9 research outputs found

    On the cyber security issues of the internet infrastructure

    Get PDF
    The Internet network has received huge attentions by the research community. At a first glance, the network optimization and scalability issues dominate the efforts of researchers and vendors. Many results have been obtained in the last decades: the Internet’s architecture is optimized to be cheap, robust and ubiquitous. In contrast, such a network has never been perfectly secure. During all its evolution, the security threats of the Internet persist as a transversal and endless topic. Nowadays, the Internet network hosts a multitude of mission critical activities. The electronic voting systems and financial services are carried out through it. Governmental institutions, financial and business organizations depend on the performance and the security of the Internet. This role confers to the Internet network a critical characterization. At the same time, the Internet network is a vector of malicious activities, like Denial of Service attacks; many reports of attacks can be found in both academic outcomes and daily news. In order to mitigate this wide range of issues, many research efforts have been carried out in the past decades; unfortunately, the complex architecture and the scale of the Internet make hard the evaluation and the adoption of such proposals. In order to improve the security of the Internet, the research community can benefit from sharing real network data. Unfortunately, privacy and security concerns inhibit the release of these data: its suffices to imagine the big amount of private information (e.g., political preferences or religious belief) it is possible to get while reading the Internet packets exchanged between users and web services. This scenario motivates my research, and represents the context of this dissertation which contributes to the analysis of the security issues of the Internet infrastructures and describes relevant security proposals. In particular, the main outcomes described in this dissertation are: • the definition of a secure routing protocol for the Internet network able to provide cryptographic guarantees against false route announcement and invalid path attack; • the definition of a new obfuscation technique that allow the research community to publicly release their real network flows with formal guarantees of security and privacy; • the evidence of a new kind of leakage of sensitive informations obtained hacking the models used by sundry Machine Learning Algorithms

    Achieving cybersecurity in blockchain-based systems: a survey

    Get PDF
    With The Increase In Connectivity, The Popularization Of Cloud Services, And The Rise Of The Internet Of Things (Iot), Decentralized Approaches For Trust Management Are Gaining Momentum. Since Blockchain Technologies Provide A Distributed Ledger, They Are Receiving Massive Attention From The Research Community In Different Application Fields. However, This Technology Does Not Provide With Cybersecurity By Itself. Thus, This Survey Aims To Provide With A Comprehensive Review Of Techniques And Elements That Have Been Proposed To Achieve Cybersecurity In Blockchain-Based Systems. The Analysis Is Intended To Target Area Researchers, Cybersecurity Specialists And Blockchain Developers. For This Purpose, We Analyze 272 Papers From 2013 To 2020 And 128 Industrial Applications. We Summarize The Lessons Learned And Identify Several Matters To Foster Further Research In This AreaThis work has been partially funded by MINECO, Spain grantsTIN2016-79095-C2-2-R (SMOG-DEV) and PID2019-111429RB-C21 (ODIO-COW); by CAM, Spain grants S2013/ICE-3095 (CIBERDINE),P2018/TCS-4566 (CYNAMON), co-funded by European Structural Funds (ESF and FEDER); by UC3M-CAM grant CAVTIONS-CM-UC3M; by the Excellence Program for University Researchers, Spain; and by Consejo Superior de Investigaciones Científicas (CSIC), Spain under the project LINKA20216 (“Advancing in cybersecurity technologies”, i-LINK+ program)

