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Abstract—One common way to ensure the security in voting
schemes, is to distribute critical tasks between different entities
- the so called trustees. While in most election settings, election
authorities perform the task of trustees, elections in small groups
such as board elections can be implemented in a way that all
voters are also trustees. This is actually the ideal case for an
election as trust is fully distributed. A number of voting schemes
have been proposed for such elections. Our focus is on a mix net
based approach to maximize flexibility regarding ballot design.
We proposed and implemented a corresponding voting scheme
as Android smartphone application as we believe smartphones
are most likely to be used in the considered election settings.
Our implementation also enables voters to remotely participate
in the voting process. The implementation enables us to measure
timings for the tallying phase for different settings in order to
analyze whether the chosen mix net based scheme is acceptable
for the considered election settings.

I. INTRODUCTION

In recent times there has been an increased interest in remote
electronic voting, while focusing on large scale elections,
such as political elections. However, there are also many
elections of smaller scale, such as polls in private associations,
university environments, committees, and boards with 20 to
30 voters. These boards used to conduct their elections during
meetings on paper - while some are planned in advance and
others are spontaneous ones; while some use simple yes / no
ballots others more complex ones including write in ballots.
Elections and polls during meetings is nowadays very difficult
as decisions are required much more often while at the same
time people are travelling much more. Correspondingly, some
voters are not personally present to vote on paper. So far
technology enables them to participate in public discussions
(e.g., over video conference). But then they are either excluded
from the voting process or the voting process is not secret
anymore.

Remote electronic voting would enable them to join also in
secret elections. However, well known remote electronic voting
schemes such as Civitas/JCJ [1] and Helios [2], [3] are not ap-
propriate as these schemes distribute the duties of registration,
voting and tabulation among a number of entities, which are
established in advance, thus requiring long preparation phases.
Correspondingly, they also require long preparation phases.
All this imposes a financial and administrative burden on the
election authorities which seems not to be adequate for board
elections - in particular spontaneous board elections.

Thus, what is required is a distributed voting scheme,
without central servers but only the voter’s devices be it
their laptops or smartphones. Note, beside not relying on

central servers and not requiring lengthy preparation processes,
distributed voting schemes have a further advantage: trust is
distributed among all voters as all voters act as trustee in terms
of standard voting schemes.

Correspondingly, our contribution is the proposal of a voting
scheme that meets all the above mentioned requirements of
secret elections and polls. The proposed voting scheme is based
on existing cryptographic components used in centralized
voting schemes such as verifiable mix nets, verifiable secret
sharing and threshold decryption.

Furthermore, we implemented the corresponding scheme as
Android smartphone application allowing voters to participate
also remotely. Note, we selected smartphone applications as
smartphones are most likely to be used in the considered
election settings and are as such the worst case scenario
regarding computationally and network capacity. The imple-
mentation enables us to measure timings for the tallying phase
for different settings in order to analyze whether the chosen
mix net based scheme is acceptable for the considered election
settings.

The remainder of this work is structured as follows: Section
II outlines the requirements that were determined to be of
relevance for the present election setting. In Section III, we
discuss the design decisions made and components selected
throughout the development process of our voting scheme. In
Section IV, we describe the composition of these components
in terms of a scheme description and evaluate the scheme’s
security in Section V. In Section VI, we report about the
implementation process. Section VII analyzes the scheme’s
efficiency. Section VIII reviews the related work and we
conclude this paper in Section IX.

II. REQUIREMENTS

Based on discussions with potential boards, we have iden-
tified the following general and security requirements for a
corresponding voting scheme. Note, these requirements should
be considered more from a practical point of view as differ-
ent (often unclear) legal requirements hold in such election
settings.

A. General requirements
The following general requirements have been identified:

Ballot flexibility: It should be possible to conduct elections
with ballots of any complexity due to the high spontaneity
of corresponding polls:
• Yes/No election
• Multiple candidate selection (”k out of L” election)
• Priority voting (ranking of the candidates)
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• Write-in ballots.
Voter flexibility: It should be able to change the list of

eligible voters for each election.
Spontaneity: Conducting the election should require as little

preparations as possible.
Mobility: The application should run on common mobile

devices.
Remote participation: It should be possible to cast a vote

although not physically present in the same room with
the other voters.

Usability: The system should be usable by non-specialists.
Efficiency: The tallying phase should not take more than 15

minutes for 25 participating voters.
Furthermore, it has been stated several times that it cannot

be assumed to have a PKI in place that can be used.

B. Security requirements
The following security requirements have been identified:

Eligibility: The system should only accept votes from eligible
voters.

Uniqueness: Only one vote should be accepted from each
voter.

Fairness: The voter should be unable to see the election
results, complete or partial, before she casts her own vote.

Vote secrecy: It should be impossible to get more information
about a relation between a voter and her vote than what
can be obtained from the final election result.

Integrity: It should be impossible to replace a cast vote with
a vote for another option.

Verifiability: The voter should be able to verify, that the
vote she intended to cast is included in the final tally
(individual verifiability). Furthermore, any third party
should be able to verify, that all the cast votes have been
tallied correctly (universal verifiability).

Robustness: After the votes have been cast, the system should
be able to fulfil its functions and tally the election result
in the presence of faults.

These security requirements should be ensured in the fol-
lowing security model. It is assumed that:

1) More than the half of all the voters are honest (including
available) during the whole voting process i.e. vote
casting and tallying. This assumption is justified due
to the fact that it would be unreasonable to conduct an
election where the majority is corrupted.

2) The devices of honest voters are also reliable, and
are not affected maliciously by faults in hardware
or software, both as the operating system of the the
devices, and as the voting application. This assumption
is justified for the same reason as the previous one.
Honest voters without honest devices cannot run the
protocol in an honest way.

3) The devices of honest users are able to communicate
with each other. Similar to the previous assumption this
assumption is necessary to enable honest voters to run
the voting.

4) No coercion takes place.

Note, in order to facilitate the second assumption, it is
important to introduce diversity in software and hardware.
There are several manufacturers of the Android smartphones,
thus, there is at least some grade of diversity. The diversity
in software can be ensured, if there are different sources from
different software developers, where the voters can get the
voting application from.

Note that we can only guarantee the security requirements
for honest voters. However, this holds true for traditional
elections as well. For instance, a malicious voter cannot be
prevented from forwarding her mail voting material to another
person, thus breaking the uniqueness property or

III. DESIGN DECISIONS

In this section we present the discussion on which crypto-
graphic primitives we used in the proposed voting system.

A. Public Key Infrastructure
As we cannot assume that a PKI is in place, part of

the voting application is to establish one. We do this by
first exchanging the voters’ RSA public keys for message
authentication, and then exchanging the voters’ AES keys for
message encryption.

While exchanging the RSA public keys without having any
means to authenticate the messages beforehand, one must
provide protection against the man-in-the-middle attacks. One
way to do this, without relying on certificate authorities and
other rather complex preparations, is to use the key exchange
based on short authentication strings, as described in [4]. The
scheme relies on the existence of an out-of-band channel -
namely, the voters should be able to communicate with each
other either via physical proximity, or via video or telephone
call. This channel is then used to perform manual verification
of short strings over such channel in order to exclude man-in-
the-middle attacks. In order to improve the usability of this
verification, according to the proposition in [5], the strings
have 24-bit length, and are represented as passphrases of three
words from the from the PGP Word List [6]. Note, that the
communication channels between eligible voters have to be
established beforehand in order to execute this scheme; other
preparations are not needed, thus increasing spontaneity.

After we use the scheme for exchanging the RSA public
keys between the voters, thus providing means for message
authentication, this keys are then being used in securing
communications while establishing symmetric AES keys be-
tween each pair of voters via Diffie-Hellman key exchange.
For generating the secret parameters in the Diffie-Hellman
exchange, the SHA-256 is used as the key derivation function.
Thus, means for securing end-to-end encryption are provided.

B. Verifiable secret sharing and threshold decryption
All most all proposed electronic voting schemes rely on a

a distributed verifiable secret sharing scheme to generate the
election key in a distributed manner and a verifiable threshold
decryption scheme to decrypt individual votes or the sum of
all votes in a distributed manner.
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A number of secret sharing schemes have been proposed
in the literature ([7], [8], [9], [10]), while some of them do
not have the means to verify the correctness of the secret
sharing, or require the existence of a single trusted instance
for key distribution. The scheme that does not have these
disadvantages is the one described by Pedersen in [11], [12]
and is proven to be IND-CPA secure if used in conjunction
with the ElGamal cryptosystem, as shown in [13]. Thus,
we decided to use this approach in our application. The
corresponding verifiable threshold decryption scheme, which
relies on the keys being generated as in [11] is described in
[14].

C. Homomorphic tallying versus mix net approach
The approaches, most commonly used in electronic voting

schemes for preserving the vote secrecy, are the homomorphic
tallying (e.g. in [15], [14]) and mix net schemes (e.g. in [16],
[17]). The first approach relies on homomorphic properties of a
crypto system used to encrypt the votes, most commonly, the
exponential ElGamal. The homomorphic property is used to
multiply the encrypted votes, and then to decrypt the resulting
sum. This approach, however, is inefficient for complex kinds
of ballots such as priority ranking, and is unsuitable for write-
in ballots. Therefore, for ensuring ballot flexibility in our
application we chose to use the mix net approach.

Two types of mix nets have been proposed: de-cryption
mixnets (e.g. in [18], [16]) and re-encryption mix nets (e.g.
in [17], [19]). In order to ensure robustness of the scheme,
we decided to implement one of the re-encryption mix net
schemes. Note, in case of a decryption mix net, one dishonest
note can violate robustness.

These schemes also rely on the homomorphic property of
an underlying crypto system. A number of entities called
the mix nodes, the role of which is taken by the voters
in our setting, participate in the scheme, whereby each mix
node in turn shuffles the list of encrypted ciphertexts C =
(c1 = Ench(v1, s1), ..., cN = Ench(v1, s1)) using a secret
permutation π and secret randomness values r = (r1, ..., rN ),
outputting the shuffled list C ′ = (c′1, ..., c

′
N ) so that holds:

c′i = Encpk(1, ri) · cπ(i)

D. Verifiable mix net schemes
In order to ensure integrity and to provide verifiability,

however, each note has to prove that the input and output set
contain the same votes (without revealing π and r). A number
of schemes for providing a so called non-interactive zero-
knowledge proof of shuffle have been developed ([20], [21],
[22], [23], [24]) which mainly differ in their efficiency, degree
of vote secrecy, integrity/verifiability as well as robustness. In
order to decide which of the proposed proofs is the most ap-
propriate one for our setting, we compare them wrt. efficiency,
vote secrecy and integrity/verifiability. For the comparison we
apply the following considerations:
• For the efficiency considerations, we consider the num-

ber of modular exponentiations E needed for computing
the proof of shuffle and for verifying it.

• In order to measure the degree of secrecy of the proposed
mix net schemes, we consider the size of anonymity
group |A|. Let C = {c1, ..., cN} be the list of ciphertexts
that results from the final shuffle. Let A ⊆ C be a group
of ciphertexts, whereby it is known that the vote of some
given voter is in A. Ideally, this group would be the
group of all votes cast within the election (|A| = N ), in
which case it is said that a mix net provides complete
secrecy. Otherwise, if |A| < N , the mix net’s secrecy is
incomplete.

• In order to measure the degree of integrity/verifiability
of a mix net scheme, we consider the probability p, that
the attacker can successfully prove the correctness of an
incorrect shuffle. Note, in case p is negligible, the mix
net scheme provides overwhelming integrity.

• In order to measure the degree of robustness, we
consider the minimal number of voters t, that should
participate and behave correctly during the mixing, in
order for it to provide a valid result.

The result of the evaluation according to these considerations is
proposed in Table I. As one can see, the schemes that provide
the best efficiency, such as the schemes in [20], [21], are
seriously lacking in either secrecy or integrity, in particular,
for small values of N . As such, the proof of shuffle with the
best trade-off between security (secrecy, integrity/verifiability,
robustness) and efficiency is the one proposed in [23]; however,
since it is covered by patent, we chose to use the method
proposed by Wikström in [24], [25] in our implementation.

PoS |A| E p t
[20] N/2 2N 50% (N/2 + 1)

[21] complete 6
√
N (

√
N − 1)/N 1

[22] complete 12N overwhelming 1
[23] complete 2N log k + 4N overwhelming 1

[24], [25] complete 20N + 19 overwhelming 1

k is a divisor of N

TABLE I: Comparison of mix net schemes

E. Proof of Correctness

As shown in [26], ensuring vote secrecy also depends on
whether ballot independence is ensured: namely, a malicious
voter should be unable to cast a vote which is both valid
and meaningfully related to a cast vote of another voter. In
particular, a group of malicious voters of size f can attempt
to break vote secrecy by taking a vote cast by another voter,
and casting it as their own vote each. Then, after looking at
a final result, they could see which vote has been cast at
least f + 1 times, thus figuring out how the attacked voter
has voted. A simple way to prevent this attack is to make
the voters prove that they know a corresponding plaintext for
a ciphertext message they cast as their vote. For the ElGamal
encryption, this can be done by using the non-interactive proof
of knowledge of discrete logarithm (described in [27]). Thus,
for c = (a, b) = (gr, v ·hr) with g, h being the ElGamal public
keys, the voter has to prove the knowledge of r given a.
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IV. VOTING SCHEME DESCRIPTION

The voting scheme consists of following basic components:
verifiable secret sharing, re-encryption mix net, and verifiable
distributed decryption. As a crypto system used in encrypting
the votes, we chose ElGamal due to its homomorphic proper-
ties and its wide use in the selected schemes. Let p, q, g be the
corresponding ElGamal parameters, that are publicly available.

a) Ballot initialization: The initiator of the voting com-
poses a ballot that, according to the election type, may consist
of the voting question, possible answers, voting rules etc. The
empty ballot is then broadcast to all the voters chosen by the
initiator, whereby each voter has an option either to agree to
participate in the voting, or decline. As a result, the group of
voters that is about to participate in this election is formed.
In case a set of keys for the election (see Section III-B) has
already been generated for this group, the voting proceeds
with the vote casting stage; otherwise, it proceeds with the
key exchange stage.

b) Key exchange: This phase consist of generating keys
for the election via verifiable decentralized threshold secret
sharing scheme described in [11] with threshold value of
⌊N/2⌋ + 1: xi, the shares of private key that each voter
holds, and the jointly computed public key h. The participants
also exchange commitments hi to xi, which are calculated as
hi = gxi , that are later used for verifiable decryption. The
key exchange phase only needs to be performed once for each
group of voters; in any further elections conducted by the same
group, the previously generated keys can be securely reused.

c) Vote casting: The voters are given a certain time limit,
during which they are supposed to cast their vote. The vote vi
is encoded so that it could be used as a plaintext in ElGamal
encryption, and ei is calculated as Ench(vi, ri) for a random
ri ∈R Zq . Furthermore, the proof of correctness is used to
demonstrate the knowledge of vi to prevent ballot-copying
attacks, as shown in III-E. After (ci, pi) have been broadcast
by all voters, each voter possesses the initial list of all votes
C0 = (c1, ..., cN ).

d) Tallying: At the beginning of the tallying phase, the
votes are being anonymized (Figure 1): these process is divided
into N rounds, with fixed execution times each. In each round,
the voter i applies a mix net scheme to the list Ci−1 using a
random vector r = (r1, ..., rN ) and a permutation π in order
to get a shuffled list Ci = Ench(1, r) · (Ci−1)π . She also
computes a non-interactive proof of shuffle Pi as described in
Section III-D, in order to demonstrate that the shuffle has been
executed correctly. After that she communicates the values
(Ci, p

′
i) to other voters. Then, each one of the remaining

voters verifies p′i, and if it is verified, accepts Ci; if p′i is
not verified, or if the voter i does not send any shuffle result
within a round time, sets Ci := Ci−1. At the end, after
all the voters have performed the shuffling, the list CN is
accepted as the final list of anonymized votes. The verifiable
decryption scheme is then being executed as described in [14]
(Figure 2): for each encrypted vote ci ∈ CN , ci = (ai, bi)
each voter j computes the partial decryption share di,j = a

xj

i
using her private key share xj . She then also computes
the non-interactive zero-knowledge proof p′′i,j to prove that

the secret value xi used for partial decryption is the same
value, that was committed to during key exchange phase.
The voters then broadcast their computed values (dj , p

′′
j )

with dj = (d1,j , ..., dN,j), p′′j = (p1,j , ..., pN,j). As soon as
any voter gets a threshold amount of partial decryptions and
proofs of its correctness (di,j , p

′′
i,j), whereby p′′i,j is verified

successfully, she can reconstruct the decryption of ci from
the collected values of partial decryption shares. In this way,
all the votes in CN are being decrypted, resulting in values
of V = (v1, ..., vN ). The final result is then being tallied
according to election rules: as such, for example, if each vote
represents a candidate from the given list vi ∈ {C1, ..., CL},
the result is the sum of the votes cast for each candidate,
S = (s1, ..., sL), si = |vj : j = 1, ..., N, vj = Ci|.

V. SECURITY ANALYSIS

This section is dedicated to an informal security argument
on the presented scheme. To evaluate its security, we identify
threats against the security requirements (see Section II-B) and
show that the scheme defends against these threats under given
assumptions. Note, that the scheme can only provide defence
against these threats for the voters with uncorrupted devices,
as otherwise the application would just behave according to
the attacker’s commands, instead of following the scheme.

Eligibility A non-eligible voter can cast the vote in the system,
in case there is no authentication in place, or the voter
can fake her identity and impersonate an eligible voter.
This is not the case if the list of all voters is known in
advance, which is ensured in the ballot initiation stage,
and if reliable PKI exists, providing means for message
authentication and thus preventing identity impersonation.
Therefore, it should be impossible for the attacker to
impersonate an eligible voter and cast a vote instead of
her.

Uniqueness In case no votes from non-eligible voters are
being accepted, which is ensured via eligibility, a voter
can break uniqueness and cast more than one vote, if she
can fake her identity and pretend to be another eligible
voter. This is impossible due to existing PKI. Thus, it
can be ensured, that during the vote casting stage, only
the first vote (alternatively, only the last one) of the voter
is accepted.

Fairness In the scheme, the fairness property can be broken,
if a voter has a chance to reveal the votes of others on
vote casting stage. To do this, she must be able to decrypt
the votes that are broadcast. This is only possible, if at
least ⌊N/2⌋ + 1 voters collaborate and use their secret
keys for decryption. This is impossible according to the
assumptions 1-2 in Section II-B; therefore, there is no
way for any voter to know the result at vote casting.

Vote Secrecy The possible ways to break secrecy in the
scheme is to either decrypt the cast votes before they are
anonymized, or to prevent them from being anonymized.
The first way is possible, if at least ⌊N/2⌋ + 1 voters
cooperate maliciously and use their secret key shares for
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initial list C0
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(CA, p′
A)

(CA, p′
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verify p′
A verify p′

A

start shuffling round for Bob with CA as initial list

msc Anonymization: shuffling round for Alice

Fig. 1: Anonymization round for N = 3
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tally decrypted values of C

msc Decryption

Fig. 2: Decryption for N = 3

decryption. The second way is possible, if all but one1

voter decline to perform the anonymization or to keep the
correspondences between input and shuffled ciphertexts
a secret. Thus, according to assumptions 1-2 in Section
II-B, vote secrecy is ensured.

Integrity A way to break integrity and replace some cast
vote with another vote, would be either to replace the
ciphertext during anonymization stage, or to provide a
manipulated partial decryption during tallying stage. This
attempts will be detected, however, due to the employ-
ment of zero-knowledge proofs during decryption and
anonymization, which each voter has to verify before

1If only one voter is honest, then the public will not know the correspon-
dences between the voter’s identity and the vote; however, if all the other
voters are dishonest, and each dishonest voter i reveals the correspondences
between the ciphertexts in lists Ci−1 and Ci to the public, the honest voter
will be the one who knows how each one has voted. Thus, vote secrecy
during anonymization could be ensured only if at least two voters perform
their shuffling correctly and do not reveal the correspondences between the
ciphertexts.

accepting. Therefore, everyone should have the possibil-
ity to verify the correctness of the tallying. Thus, any
manipulation with the election result will be noticed.

Verifiability Similarly to ensuring integrity, universal verifia-
bility of the correctness of election result is ensured due
to non-interactive zero-knowledge proofs that could be
verified by anyone using publicly available information.
Given universal verifiability, the only way to break indi-
vidual verifiability would be for the application to cast a
vote that is different from the voter’s intention. However,
due to the assumption 2 in Section II-B, individual
verifiability is ensured.

Robustness The result of the voting cannot be decrypted and
thus tallied, if only less then ⌊N/2⌋+1 voters are available
and can communicate with each other during decryption.
Additionally, the result cannot be tallied without neces-
sarily breaking vote secrecy, if the anonymization of the
votes has not been performed correctly, which is possible,
as described above, if all but one voter are unable to
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shuffle the ciphertexts and keep the correspondences be-
tween the input list and the shuffled list secret. Therefore,
according to assumptions 1-3 in Section II-B, robustness
of the system is ensured.

VI. IMPLEMENTATION

In this sections we describe the details regarding our imple-
mentation of the voting scheme, as well as the design decisions
we had to make.

A. Design Decisions
a) Android app: We have developed an application with

the voting scheme described above for the Android smart-
phones. Android is based on a Linux Kernel and is the
most used mobile operating system. It runs on many different
machines which differ in many aspects like screen resolution,
CPU power and available memory. The application is designed
to support all machines which run Android 4.0 or higher and
have more than 512 RAM available.

b) Communication: To establish the communication
channels between the voters’ smartphones, we had to choose
between several options, such as BlueTooth, WiFi-Direct,
SMS or instant messaging protocols such as MSN or ISQ.
We chose to use XMPP, which is an open-source instant
messaging protocol. In advantage to other options, it allows
for communications over the network without being in physical
proximity to each other, does not place substantial restrictions
on message length, and can be extended thus making it easier
to adjust for our implementation. To establish a connection to
other participating smartphones the Smack API2 which builds
upon XMPP is used. In order for the voters to communicate
with each other, the XMPP server has to be available, either
as a public server, or as a private server, established by the
company. The voters then use their account data on this server
to log in the application. As the XMPP protocol communicates
via network, remote participation is ensured, by enabling
every eligible voter to participate in the voting, as long as she
has access to network connection, for example, to the mobile
internet on her smartphone.

For establishing the PKI we have prepared a central server
that is used as a ”bulletin board” where the initial list of voters
is stored. This initial list of voters is needed to enable the initial
communication between voter’s devices, as voter could send
the messages to others only knowing their XMPP account IDs.

This server is relied on with regards to availability only, and
does not hold any sensitive information. We use the scheme
described in III-A in order to exchange the RSA keys and the
AES keys between the voters.

c) Libraries: For implementing the mix net, we did not
use the Verificatum implementation by Wikström3 due to
licence constrains. Instead, the application uses the open-
source unicrypt4 library for the mix net implementation.
We used the guava-library5 as a utility library e.g. for

2http://www.igniterealtime.org/projects/smack/
3http://www.verificatum.org/
4https://github.com/bfh-evg/unicrypt/
5https://code.google.com/p/guava-libraries/

Base64 encoding. Android ships with a cut-down bouncycastle
implementation for cryptographic primitives which only allows
symmetric encryptions up to 128 Bit. To support better encryp-
tion schemes like 256 Bit symmetric encryption an external
library called spongycastle6 is used. Spongycastle is a
derivation of Bouncycastle7, the most popular and extensive
Java library for cryptography, which is optimized for android
and renames the packages to avoid classloader conflicts.

B. Walkthrough
We have attempted to make the user interfaces as simple

as possible, requiring only the minimum required amount of
interactions from the users. We also iteratively improved them
due to feedback from colleagues and friends. Note, we plan
as future work to evaluate the usability within a user studies.

When starting the application, the voter comes to the wel-
come page and logs herself in using her XMPP account. After
login the user comes to the Main Menu, as seen in Figure 3,
where she and the other voters participate in the PKI estab-
lishment scheme, which concludes by all the voters comparing
and verifying the passphrases shown on their screens (Figure
4).

After the PKI has been established, the elections can be
conducted. The person, that wants to start the election, com-
poses and broadcasts the ballot as seen in Figure 5. As all
other participants see the invitation and agree to participate,
the election starts: if this group of voters starts an election for
the first time, the key exchange is being run first. Otherwise,
the voters can start with the vote casting, whereby each voter
selects her vote and confirms the vote as seen in Figure 6.

After all votes are received the mix net starts anonymizing
the votes. As this is the most computationally intensive part of
the voting, this may take some time. Afterwards the the votes
are decrypted and tallied and the result is shown as seen in
Figure 7.

A flow diagram which explains the PKI establishment (Fig-
ure 8), ballot initiation (Figure 9), and voting process (Figure
10) are given, while the captions in bold on the diagrams refer
to the steps, where the interaction of the voter with the user
interface is needed.

C. Fault Handling
We have identified the steps in the executing of the voting

process, whereby some faults might be present, most com-
monly some voters not being present or able to communicate
with the others. We have already shown in Section IV, how
some of these faults, namely, the failure of some voters to
produce a valid shuffle result, are handled. Furthermore, as
shown in Section V, some of these faults, such as the voters
failing to produce valid partial decryptions of a vote, could be
ignored under the assumptions that we made.

Other faults are the ones that occur during voting phases,
that preclude the tallying stage: namely, faults could be present
during PKI establishment (i.e. the adversary trying to execute

6http://rtyley.github.io/spongycastle/
7https://www.bouncycastle.org/
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Fig. 3: Main Menu Fig. 4: Establishment of the PKI Fig. 5: Summary of the ballot for the new
election

Fig. 6: Overview of a cast vote Fig. 7: Election result

a man-in-the-middle attack), ballot initialization stage (such as
voters not responding to the invitation to vote), or vote casting.
The diagrams in figures 8,9,10 show the way the application is
supposed to handle these faults. As such, for example, the voter
who wishes to initiate the election has the option to decide,
whether she still wants to start the election if not all of the
invited voters respond to her invitation, or to wait some more
for the missing voters to respond, or to cancel the election.

Another source of faults during the voting, is the inconsis-
tency of message broadcast. In order to broadcast a message
using XMPP, the message has to be sent separately to each
receiver. Thus, it makes the system vulnerable to Byzantine
faults, whereby a malicious voter can send different messages
to different receivers (for example, during broadcasting a cast

vote), thus endangering robustness of the voting. One way to
solve this problem is to make the voters manually compare the
result of each stage (for example, by comparing hash values
of a complete list of cast votes at the end of vote casting).
Another solution is to implement additional communication
schemes that ensure Byzantine Fault Tolerance, such as the
schemes described in [28], [29]8.

8Note, that some of the methods to implement BFT provide more efficiency
at the cost of requiring additional assumptions regarding the amount of faulty
nodes f out of total N , most commonly, f ≤ ⌊N/3⌋.
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VII. EFFICIENCY EVALUATION

Without counting the costs of the communication (i.e.
signing and verifying the communicated messages, as well
as encrypting/decrypting them when needed), the cost of
the execution of the scheme in number of required modular
exponentiations, with the anonymization stage being the most
computationally extensive part, is as follows:

26N2 + 22N + ⌊N/2⌋+ 1 +N(⌊N/2⌋+ 1)− 1

Thus, the efficiency of the voting scheme is O(N2). Note,
that it only depends on number of the voters, and not on ballot
complexity, such as number of candidates or possible options.

As additional computational and communication costs arise
in the implementation, which depend on programming tech-
niques and network capabilities, we evaluated the performance
of the application, by measuring the time it takes to calculate
and display the result of voting after the votes have been cast.
The application was run on several S3 Samsung smartphones
with all of them being in the same room, the ”voters” repre-
sented by Gmail accounts with GTalk as the XMPP server for
communication, created for test purposes. We did not count
the times for the PKI establishment stage, since it is only
conducted at the first start of the application, and the key

exchange stage, since it only has to be executed once for a
group of voters; we also did not count the times elapsed during
ballot initialization and vote casting, since the time spent on
this stage depends mostly on how long do the voters take
to make their decision and cast their vote. The key length
is as follows: the RSA keys used for message authentication
have 2048-bit length, as well as the ElGamal parameters g, p.
The ElGamal secret keys, as well as random values used in
exponentiations, have 256-bit length.

The resulting times from running the election between 2−5
voters are given in table II. The times seem linear because of
how the cryptographic schemes with several rounds have been
implemented in order to achieve synchronization: each round
is given a fixed amount of time, during which it is expected for
all computations to be complete. Thus, this time is chosen as
an upper limit for the computations - namely, for the mix net
scheme, the duration of one shuffling round is set such as one
should be able to complete the shuffling of 25 ciphertexts,
which includes calculating and verifying the corresponding
proofs of shuffle. Thus, the time spent on anonymizing the
votes is O(N) for N ≤ 25. The time for decrypting the votes is
O(N2), but it is relatively small compared to the anonymizing
stage. Thus, extrapolating the times for 25 voters9, we can

9We used the polynomial trend line function in Excel.
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assume that the election will last slightly less then 12 minutes
on such devices.

Number of voters Average execution time (ms) Average execution time (min)
2 65764.5 1.10
3 85152.7 1.42
4 109375 1.82
5 129702.6 2.16

TABLE II: Execution times of tallying stage

VIII. RELATED WORK

A number of schemes for decentralized voting with dis-
tributed trust has been proposed in the literature. Among them
are the works in [15], [30] and [14], which were implemented
in the MobiVote application. The security model of these
schemes is similar to the one that we describe in this paper,
namely, the security of the scheme depends on the majority
of the voters and their voter devices being uncorrupted. How-
ever, the schemes in question employ homomorphic tallying,
thus being less suitable for complex ballots. An Android
application for spontaneous decentralized voting in classroom
setting has been proposed in [31]; the approach, however, does
not ensure verifiability. A scheme for decentralized voting
has been described in [16], and then expanded in [32]. The
scheme uses mix net scheme for anonymizing the votes;
however, it relies on all the voters being uncorrupted during
the anonymization stage for ensuring robustness and integrity,
which is a disadvantage compared to our approach.

IX. CONCLUSION AND FUTURE WORK

We have presented a scheme for decentralized voting with
distributed trust, and an application that implements this
scheme, thus enabling secure elections in small groups. We
have shown, that this application fulfills the reqiurements
described in Section II that we have set as our goal. As a
future task, we will work on the usability of the application,
conducting user studies and improving the user interfaces.
As part of increasing usability, we will work on further
improving efficiency of the application. As an example, one
could do some of the pre-computations that do not require the
knowledge of ciphertexts of cast votes, during the vote casting
phase. Another way to improve efficiency would be to use
the elliptical curves instead of integer groups, in which case
additional considerations on how to encode the vote should be
considered.

Another direction of future work is furthering the trust
distribution property of the application, since this property
is not fully fulfilled, in case all voters use the smartphone
from the same manufacturer, and install the voting application
provided by the same vendor. We will take a look at ways to
weaken this restriction, such as implementing the applications
for smartphones and other mobile devices running other OS
apart from Android, or providing a detailed specification of
the implementation, such as it could be re-implemented by
independent software developers.

We will also look for the ways to improve the robustness of
the application. In particular, we will implement the Byzantine
Fault Tolerance scheme, for example, as described in [28], in
order to make communication more reliable.
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