤ n.

Case 3: R only contains rvk of the form (com(x), com(y), com(z)) for distinct x, y, z.
None of these rvk can be partnered, and it immediately follows that S = ∅.

This concludes the proof.

We will now show that our scheme is perfectly linkable.

Theorem 5.6: Perfect Linkability of Construction 5.3

Construction 5.3 is perfectly linkable, if SPB is somewhere perfectly binding,
Com is perfectly binding and NIP has perfect soundness.

Proof. Assume that the linking adversary A outputs a ring R = (rvk1, . . . , rvk`) of
` keys. Then it holds by Lemma theorem 5.5 that R yields at most ` distinct keys
vk1, . . . , vk`. Assume that A outputs ` + 1 valid message-signature pairs (m1, ς1),
. . . , (m`+1, ς`+1), where ςi = (ṽki, ∗, ∗, ∗). Then by the perfect soundness of NIP, the
somewhere perfectly binding property of SPB and the perfect binding property of Com
it holds that each ṽki must be yield-able from one or two keys in R. But this means that
ṽki is in the set {vk1, . . . , vk`}. Since this set contains only ` elements, at least two of
the ςi must link.

5.5.4 Proof of Non-Frameability
We will now show that LRS is non-frameable.

Theorem 5.7: Non-frameability of Construction 5.3

Construction 5.3 has non-frameability, if DS is unforgeable, Com is perfectly
binding and NIP is perfectly sound.

The idea of the proof is simple. The only way the adversary can win the experiment
is by producing a signature DS∗ which links to one of the honest keys. In order to
achieve this however, the adversary must forge a signature under the key to which
this key commits to, which contradicts the unforgeability of the underlying signature
scheme.

Proof. Let A be a PPT adversary against the non-frameability of LRS. Assume that A
makes at most q = poly(λ) key queries. Consider the following hybrids.

164 5 Logarithmic Size (Linkable) Ring Signatures

H0 : This is the real experiment.

H1 : Identical toH0, except for the following modification. Let rvk1, . . . , rvkq be the
keys generated by the experiment, where rvki commits to a key vki of DS. If
in phase 1 the adversary A outputs a valid message-signature pair (m∗, ς∗ =
(ṽk, (hk∗h)j∈[3], π

∗, σ∗)) such that ṽk = vki for an uncorrupted rvki and (m, rvki, ∗)
has not been queried to the signing oracle, then the experiment aborts and outputs
0.

Wewill first show that | Pr[H0(A) = true]−Pr[H1(A) = true]| < negl(λ) given that
DS is existentially unforgeable. Let F (A) be the event that A outputs a signature ς∗ =
(vk∗, (hkh)j∈[3], π) such that vk∗ = vki for an uncorrupted rvki. Clearly, conditioned
on ¬F (A) both experiments are identically distributed. Assume therefore towards
contradiction that Pr[F (A)] ≥ ε for a non-negligible ε. We will sketch a reductionR
such that RA breaks the unforgeability of DS with advantage ε. R first guesses an
index i∗ ∈ [q] and uses its own input vk∗ to generate the key rvki∗ . If A requests a
signature of a message m under rvki∗ and ring R, R computes the signature in the
same way as inH0, but uses its own signing oracle with input (m, (hk(i), ζ̃(i))i∈[3], π)
to obtain the signature σ. Once A outputs (m∗, ς∗) with (vk∗, (hk∗h)j∈[3], π

∗, σ∗)), R
checks if ṽk = vk∗, and if so outputs ((m∗, (hk∗h)j∈[3], π

∗), σ∗).
Clearly, the index i∗ is uniformly random in the view of A and therefore the event

ṽk = vk∗ happens with probability at least 1
q
. Consequently, it holds that

Adv EUF-CMA
R,A (λ) ≥ 1

q
· Pr[F (A)] ≥ ε

q
,

which contradicts the unforgeability of DS.
Finally, notice that inH1 the advantage ofA is 0: Due to the perfect binding property

of Com and the perfect soundness of NIP, any signature ς† that A generates must use
one of the vk1, . . . , vkq .

If the key ṽk used in ς∗ is one of vk1, . . . , vkq then A will immediately lose after
phase 1. If ṽk is different from all keys in vk1, . . . , vkq , then ς† does not link to ς∗, and
consequently A loses in phase 2. Consequently, the advantage of A in H1 is 0. This
concludes the proof.

5.6 Related Work
After the initial work of Rivest, Shamir and Tauman-Kalai on ring signatures [RST01],
a number of works provided constructions in the random oracle model under various
computational hardness assumptions [AOS02; Bon+03; HS03]. The scheme of Dodis
et al. [Dod+04] was the first to achieve sub-linear size signatures in the ROM. Libert,

5.6 Related Work 165

Peters, Qian [LPQ18] constructed a scheme with logarithmic size ring signatures from
DDH in the ROM. Schemes in the CRS model include [SW07; Boy07; SS10; CGS07;
Gha13; Gon17] achieving varying degrees of compactness but focusing mainly on
practical efficiency. Standard model ring signatures were simultaneously proposed
by Chow et al. [Cho+06] and by Bender, Katz, and Morselli [BKM06]. Malavolta and
Schröder [MS17] build setup free and constant size ring signatures assuming hardness
of a variant of the knowledge of exponent assumption. Linkable Ring signatures were
introduced by Liu et al. [LWW04] as linkable spontaneous anonymous group signatures.
They propose a notion of linkability which requires that signatures created by the same
signer using the same ring must be publicly linkable. In their security model, a scheme
achieves a weaker, non-adaptive model of anonymity called signer-ambiguity, if given
one signature under signing key sk and ring R as well as a subset of the signing keys
corresponding to the keys in the ring which does not include sk, the probability of
determining the actual signer as sk is at most negligibly better than guessing one of the
remaining keys in the ring uniformly at random. This model is extended by Boyen and
Haies [BH18], introducing signing epochs which allow for forward secure notions of
anonymity and unforgeability. Recently, several works described linkable ring signature
schemes in post-quantum setting, e.g. [Tor+18] based on the hardness of the Ring-SIS
problem or [BLO18] based on the Module-SIS and Module-LWE problems. Finally, the
idea of replacing NIZK proofs with NIWI proofs in standard model constructions has
gained momentum recently, e.g. in the construction of verifiable random functions
(VRFs) [Bit17; Goy+17].

6 Outlook
In this chapter we suggest possibilities for future work on the basis of this thesis.

6.1 Recapitulating our Results
First, we offer a pointed summary of our contributions to the study of group signatures
and ring signatures in the following comparisons to previous schemes. We denote by n
the size of the group in question for group signatures and by ` the size of the ring in
ring signatures.

Group Signature Schemes. In the following table, we assume a 256-bit (respectively
512-bit) representation of Zq,G1 (respectively G2) for Type 3 pairings and a 3072-bit
factoring and DL modulus with 256-bit key.

Scheme Signature size∗
[bits]

Membership Assumptions

[BW07]‡ 6 656 static q-type
[BBS04] 2 304 static q-type
[LPY15] 8 448 static standard
Construction 3.5 6 400 static standard
[Bic+10] 1 280 dynamic† interactive
[Gro07] 13 056 dynamic q-type
[LPY15] 14 848 dynamic standard
[Boo+16] O(logn) fully dynamic standard
Construction 4.1 O(1) membership private standard
+ Construction 3.4 12 056 membership private standard

† The scheme defines additionally a join↔issue procedure
‡ Adapted from type 1 to type 3 pairings as in [LPY15]

168 6 Outlook

Ring Signature Schemes.

Scheme Signature size Assumptions

Trusted
Setup

[SW07] O(`) standard
[Boy07] O(`) q-type
[CGS07] O(

√
`) q-type

[MS17] O(1) q-type + GGM

No
Trusted
Setup

[Cho+06] O(`) q-type
[BKM06] O(`) standard
[MS17] O(`) q-type + knowledge
Construction 3.6 O(`) standard
Construction 3.6 + [CGS07] O(

√
`) standard

Construction 5.2 O(log `) standard

6.2 Future Work

6.2.1 Further Applications of SFPK
Group signature schemes are sometimes described as a kind of precursor primitive to
more complicated primitives that have a group-signature-like functionality at their
core. In many ways the fully dynamic group signatures of chapter 4 are so much richer
in functionality compared to static group signatures that they could be seen this way.
Another example of a concept that is closely related to group signatures are anonymous
credentials and their delegatable variants as well as direct anonymous attestation. Our
work here poses the question if signatures with flexible public keys are equally useful
in these settings as they are for static and fully dynamic group signatures. The related
work of Crites and Lysyanskaya [CL19] on mercurial signatures shows promise in this
direction.

6.2.2 Instantiation of SPB Hashing
Our constructions of linkable and unlinkable ring signature in chapter 5 make crucial
use of the concept of somewhere perfectly binding hashing in order to achieve signature
size logarithmic in the size of the ring. This makes our constructions asymptotically
optimal in size, since we can at most consider rings of polynomial size in the security
parameter.

In terms of concrete efficiency, however, at the moment we cannot hope to be close to
the practical size of the asymptotically less efficient constructions proposed in chapter 3.
The main reason for this is that, compared with constructions based on signatures with

6.2 Future Work 169

flexible public keys, our generic constructions in chapter 5 cannot be fully instantiated
in the bilinear pairing setting, and thus cannot make full use of the highly efficient
non-interactive proof systems that are known in this setting. Of the components of
our construction, only the somewhere perfectly binding hash family has no compatible
instantiation at the point of writing. The features of this construction would require it
to fit neatly into the pairing product equation framework delineated in section 3.2.3,
requiring that verification of a hash can be described in these.

Bibliography

[ALP13] Nuttapong Attrapadung, Benoît Libert, and Thomas Peters. “Efficient Com-
pletely Context-Hiding Quotable and Linearly Homomorphic Signatures.”
In: PKC 2013: 16th International Conference on Theory and Practice of Public
Key Cryptography. Ed. by Kaoru Kurosawa andGoichiroHanaoka. Vol. 7778.
Lecture Notes in Computer Science. Nara, Japan: Springer, Heidelberg, Ger-
many, Feb. 2013, pp. 386–404. doi: 10.1007/978-3-642-36362-7_24
(cit. on p. 81).

[AM03] Giuseppe Ateniese and Breno de Medeiros. “Efficient Group Signatures
without Trapdoors.” In: Advances in Cryptology – ASIACRYPT 2003. Ed.
by Chi-Sung Laih. Vol. 2894. Lecture Notes in Computer Science. Taipei,
Taiwan: Springer, Heidelberg, Germany, Nov. 2003, pp. 246–268. doi: 10.
1007/978-3-540-40061-5_15 (cit. on p. 118).

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. “1-out-of-n Signa-
tures from a Variety of Keys.” In: Advances in Cryptology – ASIACRYPT 2002.
Ed. by Yuliang Zheng. Vol. 2501. Lecture Notes in Computer Science.Queen-
stown, New Zealand: Springer, Heidelberg, Germany, Dec. 2002, pp. 415–
432. doi: 10.1007/3-540-36178-2_26 (cit. on p. 164).

[Ate+00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. “A Prac-
tical and Provably Secure Coalition-Resistant Group Signature Scheme.”
In: Advances in Cryptology – CRYPTO 2000. Ed. by Mihir Bellare. Vol. 1880.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 2000, pp. 255–270. doi: 10.1007/3-540-
44598-6_16 (cit. on p. 118).

[Ate+05a] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de
Medeiros. Practical Group Signatures without Random Oracles. Cryptology
ePrint Archive, Report 2005/385. 2005 (cit. on p. 118).

[Ate+05b] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik.
“Sanitizable Signatures.” In: ESORICS 2005: 10th European Symposium on
Research in Computer Security. Ed. by Sabrina De Capitani di Vimercati, Paul
F. Syverson, and Dieter Gollmann. Vol. 3679. Lecture Notes in Computer
Science. Milan, Italy: Springer, Heidelberg, Germany, Sept. 2005, pp. 159–
177. doi: 10.1007/11555827_10 (cit. on p. 29).

https://doi.org/10.1007/978-3-642-36362-7_24
https://doi.org/10.1007/978-3-540-40061-5_15
https://doi.org/10.1007/978-3-540-40061-5_15
https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/11555827_10

172 Bibliography

[AW04] Michel Abdalla and Bogdan Warinschi. “On the Minimal Assumptions of
Group Signature Schemes.” In: ICICS 04: 6th International Conference on
Information and Communication Security. Ed. by Javier López, Sihan Qing,
and Eiji Okamoto. Vol. 3269. Lecture Notes in Computer Science. Malaga,
Spain: Springer, Heidelberg, Germany, Oct. 2004, pp. 1–13 (cit. on p. 118).

[Bac+18] Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider.
“Signatures with Flexible Public Key: Introducing Equivalence Classes
for Public Keys.” In: Advances in Cryptology – ASIACRYPT 2018, Part II.
Ed. by Thomas Peyrin and Steven Galbraith. Vol. 11273. Lecture Notes in
Computer Science. Brisbane, Queensland, Australia: Springer, Heidelberg,
Germany, Dec. 2018, pp. 405–434. doi: 10.1007/978-3-030-03329-3_14
(cit. on pp. 4, 8, 30, 82).

[Bac+19] Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Kluczniak, and Jonas
Schneider. “Ring Signatures: Logarithmic-Size, No Setup - from Standard
Assumptions.” In: Advances in Cryptology – EUROCRYPT 2019, Part III. Ed.
by Yuval Ishai and Vincent Rijmen. Vol. 11478. Lecture Notes in Computer
Science. Darmstadt, Germany: Springer, Heidelberg, Germany, May 2019,
pp. 281–311. doi: 10.1007/978-3-030-17659-4_10 (cit. on pp. 9, 122).

[Bal+17] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya,
Leonid Reyzin, Kai Samelin, and Sophia Yakoubov. “Accumulators with
Applications to Anonymity-Preserving Revocation.” In: EuroS&P 2017. IEEE,
2017, pp. 301–315. isbn: 978-1-5090-5762-7. doi: 10.1109/EuroSP.2017.
13. url: https://doi.org/10.1109/EuroSP.2017.13 (cit. on p. 85).

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signatures.”
In: Advances in Cryptology – CRYPTO 2004. Ed. by Matthew Franklin.
Vol. 3152. Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2004, pp. 41–55. doi: 10.1007/978-
3-540-28628-8_3 (cit. on pp. 118, 167).

[BEF18] Dan Boneh, Saba Eskandarian, and Ben Fisch. Post-Quantum EPID Group
Signatures from Symmetric Primitives. Cryptology ePrint Archive, Report
2018/261. https://eprint.iacr.org/2018/261. 2018 (cit. on p. 119).

[Bel+01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval.
“Key-Privacy in Public-Key Encryption.” In: Advances in Cryptology – ASI-
ACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. Lecture Notes in Computer
Science. Gold Coast, Australia: Springer, Heidelberg, Germany, Dec. 2001,
pp. 566–582. doi: 10.1007/3-540-45682-1_33 (cit. on pp. 17, 18).

https://doi.org/10.1007/978-3-030-03329-3_14
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://eprint.iacr.org/2018/261
https://doi.org/10.1007/3-540-45682-1_33

173

[BF01] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from the
Weil Pairing.” In: Advances in Cryptology – CRYPTO 2001. Ed. by Joe Kilian.
Vol. 2139. Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2001, pp. 213–229. doi: 10.1007/3-
540-44647-8_13 (cit. on pp. 33, 35).

[BF03] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from
the Weil Pairing.” In: SIAM J. Comput. 32.3 (2003), pp. 586–615. doi:
10.1137/S0097539701398521. url: https://doi.org/10.1137/
S0097539701398521 (cit. on p. 35).

[BH18] Xavier Boyen and Thomas Haines. “Forward-Secure Linkable Ring Signa-
tures.” In: ACISP 18: 23rd Australasian Conference on Information Security
and Privacy. Ed. byWilly Susilo andGuomin Yang. Vol. 10946. Lecture Notes
in Computer Science. Wollongong, NSW, Australia: Springer, Heidelberg,
Germany, July 2018, pp. 245–264. doi: 10.1007/978-3-319-93638-3_15
(cit. on p. 165).

[BHS19] Michael Backes, Lucjan Hanzlik, and Jonas Schneider-Bensch. “Member-
ship Privacy for Fully Dynamic Group Signatures.” In: ACM CCS 2019: 26th
Conference on Computer and Communications Security. Ed. by Lorenzo Cav-
allaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz. ACM Press,
Nov. 2019, pp. 2181–2198. doi: 10.1145/3319535.3354257 (cit. on pp. 9,
30, 83).

[Bic+10] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan
Warinschi. “Get Shorty via Group Signatures without Encryption.” In: SCN
10: 7th International Conference on Security in Communication Networks.
Ed. by Juan A. Garay and Roberto De Prisco. Vol. 6280. Lecture Notes in
Computer Science. Amalfi, Italy: Springer, Heidelberg, Germany, Sept. 2010,
pp. 381–398. doi: 10.1007/978-3-642-15317-4_24 (cit. on pp. 118, 167).

[Bit17] Nir Bitansky. “Verifiable Random Functions from Non-interactive Witness-
Indistinguishable Proofs.” In: TCC 2017: 15th Theory of Cryptography Con-
ference, Part II. Ed. by Yael Kalai and Leonid Reyzin. Vol. 10678. Lecture
Notes in Computer Science. Baltimore, MD, USA: Springer, Heidelberg,
Germany, Nov. 2017, pp. 567–594. doi: 10.1007/978-3-319-70503-3_19
(cit. on p. 165).

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. “Ring Signatures:
Stronger Definitions, and Constructions Without Random Oracles.” In:
TCC 2006: 3rd Theory of Cryptography Conference. Ed. by Shai Halevi and
Tal Rabin. Vol. 3876. Lecture Notes in Computer Science. New York, NY,
USA: Springer, Heidelberg, Germany, Mar. 2006, pp. 60–79. doi: 10.1007/
11681878_4 (cit. on pp. 26, 32, 121, 122, 165, 168).

https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1007/978-3-319-93638-3_15
https://doi.org/10.1145/3319535.3354257
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4

174 Bibliography

[Bla+11] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud.
“Signatures on Randomizable Ciphertexts.” In: PKC 2011: 14th International
Conference on Theory and Practice of Public Key Cryptography. Ed. by Dario
Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi. Vol. 6571.
Lecture Notes in Computer Science. Taormina, Italy: Springer, Heidelberg,
Germany, Mar. 2011, pp. 403–422. doi: 10.1007/978-3-642-19379-8_25
(cit. on p. 81).

[BLO18] Carsten Baum, Huang Lin, and Sabine Oechsner. “Towards Practical Lattice-
Based One-Time Linkable Ring Signatures.” In: ICICS 18: 20th International
Conference on Information and Communication Security. Ed. by David Nac-
cache, Shouhuai Xu, Sihan Qing, Pierangela Samarati, Gregory Blanc,
Rongxing Lu, Zonghua Zhang, and Ahmed Meddahi. Vol. 11149. Lecture
Notes in Computer Science. Lille, France: Springer, Heidelberg, Germany,
Oct. 2018, pp. 303–322. doi: 10.1007/978-3-030-01950-1_18 (cit. on
p. 165).

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. “Foundations
of Group Signatures: Formal Definitions, Simplified Requirements, and a
Construction Based on General Assumptions.” In: Advances in Cryptology
– EUROCRYPT 2003. Ed. by Eli Biham. Vol. 2656. Lecture Notes in Com-
puter Science. Warsaw, Poland: Springer, Heidelberg, Germany, May 2003,
pp. 614–629. doi: 10.1007/3-540-39200-9_38 (cit. on pp. 5, 23–26, 66,
84, 118, 119).

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic
Curves of Prime Order.” In: SAC 2005: 12th Annual International Workshop
on Selected Areas in Cryptography. Ed. by Bart Preneel and Stafford Tavares.
Vol. 3897. Lecture Notes in Computer Science. Kingston, Ontario, Canada:
Springer, Heidelberg, Germany, Aug. 2006, pp. 319–331. doi: 10.1007/
11693383_22 (cit. on p. 33).

[Bon+03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. “Aggregate
and Verifiably Encrypted Signatures from Bilinear Maps.” In: Advances in
Cryptology – EUROCRYPT 2003. Ed. by Eli Biham. Vol. 2656. Lecture Notes
in Computer Science. Warsaw, Poland: Springer, Heidelberg, Germany,
May 2003, pp. 416–432. doi: 10.1007/3-540-39200-9_26 (cit. on p. 164).

[Bon+09] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. “Signing a
Linear Subspace: Signature Schemes for Network Coding.” In: PKC 2009:
12th International Conference on Theory and Practice of Public Key Cryptog-
raphy. Ed. by Stanislaw Jarecki and Gene Tsudik. Vol. 5443. Lecture Notes
in Computer Science. Irvine, CA, USA: Springer, Heidelberg, Germany,
Mar. 2009, pp. 68–87. doi: 10.1007/978-3-642-00468-1_5 (cit. on p. 81).

https://doi.org/10.1007/978-3-642-19379-8_25
https://doi.org/10.1007/978-3-030-01950-1_18
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/978-3-642-00468-1_5

175

[Boo+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens
Groth, and Christophe Petit. “Short Accountable Ring Signatures Based on
DDH.” In: ESORICS 2015: 20th European Symposium on Research in Computer
Security, Part I. Ed. by Günther Pernul, Peter Y. A. Ryan, and Edgar R.Weippl.
Vol. 9326. Lecture Notes in Computer Science. Vienna, Austria: Springer,
Heidelberg, Germany, Sept. 2015, pp. 243–265. doi: 10.1007/978-3-319-
24174-6_13 (cit. on pp. 85, 119).

[Boo+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens
Groth. “Foundations of Fully Dynamic Group Signatures.” In: ACNS 16: 14th
International Conference on Applied Cryptography and Network Security.
Ed. by Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider. Vol. 9696.
Lecture Notes in Computer Science. Guildford, UK: Springer, Heidelberg,
Germany, June 2016, pp. 117–136. doi: 10.1007/978-3-319-39555-5_7
(cit. on pp. 6, 23, 84–88, 95, 96, 98, 119, 167, 187).

[BOV03] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. “Derandomization in
Cryptography.” In: Advances in Cryptology – CRYPTO 2003. Ed. by Dan
Boneh. Vol. 2729. Lecture Notes in Computer Science. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 2003, pp. 299–315. doi: 10.
1007/978-3-540-45146-4_18 (cit. on pp. 21, 129).

[Boy07] Xavier Boyen. “Mesh Signatures.” In: Advances in Cryptology – EURO-
CRYPT 2007. Ed. by Moni Naor. Vol. 4515. Lecture Notes in Computer Sci-
ence. Barcelona, Spain: Springer, Heidelberg, Germany, May 2007, pp. 210–
227. doi: 10.1007/978-3-540-72540-4_12 (cit. on pp. 165, 168).

[BP15] Nir Bitansky and Omer Paneth. “ZAPs and Non-Interactive Witness In-
distinguishability from Indistinguishability Obfuscation.” In: TCC 2015:
12th Theory of Cryptography Conference, Part II. Ed. by Yevgeniy Dodis
and Jesper Buus Nielsen. Vol. 9015. Lecture Notes in Computer Science.
Warsaw, Poland: Springer, Heidelberg, Germany, Mar. 2015, pp. 401–427.
doi: 10.1007/978-3-662-46497-7_16 (cit. on pp. 21, 129).

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. “Foundations of Group Signa-
tures:The Case of Dynamic Groups.” In: Topics in Cryptology – CT-RSA 2005.
Ed. by Alfred Menezes. Vol. 3376. Lecture Notes in Computer Science. San
Francisco, CA, USA: Springer, Heidelberg, Germany, Feb. 2005, pp. 136–153.
doi: 10.1007/978-3-540-30574-3_11 (cit. on pp. 84, 98, 118, 119).

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient Fully Homomorphic
Encryption from (Standard) LWE.” In: 52nd Annual Symposium on Founda-
tions of Computer Science. Ed. by Rafail Ostrovsky. Palm Springs, CA, USA:
IEEE Computer Society Press, Oct. 2011, pp. 97–106. doi: 10.1109/FOCS.
2011.12 (cit. on p. 125).

https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-540-45146-4_18
https://doi.org/10.1007/978-3-540-45146-4_18
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1109/FOCS.2011.12

176 Bibliography

[BW06] Xavier Boyen and Brent Waters. “Compact Group Signatures Without
Random Oracles.” In: Advances in Cryptology – EUROCRYPT 2006. Ed. by
Serge Vaudenay. Vol. 4004. Lecture Notes in Computer Science. St. Peters-
burg, Russia: Springer, Heidelberg, Germany, May 2006, pp. 427–444. doi:
10.1007/11761679_26 (cit. on p. 118).

[BW07] Xavier Boyen and Brent Waters. “Full-Domain Subgroup Hiding and
Constant-Size Group Signatures.” In: PKC 2007: 10th International Confer-
ence on Theory and Practice of Public Key Cryptography. Ed. by Tatsuaki
Okamoto and Xiaoyun Wang. Vol. 4450. Lecture Notes in Computer Sci-
ence. Beijing, China: Springer, Heidelberg, Germany, Apr. 2007, pp. 1–15.
doi: 10.1007/978-3-540-71677-8_1 (cit. on pp. 118, 167).

[CG05] Jan Camenisch and Jens Groth. “Group Signatures: Better Efficiency and
New Theoretical Aspects.” In: SCN 04: 4th International Conference on Secu-
rity in Communication Networks. Ed. by Carlo Blundo and Stelvio Cimato.
Vol. 3352. Lecture Notes in Computer Science. Amalfi, Italy: Springer, Hei-
delberg, Germany, Sept. 2005, pp. 120–133. doi: 10.1007/978-3-540-
30598-9_9 (cit. on p. 118).

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. “The RandomOracleMethod-
ology, Revisited (Preliminary Version).” In: 30th Annual ACM Symposium on
Theory of Computing. Dallas, TX, USA: ACM Press, May 1998, pp. 209–218.
doi: 10.1145/276698.276741 (cit. on p. 19).

[CGS07] Nishanth Chandran, Jens Groth, and Amit Sahai. “Ring Signatures of Sub-
linear Size Without Random Oracles.” In: ICALP 2007: 34th International
Colloquium on Automata, Languages and Programming. Ed. by Lars Arge,
Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki. Vol. 4596. Lec-
ture Notes in Computer Science. Wroclaw, Poland: Springer, Heidelberg,
Germany, July 2007, pp. 423–434. doi: 10.1007/978-3-540-73420-8_38
(cit. on pp. 73, 80, 81, 165, 168).

[Cha+14] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-
john. “Malleable Signatures: New Definitions and Delegatable Anonymous
Credentials.” In: CSF 2014: IEEE 27st Computer Security Foundations Sympo-
sium. Ed. by AnupamDatta and Cedric Fournet. Vienna, Austria: IEEE Com-
puter Society Press, July 2014, pp. 199–213. doi: 10.1109/CSF.2014.22
(cit. on p. 81).

[Cho+06] Sherman S. M. Chow, Victor K.-W. Wei, Joseph K. Liu, and Tsz Hon Yuen.
“Ring signatures without random oracles.” In: ASIACCS 06: 1st ACM Sym-
posium on Information, Computer and Communications Security. Ed. by
Ferng-Ching Lin, Der-Tsai Lee, Bao-Shuh Lin, Shiuhpyng Shieh, and Sushil

https://doi.org/10.1007/11761679_26
https://doi.org/10.1007/978-3-540-71677-8_1
https://doi.org/10.1007/978-3-540-30598-9_9
https://doi.org/10.1007/978-3-540-30598-9_9
https://doi.org/10.1145/276698.276741
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1109/CSF.2014.22

177

Jajodia. Taipei, Taiwan: ACM Press, Mar. 2006, pp. 297–302 (cit. on pp. 165,
168).

[CL04] Jan Camenisch and Anna Lysyanskaya. “Signature Schemes and Anony-
mous Credentials from Bilinear Maps.” In: Advances in Cryptology –
CRYPTO 2004. Ed. by Matthew Franklin. Vol. 3152. Lecture Notes in Com-
puter Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2004, pp. 56–72. doi: 10.1007/978-3-540-28628-8_4 (cit. on
p. 118).

[CL19] Elizabeth C. Crites and Anna Lysyanskaya. “Delegatable Anonymous Cre-
dentials from Mercurial Signatures.” In: Topics in Cryptology – CT-RSA 2019.
Ed. by Mitsuru Matsui. Vol. 11405. Lecture Notes in Computer Science. San
Francisco, CA, USA: Springer, Heidelberg, Germany, Mar. 2019, pp. 535–
555. doi: 10.1007/978-3-030-12612-4_27 (cit. on pp. 82, 168).

[CM11] Sanjit Chatterjee and Alfred Menezes. “On cryptographic protocols em-
ploying asymmetric pairings - The role of Ψ revisited.” In: Discrete Applied
Mathematics 159.13 (2011), pp. 1311–1322 (cit. on p. 38).

[Cv91] David Chaum and Eugène van Heyst. “Group Signatures.” In: Advances in
Cryptology – EUROCRYPT’91. Ed. by Donald W. Davies. Vol. 547. Lecture
Notes in Computer Science. Brighton, UK: Springer, Heidelberg, Germany,
Apr. 1991, pp. 257–265. doi: 10.1007/3-540-46416-6_22 (cit. on pp. 2,
31, 97).

[CZZ17] Sherman S. M. Chow, Haibin Zhang, and Tao Zhang. “Real Hidden Identity-
Based Signatures.” In: Financial Cryptography and Data Security - 21st
International Conference, FC 2017, Sliema, Malta, April 3-7, 2017, Revised
Selected Papers. Ed. by Aggelos Kiayias. Vol. 10322. Lecture Notes in Com-
puter Science. Springer, 2017, pp. 21–38. isbn: 978-3-319-70971-0. doi:
10.1007/978-3-319-70972-7_2. url: https://doi.org/10.1007/
978-3-319-70972-7%5C_2 (cit. on p. 118).

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. “Non-Malleable Cryptogra-
phy (Extended Abstract).” In: 23rd Annual ACM Symposium on Theory of
Computing. New Orleans, LA, USA: ACM Press, May 1991, pp. 542–552.
doi: 10.1145/103418.103474 (cit. on p. 129).

[DN00a] Ivan Damgård and Jesper Buus Nielsen. “Improved Non-committing En-
cryption Schemes Based on a General Complexity Assumption.” In: Ad-
vances in Cryptology – CRYPTO 2000. Ed. byMihir Bellare. Vol. 1880. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 2000, pp. 432–450. doi: 10.1007/3-540-44598-6_27
(cit. on p. 34).

https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-319-70972-7_2
https://doi.org/10.1007/978-3-319-70972-7%5C_2
https://doi.org/10.1007/978-3-319-70972-7%5C_2
https://doi.org/10.1145/103418.103474
https://doi.org/10.1007/3-540-44598-6_27

178 Bibliography

[DN00b] Cynthia Dwork and Moni Naor. “Zaps and Their Applications.” In: 41st
Annual Symposium on Foundations of Computer Science. Redondo Beach,
CA, USA: IEEE Computer Society Press, Nov. 2000, pp. 283–293. doi: 10.
1109/SFCS.2000.892117 (cit. on pp. 21, 129).

[Dod+04] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup.
“Anonymous Identification in Ad Hoc Groups.” In: Advances in Cryptology
– EUROCRYPT 2004. Ed. by Christian Cachin and Jan Camenisch. Vol. 3027.
Lecture Notes in Computer Science. Interlaken, Switzerland: Springer,
Heidelberg, Germany, May 2004, pp. 609–626. doi: 10.1007/978-3-540-
24676-3_36 (cit. on pp. 124, 164).

[DS16] David Derler and Daniel Slamanig. Fully-Anonymous Short Dynamic Group
SignaturesWithout Encryption. Cryptology ePrint Archive, Report 2016/154.
http://eprint.iacr.org/2016/154. 2016 (cit. on p. 119).

[EG14] Alex Escala and Jens Groth. “Fine-Tuning Groth-Sahai Proofs.” In: PKC 2014:
17th International Conference on Theory and Practice of Public Key Cryp-
tography. Ed. by Hugo Krawczyk. Vol. 8383. Lecture Notes in Computer
Science. Buenos Aires, Argentina: Springer, Heidelberg, Germany, Mar.
2014, pp. 630–649. doi: 10.1007/978-3-642-54631-0_36 (cit. on p. 117).

[ElG84] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms.” In: Advances in Cryptology – CRYPTO’84. Ed. by
G. R. Blakley and David Chaum. Vol. 196. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
1984, pp. 10–18 (cit. on pp. 123, 129, 132).

[FG18] Georg Fuchsbauer and Romain Gay. “Weakly Secure Equivalence-Class
Signatures from Standard Assumptions.” In: PKC 2018: 21st International
Conference on Theory and Practice of Public Key Cryptography, Part II. Ed. by
Michel Abdalla and Ricardo Dahab. Vol. 10770. Lecture Notes in Computer
Science. Rio de Janeiro, Brazil: Springer, Heidelberg, Germany, Mar. 2018,
pp. 153–183. doi: 10.1007/978-3-319-76581-5_6 (cit. on pp. 43, 79).

[FHS14] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
Preserving Signatures on Equivalence Classes and Constant-Size Anony-
mous Credentials. Cryptology ePrint Archive, Report 2014/944. http :
//eprint.iacr.org/2014/944. 2014 (cit. on pp. 40, 80).

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. “Practical
Round-Optimal Blind Signatures in the Standard Model.” In: Advances in
Cryptology – CRYPTO 2015, Part II. Ed. by Rosario Gennaro and Matthew
J. B. Robshaw. Vol. 9216. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, Aug. 2015, pp. 233–253. doi:
10.1007/978-3-662-48000-7_12 (cit. on pp. 40, 43, 115).

https://doi.org/10.1109/SFCS.2000.892117
https://doi.org/10.1109/SFCS.2000.892117
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
http://eprint.iacr.org/2016/154
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-319-76581-5_6
http://eprint.iacr.org/2014/944
http://eprint.iacr.org/2014/944
https://doi.org/10.1007/978-3-662-48000-7_12

179

[Fle+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider,
Dominique Schröder, and Mark Simkin. “Efficient Unlinkable Sanitizable
Signatures from Signatures with Re-randomizable Keys.” In: PKC 2016: 19th
International Conference on Theory and Practice of Public Key Cryptography,
Part I. Ed. by Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and
Bo-Yin Yang. Vol. 9614. Lecture Notes in Computer Science. Taipei, Taiwan:
Springer, Heidelberg, Germany, Mar. 2016, pp. 301–330. doi: 10.1007/978-
3-662-49384-7_12 (cit. on pp. 81, 82).

[FY05] Jun Furukawa and Shoko Yonezawa. “Group Signatures with Separate and
Distributed Authorities.” In: SCN 04: 4th International Conference on Security
in Communication Networks. Ed. by Carlo Blundo and Stelvio Cimato.
Vol. 3352. Lecture Notes in Computer Science. Amalfi, Italy: Springer,
Heidelberg, Germany, Sept. 2005, pp. 77–90. doi: 10.1007/978-3-540-
30598-9_6 (cit. on p. 118).

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal lattices.” In:
41st Annual ACM Symposium on Theory of Computing. Ed. by Michael
Mitzenmacher. Bethesda, MD, USA: ACM Press, May 2009, pp. 169–178.
doi: 10.1145/1536414.1536440 (cit. on p. 125).

[Gha13] Essam Ghadafi. “Sub-linear Blind Ring Signatures without Random Ora-
cles.” In: 14th IMA International Conference on Cryptography and Coding.
Ed. by Martijn Stam. Vol. 8308. Lecture Notes in Computer Science. Ox-
ford, UK: Springer, Heidelberg, Germany, Dec. 2013, pp. 304–323. doi:
10.1007/978-3-642-45239-0_18 (cit. on p. 165).

[GL89] Oded Goldreich and Leonid A. Levin. “A Hard-Core Predicate for all One-
Way Functions.” In: 21st Annual ACM Symposium on Theory of Computing.
Seattle, WA, USA: ACM Press, May 1989, pp. 25–32. doi: 10.1145/73007.
73010 (cit. on p. 131).

[Gon17] Alonso González. A Ring Signature of size O(3
√
n) without Random Oracles.

Cryptology ePrint Archive, Report 2017/905. http://eprint.iacr.org/
2017/905. 2017 (cit. on p. 165).

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Non-interactive Zaps and
New Techniques for NIZK.” In: Advances in Cryptology – CRYPTO 2006.
Ed. by Cynthia Dwork. Vol. 4117. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2006, pp. 97–111.
doi: 10.1007/11818175_6 (cit. on pp. 21, 39, 73, 129).

[Goy+17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters.
“A Generic Approach to Constructing and Proving Verifiable Random
Functions.” In: TCC 2017: 15th Theory of Cryptography Conference, Part II.

https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-540-30598-9_6
https://doi.org/10.1007/978-3-540-30598-9_6
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-45239-0_18
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
http://eprint.iacr.org/2017/905
http://eprint.iacr.org/2017/905
https://doi.org/10.1007/11818175_6

180 Bibliography

Ed. by Yael Kalai and Leonid Reyzin. Vol. 10678. Lecture Notes in Computer
Science. Baltimore, MD, USA: Springer, Heidelberg, Germany, Nov. 2017,
pp. 537–566. doi: 10.1007/978-3-319-70503-3_18 (cit. on p. 165).

[Gro06] Jens Groth. “Simulation-Sound NIZK Proofs for a Practical Language and
Constant Size Group Signatures.” In: ASIACRYPT 2006. Ed. by Xuejia Lai
and Kefei Chen. Vol. 4284. Lecture Notes in Computer Science. Springer,
2006, pp. 444–459. isbn: 3-540-49475-8. doi: 10.1007/11935230_29. url:
https://doi.org/10.1007/11935230%5C_29 (cit. on p. 115).

[Gro07] Jens Groth. “Fully Anonymous Group Signatures Without Random Ora-
cles.” In:Advances in Cryptology – ASIACRYPT 2007. Ed. by Kaoru Kurosawa.
Vol. 4833. Lecture Notes in Computer Science. Kuching, Malaysia: Springer,
Heidelberg, Germany, Dec. 2007, pp. 164–180. doi: 10.1007/978-3-540-
76900-2_10 (cit. on pp. 118, 167).

[GS08] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems for
Bilinear Groups.” In: Advances in Cryptology – EUROCRYPT 2008. Ed. by
Nigel P. Smart. Vol. 4965. Lecture Notes in Computer Science. Istanbul,
Turkey: Springer, Heidelberg, Germany, Apr. 2008, pp. 415–432. doi: 10.
1007/978-3-540-78967-3_24 (cit. on pp. 38, 86, 118).

[GSW10] Essam Ghadafi, Nigel P. Smart, and BogdanWarinschi. “Groth-Sahai Proofs
Revisited.” In: PKC 2010: 13th International Conference onTheory and Practice
of Public Key Cryptography. Ed. by PhongQ. Nguyen and David Pointcheval.
Vol. 6056. Lecture Notes in Computer Science. Paris, France: Springer,
Heidelberg, Germany, May 2010, pp. 177–192. doi: 10.1007/978-3-642-
13013-7_11 (cit. on pp. 36, 39).

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic Encryption
from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based.” In: Advances in Cryptology – CRYPTO 2013, Part I. Ed. by
Ran Canetti and Juan A. Garay. Vol. 8042. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
2013, pp. 75–92. doi: 10.1007/978-3-642-40041-4_5 (cit. on p. 125).

[HK08] Dennis Hofheinz and Eike Kiltz. “Programmable Hash Functions and Their
Applications.” In: Advances in Cryptology – CRYPTO 2008. Ed. by David
Wagner. Vol. 5157. Lecture Notes in Computer Science. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 2008, pp. 21–38. doi: 10.1007/
978-3-540-85174-5_2 (cit. on pp. 36, 38).

[HS03] Javier Herranz and Germán Sáez. “Forking Lemmas for Ring Signature
Schemes.” In: Progress in Cryptology - INDOCRYPT 2003: 4th International
Conference in Cryptology in India. Ed. by Thomas Johansson and Subhamoy

https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230%5C_29
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-540-85174-5_2

181

Maitra. Vol. 2904. Lecture Notes in Computer Science. New Delhi, India:
Springer, Heidelberg, Germany, Dec. 2003, pp. 266–279 (cit. on p. 164).

[HS14] Christian Hanser and Daniel Slamanig. “Structure-Preserving Signatures
on Equivalence Classes and Their Application to Anonymous Credentials.”
In: Advances in Cryptology – ASIACRYPT 2014, Part I. Ed. by Palash Sarkar
and Tetsu Iwata. Vol. 8873. Lecture Notes in Computer Science. Kaoshiung,
Taiwan, R.O.C.: Springer, Heidelberg, Germany, Dec. 2014, pp. 491–511.
doi: 10.1007/978-3-662-45611-8_26 (cit. on pp. 4, 31, 40, 42).

[HW15] Pavel Hubacek and Daniel Wichs. “On the Communication Complexity
of Secure Function Evaluation with Long Output.” In: ITCS 2015: 6th Con-
ference on Innovations in Theoretical Computer Science. Ed. by Tim Rough-
garden. Rehovot, Israel: Association for Computing Machinery, Jan. 2015,
pp. 163–172. doi: 10.1145/2688073.2688105 (cit. on pp. 124, 125, 132).

[Jac+19] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse. “Seems
Legit: Automated Analysis of Subtle Attacks on Protocols that Use Sig-
natures.” In: ACM CCS 2019: 26th Conference on Computer and Commu-
nications Security. Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz. ACM Press, Nov. 2019, pp. 2165–2180. doi:
10.1145/3319535.3339813 (cit. on p. 15).

[Joh+02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner.
“Homomorphic Signature Schemes.” In: Topics in Cryptology – CT-RSA 2002.
Ed. by Bart Preneel. Vol. 2271. Lecture Notes in Computer Science. San
Jose, CA, USA: Springer, Heidelberg, Germany, Feb. 2002, pp. 244–262. doi:
10.1007/3-540-45760-7_17 (cit. on p. 81).

[KY05a] Aggelos Kiayias and Moti Yung. “Efficient Secure Group Signatures with
Dynamic Joins and Keeping Anonymity Against Group Managers.” In:
Mycrypt 2005. 2005, pp. 151–170. doi: 10.1007/11554868_11. url: https:
//doi.org/10.1007/11554868_11 (cit. on p. 118).

[KY05b] Aggelos Kiayias and Moti Yung. “Group Signatures with Efficient Concur-
rent Join.” In: Advances in Cryptology – EUROCRYPT 2005. Ed. by Ronald
Cramer. Vol. 3494. Lecture Notes in Computer Science. Aarhus, Denmark:
Springer, Heidelberg, Germany, May 2005, pp. 198–214. doi: 10.1007/
11426639_12 (cit. on pp. 84, 98).

[KY06] Aggelos Kiayias and Moti Yung. “Secure scalable group signature with
dynamic joins and separable authorities.” In: IJSN 1.1/2 (2006), pp. 24–45.
doi: 10.1504/IJSN.2006.010821. url: https://doi.org/10.1504/
IJSN.2006.010821 (cit. on pp. 84, 98, 119).

https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1145/2688073.2688105
https://doi.org/10.1145/3319535.3339813
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/11554868_11
https://doi.org/10.1007/11554868_11
https://doi.org/10.1007/11554868_11
https://doi.org/10.1007/11426639_12
https://doi.org/10.1007/11426639_12
https://doi.org/10.1504/IJSN.2006.010821
https://doi.org/10.1504/IJSN.2006.010821
https://doi.org/10.1504/IJSN.2006.010821

182 Bibliography

[KZ07] Aggelos Kiayias and Hong-Sheng Zhou. “Hidden Identity-Based Signa-
tures.” In: Financial Cryptography and Data Security, 11th International
Conference, FC 2007, and 1st International Workshop on Usable Security,
USEC 2007, Scarborough, Trinidad and Tobago, February 12-16, 2007. Re-
vised Selected Papers. Ed. by Sven Dietrich and Rachna Dhamija. Vol. 4886.
Lecture Notes in Computer Science. Springer, 2007, pp. 134–147. isbn:
978-3-540-77365-8. doi: 10.1007/978-3-540-77366-5_14. url: https:
//doi.org/10.1007/978-3-540-77366-5%5C_14 (cit. on p. 117).

[LAZ19] Xingye Lu, Man Ho Au, and Zhenfei Zhang. “Raptor: A Practical Lattice-
Based (Linkable) Ring Signature.” In:ACNS 19: 17th International Conference
on Applied Cryptography and Network Security. Ed. by Robert H. Deng,
Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung. Vol. 11464. Lec-
ture Notes in Computer Science. Bogota, Colombia: Springer, Heidelberg,
Germany, June 2019, pp. 110–130. doi: 10.1007/978-3-030-21568-2_6
(cit. on pp. 126, 127).

[Lin+18] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. “Constant-Size
Group Signatures from Lattices.” In: PKC 2018: 21st International Conference
on Theory and Practice of Public Key Cryptography, Part II. Ed. by Michel
Abdalla and Ricardo Dahab. Vol. 10770. Lecture Notes in Computer Science.
Rio de Janeiro, Brazil: Springer, Heidelberg, Germany, Mar. 2018, pp. 58–88.
doi: 10.1007/978-3-319-76581-5_3 (cit. on p. 119).

[LPQ18] Benoît Libert, Thomas Peters, and Chen Qian. “Logarithmic-Size Ring Sig-
natures with Tight Security from the DDH Assumption.” In: ESORICS 2018:
23rd European Symposium on Research in Computer Security, Part II. Ed. by
Javier López, Jianying Zhou, and Miguel Soriano. Vol. 11099. Lecture Notes
in Computer Science. Barcelona, Spain: Springer, Heidelberg, Germany,
Sept. 2018, pp. 288–308. doi: 10.1007/978-3-319-98989-1_15 (cit. on
p. 165).

[LPY12a] Benoît Libert, Thomas Peters, and Moti Yung. “Group Signatures with
Almost-for-Free Revocation.” In: Advances in Cryptology – CRYPTO 2012.
Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2012, pp. 571–589. doi: 10.1007/978-3-642-32009-5_34 (cit. on
p. 118).

[LPY12b] Benoît Libert, Thomas Peters, and Moti Yung. “Scalable Group Signatures
with Revocation.” In: Advances in Cryptology – EUROCRYPT 2012. Ed. by
David Pointcheval and Thomas Johansson. Vol. 7237. Lecture Notes in
Computer Science. Cambridge, UK: Springer, Heidelberg, Germany, Apr.
2012, pp. 609–627. doi: 10.1007/978-3-642-29011-4_36 (cit. on p. 118).

https://doi.org/10.1007/978-3-540-77366-5_14
https://doi.org/10.1007/978-3-540-77366-5%5C_14
https://doi.org/10.1007/978-3-540-77366-5%5C_14
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-319-76581-5_3
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-642-32009-5_34
https://doi.org/10.1007/978-3-642-29011-4_36

183

[LPY15] Benoît Libert, Thomas Peters, and Moti Yung. “Short Group Signatures
via Structure-Preserving Signatures: Standard Model Security from Simple
Assumptions.” In: Advances in Cryptology – CRYPTO 2015, Part II. Ed. by
Rosario Gennaro and Matthew J. B. Robshaw. Vol. 9216. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2015, pp. 296–316. doi: 10.1007/978-3-662-48000-7_15 (cit. on
pp. 80, 86, 116, 119, 167).

[LWW04] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. “Linkable Spontaneous
Anonymous Group Signature for Ad Hoc Groups (Extended Abstract).” In:
ACISP 04: 9th Australasian Conference on Information Security and Privacy.
Ed. by Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan. Vol. 3108.
Lecture Notes in Computer Science. Sydney, NSW, Australia: Springer,
Heidelberg, Germany, July 2004, pp. 325–335. doi: 10.1007/978-3-540-
27800-9_28 (cit. on pp. 6, 165).

[MS17] Giulio Malavolta and Dominique Schröder. “Efficient Ring Signatures in
the Standard Model.” In: Advances in Cryptology – ASIACRYPT 2017, Part II.
Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10625. Lecture Notes in
Computer Science. Hong Kong, China: Springer, Heidelberg, Germany,
Dec. 2017, pp. 128–157. doi: 10.1007/978-3-319-70697-9_5 (cit. on
pp. 32, 81, 165, 168).

[MVO91] Alfred Menezes, Scott A. Vanstone, and Tatsuaki Okamoto. “Reducing
Elliptic Curve Logarithms to Logarithms in a Finite Field.” In: 23rd Annual
ACM Symposium on Theory of Computing. New Orleans, LA, USA: ACM
Press, May 1991, pp. 80–89. doi: 10.1145/103418.103434 (cit. on p. 32).

[Noe15] Shen Noether. Ring Signature Confidential Transactions for Monero. Cryp-
tology ePrint Archive, Report 2015/1098. http://eprint.iacr.org/
2015/1098. 2015 (cit. on p. 6).

[Oka+15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs.
“New Realizations of Somewhere Statistically Binding Hashing and Posi-
tional Accumulators.” In: Advances in Cryptology – ASIACRYPT 2015, Part I.
Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9452. Lecture Notes in Com-
puter Science. Auckland, New Zealand: Springer, Heidelberg, Germany,
Nov. 2015, pp. 121–145. doi: 10.1007/978-3-662-48797-6_6 (cit. on
pp. 125, 135).

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes, and
cryptography.” In: 37th Annual ACM Symposium on Theory of Computing.
Ed. by Harold N. Gabow and Ronald Fagin. Baltimore, MA, USA: ACM
Press, May 2005, pp. 84–93. doi: 10.1145/1060590.1060603 (cit. on
pp. 123, 129, 132).

https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-319-70697-9_5
https://doi.org/10.1145/103418.103434
http://eprint.iacr.org/2015/1098
http://eprint.iacr.org/2015/1098
https://doi.org/10.1007/978-3-662-48797-6_6
https://doi.org/10.1145/1060590.1060603

184 Bibliography

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a Secret.” In:
Advances in Cryptology – ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248.
Lecture Notes in Computer Science. Gold Coast, Australia: Springer, Heidel-
berg, Germany, Dec. 2001, pp. 552–565. doi: 10.1007/3-540-45682-1_32
(cit. on pp. 3, 31, 164).

[Ruf+18] Tim Ruffing, Sri Aravinda Thyagarajan, Viktoria Ronge, and Dominique
Schröder. “Burning Zerocoins for Fun and for Profit - A Cryptographic
Denial-of-Spending Attack on the Zerocoin Protocol.” In: 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT). 2018, pp. 116–119. doi:
10.1109/CVCBT.2018.00023 (cit. on p. 129).

[Sak+12] Yusuke Sakai, Jacob C. N. Schuldt, Keita Emura, Goichiro Hanaoka, and
Kazuo Ohta. “On the Security of Dynamic Group Signatures: Preventing
Signature Hijacking.” In: PKC 2012: 15th International Conference on Theory
and Practice of Public Key Cryptography. Ed. by Marc Fischlin, Johannes
Buchmann, and Mark Manulis. Vol. 7293. Lecture Notes in Computer Sci-
ence. Darmstadt, Germany: Springer, Heidelberg, Germany, May 2012,
pp. 715–732. doi: 10.1007/978-3-642-30057-8_42 (cit. on pp. 84, 98).

[Sch90] Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart
Cards.” In: Advances in Cryptology – CRYPTO’89. Ed. by Gilles Brassard.
Vol. 435. Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 1990, pp. 239–252. doi: 10.1007/0-
387-34805-0_22 (cit. on p. 7).

[SS10] Sven Schäge and Jörg Schwenk. “A CDH-Based Ring Signature Scheme
with Short Signatures and Public Keys.” In: FC 2010: 14th International
Conference on Financial Cryptography and Data Security. Ed. by Radu Sion.
Vol. 6052. Lecture Notes in Computer Science. Tenerife, Canary Islands,
Spain: Springer, Heidelberg, Germany, Jan. 2010, pp. 129–142 (cit. on p. 165).

[SW07] Hovav Shacham and Brent Waters. “Efficient Ring Signatures Without
Random Oracles.” In: PKC 2007: 10th International Conference on Theory
and Practice of Public Key Cryptography. Ed. by Tatsuaki Okamoto and
Xiaoyun Wang. Vol. 4450. Lecture Notes in Computer Science. Beijing,
China: Springer, Heidelberg, Germany, Apr. 2007, pp. 166–180. doi: 10.
1007/978-3-540-71677-8_12 (cit. on pp. 165, 168).

[Tor+18] Wilson Abel Alberto Torres, Ron Steinfeld, Amin Sakzad, Joseph K. Liu,
Veronika Kuchta, Nandita Bhattacharjee, Man Ho Au, and Jacob Cheng.
“Post-Quantum One-Time Linkable Ring Signature and Application to Ring
Confidential Transactions in Blockchain (Lattice RingCT v1.0).” In: ACISP
18: 23rd Australasian Conference on Information Security and Privacy. Ed. by
Willy Susilo and Guomin Yang. Vol. 10946. Lecture Notes in Computer

https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1109/CVCBT.2018.00023
https://doi.org/10.1007/978-3-642-30057-8_42
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-540-71677-8_12
https://doi.org/10.1007/978-3-540-71677-8_12

185

Science. Wollongong, NSW, Australia: Springer, Heidelberg, Germany, July
2018, pp. 558–576. doi: 10.1007/978-3-319-93638-3_32 (cit. on p. 165).

[TW04] Patrick P. Tsang and Victor K. Wei. Short Linkable Ring Signatures for E-
Voting, E-Cash and Attestation. Cryptology ePrint Archive, Report 2004/281.
http://eprint.iacr.org/2004/281. 2004 (cit. on p. 6).

[TX03] Gene Tsudik and Shouhuai Xu. “Accumulating Composites and Improved
Group Signing.” In: Advances in Cryptology – ASIACRYPT 2003. Ed. by Chi-
Sung Laih. Vol. 2894. Lecture Notes in Computer Science. Taipei, Taiwan:
Springer, Heidelberg, Germany, Nov. 2003, pp. 269–286. doi: 10.1007/978-
3-540-40061-5_16 (cit. on p. 118).

[Ver01] Eric R. Verheul. “Self-Blindable Credential Certificates from the Weil Pair-
ing.” In: Advances in Cryptology – ASIACRYPT 2001. Ed. by Colin Boyd.
Vol. 2248. Lecture Notes in Computer Science. Gold Coast, Australia:
Springer, Heidelberg, Germany, Dec. 2001, pp. 533–551. doi: 10.1007/3-
540-45682-1_31 (cit. on pp. 66, 81).

