172 research outputs found

    Security for 5G Mobile Wireless Networks

    Get PDF
    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use cases in 5G wireless networks are then summarized. The recent development and the existing schemes for the 5G wireless security are presented based on the corresponding security services including authentication, availability, data confidentiality, key management and privacy. The paper further discusses the new security features involving different technologies applied to 5G such as heterogeneous networks, device-to-device communications, massive multiple-input multiple-output, software defined networks and Internet of Things. Motivated by these security research and development activities, we propose a new 5G wireless security architecture, based on which the analysis of identity management and flexible authentication is provided. As a case study, we explore a handover procedure as well as a signaling load scheme to show the advantage of the proposed security architecture. The challenges and future directions of 5G wireless security are finally summarized

    Quality of Assessment in Connected Vehicles

    Get PDF
    In recent years, there has been a huge interest in Machine-to-Machine connectivity under the umbrella of Internet of Things (IoT). With the UK Government looking to trial autonomous (driverless) cars this year, connected vehicles will play a key part in improving and managing existing road safety and congestion, leading to a new generation of intelligent transport systems. This is also well aligned to the current initiatives by the automotive industry to improve the driver’s experience on-board. However, the wireless channels most suitable for this application have not been standardized. In this paper, we review the wireless channels suitable for vehicle-2-vehicle (V2V) and Vehicle–to-x (V2x) connectivity. We further present preliminary analysis on the factors that impact the Quality of Service (QoS) of connected vehicles. We use the open access GEMV2 data to carry out Analysis of Variance (ANOVA) and Principal Component Analysis (PCA) on the link quality and found that both line of sight and non line of sight has a significant impact on the link quality. The work presented here will help in the development of connected vehicle network (CVN) prediction model and control for V2V and V2x connectivity. It will further contribute towards unfolding and testing key research questions in the context of connected vehicles which may otherwise be overlooked

    Quality of Assessment in Connected Vehicles

    Get PDF
    In recent years, there has been a huge interest in Machine-to-Machine connectivity under the umbrella of Internet of Things (IoT). With the UK Government looking to trial autonomous (driverless) cars this year, connected vehicles will play a key part in improving and managing existing road safety and congestion, leading to a new generation of intelligent transport systems. This is also well aligned to the current initiatives by the automotive industry to improve the driver’s experience on-board. However, the wireless channels most suitable for this application have not been standardized. In this paper, we review the wireless channels suitable for vehicle-2-vehicle (V2V) and Vehicle–to-x (V2x) connectivity. We further present preliminary analysis on the factors that impact the Quality of Service (QoS) of connected vehicles. We use the open access GEMV2 data to carry out Analysis of Variance (ANOVA) and Principal Component Analysis (PCA) on the link quality and found that both line of sight and non line of sight has a significant impact on the link quality. The work presented here will help in the development of connected vehicle network (CVN) prediction model and control for V2V and V2x connectivity. It will further contribute towards unfolding and testing key research questions in the context of connected vehicles which may otherwise be overlooked

    Design and Evaluation of a Scalable Engine for 3D-FFT Computation in an FPGA Cluster

    Get PDF
    The Three Dimensional Fast Fourier Transform (3D-FFT) is commonly used to solve the partial differential equations describing the system evolution in several physical phenomena, such as the motion of viscous fluids described by the Navier–Stokes equations. Simulation of such problems requires the use of a parallel High-Performance Computing architecture since the size of the problem grows with the cube of the FFT size, and the representation of the single point comprises several double precision floating- point complex numbers. Modern High-Performance Computing (HPC) systems are considering the inclusion of FPGAs as components of this computing architecture because they can combine effective hardware acceleration capabilities and dedicated communication facilities. Furthermore, the network topology can be optimized for the specific calculation that the cluster must perform, especially in the case of algorithms limited by the data exchange delay between the processors. In this paper, we explore an HPC design that uses FPGA accelerators to compute the 3DFFT. We devise a scalable FFT engine based on a custom radix-2 double-precision core that is used to implement the Decimation in Frequency version of the Cooley–Tukey FFT algorithm. The FFT engine can be adapted to different technology constraints and networking topologies by adjusting the number of cores and configuration parameters in order to minimize the overall calculation time. We compare the various possible configurations with the technological limits of available hardware. Finally, we evaluate the bandwidth required for continuous FFT execution in the APEnet toroidal mesh network.

