989 research outputs found

    Secret Communication over Broadcast Erasure Channels with State-feedback

    Full text link
    We consider a 1-to-KK communication scenario, where a source transmits private messages to KK receivers through a broadcast erasure channel, and the receivers feed back strictly causally and publicly their channel states after each transmission. We explore the achievable rate region when we require that the message to each receiver remains secret - in the information theoretical sense - from all the other receivers. We characterize the capacity of secure communication in all the cases where the capacity of the 1-to-KK communication scenario without the requirement of security is known. As a special case, we characterize the secret-message capacity of a single receiver point-to-point erasure channel with public state-feedback in the presence of a passive eavesdropper. We find that in all cases where we have an exact characterization, we can achieve the capacity by using linear complexity two-phase schemes: in the first phase we create appropriate secret keys, and in the second phase we use them to encrypt each message. We find that the amount of key we need is smaller than the size of the message, and equal to the amount of encrypted message the potential eavesdroppers jointly collect. Moreover, we prove that a dishonest receiver that provides deceptive feedback cannot diminish the rate experienced by the honest receivers. We also develop a converse proof which reflects the two-phase structure of our achievability scheme. As a side result, our technique leads to a new outer bound proof for the non-secure communication problem

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    Signcryption schemes with threshold unsigncryption, and applications

    Get PDF
    The final publication is available at link.springer.comThe goal of a signcryption scheme is to achieve the same functionalities as encryption and signature together, but in a more efficient way than encrypting and signing separately. To increase security and reliability in some applications, the unsigncryption phase can be distributed among a group of users, through a (t, n)-threshold process. In this work we consider this task of threshold unsigncryption, which has received very few attention from the cryptographic literature up to now (maybe surprisingly, due to its potential applications). First we describe in detail the security requirements that a scheme for such a task should satisfy: existential unforgeability and indistinguishability, under insider chosen message/ciphertext attacks, in a multi-user setting. Then we show that generic constructions of signcryption schemes (by combining encryption and signature schemes) do not offer this level of security in the scenario of threshold unsigncryption. For this reason, we propose two new protocols for threshold unsigncryption, which we prove to be secure, one in the random oracle model and one in the standard model. The two proposed schemes enjoy an additional property that can be very useful. Namely, the unsigncryption protocol can be divided in two phases: a first one where the authenticity of the ciphertext is verified, maybe by a single party; and a second one where the ciphertext is decrypted by a subset of t receivers, without using the identity of the sender. As a consequence, the schemes can be used in applications requiring some level of anonymity, such as electronic auctions.Peer ReviewedPostprint (author's final draft

    Implementing TontineCoin

    Get PDF
    One of the alternatives to proof-of-work (PoW) consensus protocols is proof-of- stake (PoS) protocols, which address its energy and cost related issues. But they suffer from the nothing-at-stake problem; validators (PoS miners) are bound to lose nothing if they support multiple blockchain forks. Tendermint, a PoS protocol, handles this problem by forcing validators to bond their stake and then seizing a cheater’s stake when caught signing multiple competing blocks. The seized stake is then evenly distributed amongst the rest of validators. However, as the number of validators increases, the benefit in finding a cheater compared to the cost of monitoring validators reduces, weakening the system’s defense against the problem. Previous work on TontineCoin addresses this problem by utilizing the concept of tontines. A tontine is an investment scheme in which each participant receives a portion of benefits based on their share. As the number of participants in a tontine decreases, individual benefit increases, which acts as a motivation for participants to eliminate each other. Utilizing this feature in TontineCoin ensures that validators (participants of a tontine) are highly motivated to monitor each other, thus strengthening the system against the nothing-at-stake problem. This project implements a prototype of Tendermint using the Spartan Gold codebase and develops TontineCoin based on it. This implementation is the first implementation of the protocol, and simulates and contrasts five different normal operations in both the Tendermint and TontineCoin models. It also simulates and discusses how a nothing-at-stake attack is handled in TontineCoin compared to Tendermint

    Secure Communication in Erasure Networks with State-feedback

    Get PDF
    The security and efficiency of communication are two of the main concerns for networks of today and the future. Our understanding of how to efficiently send information over various channels and networks has significantly increased in the past decade (see e.g., [1–3]), whereas our understanding of how to securely send information has not yet reached the same level. In this thesis, we advance the theory of secure communication by deriving capacity results and by developing coding schemes that provide information-theoretic security for erasure networks. We characterize the highest achievable secret-message rate in the presence of an eavesdropping adversary in various settings, where communication takes place over erasure channels with state-feedback. Our results provide such a characterization for a point-to-point erasure channel, for a broadcast erasure channel with multiple receivers, for a network with multiple parallel channels, a V-network and for a triangle network. We introduce several two-phase secure coding schemes that consist of a key generation phase and an encrypted message sending phase. Our schemes leverage several resources for security: channel erasures, feedback, common randomness and the topology of the network. We present coding schemes for all the above mentioned settings as well as for erasure networks with arbitrary topology. In all the cases where we provide exact characterization, a two-phase scheme achieves the secret-message capacity. All our proposed coding schemes use only linear operations and thus can serve as a basis for practical code designs. For networks, we develop a linear programming framework for describing secure coding schemes and for deriving new outer bounds. We use linear programs to describe our schemes and to prove their optimality. We derive new information theoretic outer bounds. In our intuitive interpretation, our proofs find the connection between the rate of the message and the rate of a secret key that is required to secure the message. Our results reveal nontrivial characteristics of secure communication in erasure networks. We find that – in contrast to non-secure communication – the secret message capacity of a cut does not simplify to the sum of the capacities of the channels that form the cut, moreover, the secret message capacity of a network does not simplify to the minimum secret message capacity of its cuts

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    • …
    corecore