[Wat05] Brent R. Waters. “Efficient Identity-Based Encryption Without Random
Oracles.” In: Advances in Cryptology – EUROCRYPT 2005. Ed. by Ronald
Cramer. Vol. 3494. Lecture Notes in Computer Science. Aarhus, Denmark:
Springer, Heidelberg, Germany, May 2005, pp. 114–127. doi: 10.1007/
11426639_7 (cit. on p. 38).

https://doi.org/10.1007/978-3-319-93638-3_32
http://eprint.iacr.org/2004/281
https://doi.org/10.1007/978-3-540-40061-5_16
https://doi.org/10.1007/978-3-540-40061-5_16
https://doi.org/10.1007/3-540-45682-1_31
https://doi.org/10.1007/3-540-45682-1_31
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/11426639_7

Formal Oracle Definitions

We state the full formal definition of the oracles used in the model of fully dynamic
group signatures laid out in chapter 4. We have highlighted differences from the original
presentation due to [Boo+16], which arise from our treatment of membership privacy
and functional tracing soundness.

AddUser(uid)

if uid ∈ H ∪ C then return ⊥
(usk[uid], upk[uid])← DGS.UserKeyGen(1λ)

H := H ∪ {uid}
~gsk[uid] := ⊥;
proceedissuer[uid]? := continue
stateuser[uid] := (ηnow , gpk, uid, usk[uid])

stateissuer[uid] := (ηnow ,msk, uid, upk[uid])

while proceeduser[uid]? = continue
and proceedissuer[uid]? = continue do

(stateissuer[uid],MDGS.Join, proceedissuer[uid]?)← DGS.Issue(stateissuer[uid],MDGS.Issue)

(stateuser[uid],MDGS.Issue, proceeduser[uid]?)← DGS.Join(stateuser[uid],MDGS.Join)

if proceedissuer[uid]? = accept
then reg[uid] := stateissuer[uid]

if proceeduser[uid]? = accept

then ~gsk[uid] := stateuser[uid]

return (infonow , upk[uid])

188 Formal Oracle Definitions

Challengeb(infoη, uid0, uid1,m)

if {uid0, uid1} ∩H 6= {uid0, uid1}

or ∃b ∈ {0, 1} s.t. ~gsk[uidb] = ⊥
or DGS.Active?(infoη, reg, uidb) = false

then return ⊥

σ ← DGS.Sign(gpk, ~gsk[uidb], infoη,m)

Q∗ := Q∗ ∪ {(m,σ, η)}
return σ

Privacyb,uid0,uid1,η∗(m, η)

if η < η∗ then return ⊥
if invert = true

σ ← DGS.Sign(gpk, ~gsk[uid(1−b)], infoη,m)

else

σ ← DGS.Sign(gpk, ~gsk[uidb], infoη,m)

Q∗ := Q∗ ∪ {(m,σ, η)}
return σ

ReadReg(uid)

return reg[uid]

ModifyReg(uid, val)

reg[uid] := val

Reveal(uid)

if uid 6∈ H \ (C ∪ B)
or uid ∈ U
then return ⊥

B := B ∪ {uid}

return (usk[uid], ~gsk[uid])

CorruptUser(uid, pk)

if uid ∈ H ∪ C ∪U then return ⊥
C := C ∪ {uid}
upk[uid] := pk

return accept

189

Sign(uid,m, η)

if uid 6∈ H\U

or ~gsk[uid] = ⊥
or infoη = ⊥
or DGS.Active?(infoη, reg, uid) = false

then return ⊥

σ ← DGS.Sign(gpk, ~gsk[uid], infoη,m)

Q := Q ∪ {(uid,m, σ, η)}
return σ

SendM(uid,Min)

if uid 6∈ C or proceedissuer[uid]? 6= continue
or uid ∈ U then return ⊥
stateissuer[uid] := (ηnow ,msk, uid, upk[uid])

(stateissuer[uid],Mout, proceedissuer[uid]?)← DGS.Issue(stateissuer[uid],Min)

if proceedissuer[uid]? = accept then reg[uid] := stateissuer[uid]

return (Mout, proceedissuer[uid]?)

SendU(uid,Min)

if uid ∈ C ∪ B then return ⊥
if uid 6∈ H then
H := H ∪ {uid}
(usk[uid], upk[uid])← DGS.UserKeyGen(1λ)

~gsk[uid] := ⊥;Min := ⊥
if proceeduser[uid]? 6= continue then return ⊥
if stateuser[uid] = ⊥ then stateuser[uid] := (ηnow , gpk, uid, usk[uid])

(stateuser[uid],Mout, proceeduser[uid]?)← DGS.Join(stateuser[uid],Min)

if proceeduser[uid]? = accept then ~gsk[uid] := stateuser[uid]

return (Mout, proceeduser[uid]?)

190 Formal Oracle Definitions

Trace(m,σ, infoη)

if DGS.Verify(gpk, infoη,m, σ) = reject or (m,σ, η) ∈ Q∗

then return (⊥,⊥)
return DGS.Trace(gpk, tsk, infoη, reg,m, σ)

UpdateGroup(R)

if U ∩R 6= ∅ then return ⊥
return DGS.Update(gpk,msk, infonow , R, reg)

	Preamble
	Details of Colloquium
	Abstract
	Zusammenfassung
	Acknowledgments

	Contents
	Introduction
	Privacy Preserving Signatures
	Group Signatures
	Ring Signatures

	An Overview of Our Results
	Signatures with Flexible Public Keys
	Applications of SFPK to Privacy-Preserving Signatures
	SFPK and Group Signatures
	SFPK and Ring Signatures

	Logarithmic Size (Linkable) Ring Signatures

	Structure of This Thesis
	Publication History

	Background and Building Blocks
	General Preliminaries
	Notation and Other Conventions
	The Game-Based Approach to Provable Security

	Basic Primitives
	Digital Signature Schemes
	Public Key Encryption
	Non-interactive Proof Systems

	Background on Group Signatures
	Security of Static Group Signatures

	Background on Ring Signatures
	Security of Ring Signatures

	Signatures with Flexible Public Keys
	Introduction
	Contributions in this Chapter

	Chapter Preliminaries
	The Bilinear Group Setting
	Cryptographic Assumptions in the Bilinear Group Setting

	Programmable Hash Functions
	Non-interactive Proof Systems for Pairing Product Equations
	Structure-Preserving Signatures on Equivalence Classes

	Signatures with Flexible Public Keys
	Security of Signatures with Flexible Public Keys
	Class Hiding
	Unforgeability under Flexible Public Keys

	SFPK with Setup

	Instantiating SFPK
	Without Setup
	Proof of Unforgeability
	Proof of Class Hiding

	With Setup and Canonical Representatives
	Proof of Unforgeability
	Proof of Class Hiding

	Applications of SFPK to Privacy-Preserving Signatures
	Static Group Signatures
	Proof of Full Traceability
	Proof of Anonymity

	Ring Signatures
	Proof of Unforgeability
	Proof of Anonymity

	Practical Instantiations

	Related Work

	Membership Privacy for Fully Dynamic Group Signatures
	Introduction
	Contributions in This Chapter

	Chapter Preliminaries
	The Fully Dynamic Group Signature Model

	Extensions to the Fully Dynamic Model
	Functional Tracing Soundness
	Membership Privacy in the Fully Dynamic Model

	Generic Construction of Membership-Private Group Signatures
	Proof of Traceability
	Proof of Anonymity
	Proof of Non-frameability
	Proof of Functional Tracing Soundness
	Proof of Membership Privacy

	Efficient Instantiation
	Related Work

	Logarithmic Size (Linkable) Ring Signatures
	Introduction
	Technical Overview of Logarithmic Ring Signatures
	On Linkable Ring Signatures
	Contributions in This Chapter

	Chapter Preliminaries
	Non-interactive Proof Systems
	Non-interactive Commitment Schemes
	Public Key Encryption
	Somewhere Perfectly Binding Hashing

	Logarithmic Size Ring-Signatures
	Proof of Unforgeability
	Proof of Anonymity

	Linkable Ring Signatures, Revisited
	Linkability
	Anonymity
	Non-Frameability

	Construction of Linkable Ring Signatures
	Proof of Unforgeability
	Proof of Linkable Anonymity
	Proof of Linkability
	Proof of Non-Frameability

	Related Work

	Outlook
	Recapitulating our Results
	Future Work
	Further Applications of SFPK
	Instantiation of SPB Hashing

	Bibliography
	Formal Oracle Definitions