    Understanding the trust relationships of the web PKI

    Get PDF
    TLS and the applications it secures (e.g., email, online banking, social media) rely on the web PKI to provide authentication. Without strong authentication guarantees, a capable attacker can impersonate trusted network entities and undermine both data integrity and confidentiality. At its core, the web PKI succeeds as a global authentication system because of the scalability afforded by trust. Instead of requiring every network entity to directly authenticate every other network entity, network entities trust certification authorities (CAs) to perform authentication on their behalf. Prior work has extensively studied the TLS protocol and CA authentication of network entities (i.e., certificate issuance), but few have examined even the most foundational aspect of trust management and understood which CAs are trusted by which TLS user agents, and why. One major reason for this disparity is the opacity of trust management in two regards: difficult data access and poor specifications. It is relatively easy to acquire and test popular TLS client/server software and issued certificates. On the other hand, tracking trust policies/deployments and evaluating CA operations is less straightforward, but just as important for securing the web PKI. This dissertation is one of the first attempts to overcome trust management opacity. By observing new measurement perspectives and developing novel fingerprinting techniques, we discover the CAs that operate trust anchors, the default trust anchors that popular TLS user agents rely on, and a general class of injected trust anchors: TLS interceptors. This research not only facilitates new ecosystem visibility, it also provides an empirical grounding for trust management specification and evaluation. Furthermore, our findings point to many instances of questionable, and sometimes broken, security practices such as improperly identified CAs, inadvertent and overly permissive trust, and trivially exploitable injected trust. We argue that most of these issues stem from inadequate transparency, and that explicit mechanisms for linking trust anchors and root stores to their origins would help remedy these problems

    Effective Wide-Area Network Performance Monitoring and Diagnosis from End Systems.

    Full text link
    The quality of all network application services running on today’s Internet heavily depends on the performance assurance offered by the Internet Service Providers (ISPs). Large network providers inside the core of the Internet are instrumental in determining the network properties of their transit services due to their wide-area coverage, especially in the presence of the increasingly deployed real-time sensitive network applications. The end-to-end performance of distributed applications and network services are susceptible to network disruptions in ISP networks. Given the scale and complexity of the Internet, failures and performance problems can occur in different ISP networks. It is important to efficiently identify and proactively respond to potential problems to prevent large damage. Existing work to monitor and diagnose network disruptions are ISP-centric, which relying on each ISP to set up monitors and diagnose within its network. This approach is limited as ISPs are unwilling to revealing such data to the public. My dissertation research developed a light-weight active monitoring system to monitor, diagnose and react to network disruptions by purely using end hosts, which can help customers assess the compliance of their service-level agreements (SLAs). This thesis studies research problems from three indispensable aspects: efficient monitoring, accurate diagnosis, and effective mitigation. This is an essential step towards accountability and fairness on the Internet. To fully understand the limitation of relying on ISP data, this thesis first studies and demonstrates the monitor selection’s great impact on the monitoring quality and the interpretation of the results. Motivated by the limitation of ISP-centric approach, this thesis demonstrates two techniques to diagnose two types of finegrained causes accurately and scalably by exploring information across routing and data planes, as well as sharing information among multiple locations collaboratively. Finally, we demonstrate usefulness of the monitoring and diagnosis results with two mitigation applications. The first application is short-term prevention of avoiding choosing the problematic route by exploring the predictability from history. The second application is to scalably compare multiple ISPs across four important performance metrics, namely reachability, loss rate, latency, and path diversity completely from end systems without any ISP cooperation.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64770/1/wingying_1.pd

    Security and Data Analysis : Three Case Studies

    Get PDF
    In recent years, techniques to automatically analyze lots of data have advanced significantly. The possibility to gather and analyze large amounts of data has challenged security research in two unique ways. First, the analysis of Big Data can threaten users’ privacy by merging and connecting data from different sources. Chapter 2 studies how patients’ medical data can be protected in a world where Big Data techniques can be used to easily analyze large amounts of DNA data. Second, Big Data techniques can be used to improve the security of software systems. In Chapter 4 I analyzed data gathered from internet-wide certificate scans to make recommendations on which certificate authorities can be removed from trust stores. In Chapter 5 I analyzed open source repositories to make predicitions of which commits introduced security-critical bugs. In total, I present three case studies that explore the application of data analysis – “Big Data” – to system security. By considering not just isolated examples but whole ecosystems, the insights become much more solid, and the results and recommendations become much stronger. