3 research outputs found

    Impact of denial of service solutions on network quality of service

    Get PDF
    The Internet has become a universal communication network tool. It has evolved from a platform that supports best-effort traffic to one that now carries different traffic types including those involving continuous media with quality of service (QoS) requirements. As more services are delivered over the Internet, we face increasing risk to their availability given that malicious attacks on those Internet services continue to increase. Several networks have witnessed denial of service (DoS) and distributed denial of service (DDoS) attacks over the past few years which have disrupted QoS of network services, thereby violating the Service Level Agreement (SLA) between the client and the Internet Service Provider (ISP). Hence DoS or DDoS attacks are major threats to network QoS. In this paper we survey techniques and solutions that have been deployed to thwart DoS and DDoS attacks and we evaluate them in terms of their impact on network QoS for Internet services. We also present vulnerabilities that can be exploited for QoS protocols and also affect QoS if exploited. In addition, we also highlight challenges that still need to be addressed to achieve end-to-end QoS with recently proposed DoS/DDoS solutions

    Securing user-controlled routing infrastructures

    No full text
    Abstract—Designing infrastructures that give untrusted thirdparties (such as end-hosts) control over routing is a promising research direction for achieving flexible and efficient communication. However, serious concerns remain over the deployment of such infrastructures, particularly the new security vulnerabilities they introduce. The flexible control plane of these infrastructures can be exploited to launch many types of powerful attacks with little effort. In this paper, we make several contributions towards studying security issues in forwarding infrastructures (FIs). We present a general model for a forwarding infrastructure, analyze potential security vulnerabilities, and present techniques to address these vulnerabilities. The main technique that we introduce in this paper is the use of simple, light-weight, cryptographic constraints on forwarding entries. We show that it is possible to prevent a large class of attacks on end-hosts, and bound the flooding attacks that can be launched on the infrastructure nodes to a small constant value. Our mechanisms are general and apply to a variety of earlier proposals such as i3, DataRouter and Network Pointers. Index Terms—security, overlay networks, Internet architectur
    corecore