    Cognitive internet of things: concepts and application example,”

    Get PDF
    Abstract Internet of Things (IoT) is a heterogeneous, mixed and uncertain ubiquitous network, the application prospect of which is extensive in the field of modern intelligent service. Having done a deep investigation on the discrepancies between service offering and application requirement, we believed that current IoT lacks enough intelligence and cannot achieve the expected increasing applications' performance. By integrating intelligent thought into IoT, we presented a new concept of Cognitive Internet of Things (CIoT) in this paper. CIoT can apperceive current network conditions, analyze the perceived knowledge, make intelligent decisions, and perform adaptive actions, which aim to maximize network performance. We modeled the CIoT network topology and designed cognition-process-related technologies, analyzed the payoffs of cooperative cognition based on game theory, which illustrates those novel designs can endows IoT with intelligence and fully improve system's performance. Finally, an application example was introduced based on the concept of CIoT

    Towards Neuro-Inspired Electronic Oscillators Based on The Dynamical Relaying Mechanism

    Get PDF
    Electronic oscillators are used for the generation of both continuous and discrete signals, playing a fundamental role in today’s electronics. In both contexts, these systems require stringent performances such as spectral purity, low phase noise, frequency and temperature stability. In state of the art oscillators the preservation of some of these aspects is jeopardized by specific critical issues, e.g., the sensitivity to load capacitance or the component aging over time. This leaves room for the search of new technologies for their realization. On the other hand, in the last decade electronics has been influenced by a growing number of neuro-inspired mechanisms, which allowed for alternative techniques aimed at solving some classical critical issues.In this paper we present an exploratory study for the development of electronic oscillators based on the neuro-inspired mechanism dynamical relaying, which relies on a structure composed of three delay coupled units (as neurons or even neuron populations) able to resonate and self-organise to generate and maintain a given rhythm with great reliability over a considerable parameter range, showing robustness to noise. We used the recent leaky integrated and fire with latency (LIFL) as neuron model. We have initially developed the mathematical model of the neuro-inspired oscillator, and implemented it using Matlab®; then, we have realized the schematic of such system in PSpice®. Finally, the model has been validated to verify whether it observes the fundamental properties of the dynamical relaying mechanisms described in computational neuroscience studies, and if the circuit implementation presents the same behaviour of the mathematical model.Validation results suggest that the dynamical relaying mechanism can be proficuously taken in consideration as alternative strategy for the design of electronic oscillators

    Optical Wireless Data Center Networks

    Get PDF
    Bandwidth and computation-intensive Big Data applications in disciplines like social media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analytics, are pushing existing access and core (backbone) networks as well as Data Center Networks (DCNs) to their limits. Next generation DCNs must support continuously increasing network traffic while satisfying minimum performance requirements of latency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e., copper-cables and fiber optics) may be required in conventional wired DCNs. In addition to limiting the possible topologies, large number of cables may result into design and development problems related to wire ducting and maintenance, heat dissipation, and power consumption. To address the cabling complexity in wired DCNs, we propose OWCells, a class of optical wireless cellular data center network architectures in which fixed line of sight (LOS) optical wireless communication (OWC) links are used to connect the racks arranged in regular polygonal topologies. We present the OWCell DCN architecture, develop its theoretical underpinnings, and investigate routing protocols and OWC transceiver design. To realize a fully wireless DCN, servers in racks must also be connected using OWC links. There is, however, a difficulty of connecting multiple adjacent network components, such as servers in a rack, using point-to-point LOS links. To overcome this problem, we propose and validate the feasibility of an FSO-Bus to connect multiple adjacent network components using NLOS point-to-point OWC links. Finally, to complete the design of the OWC transceiver, we develop a new class of strictly and rearrangeably non-blocking multicast optical switches in which multicast is performed efficiently at the physical optical (lower) layer rather than upper layers (e.g., application layer). Advisors: Jitender S. Deogun and Dennis R. Alexande
    corecore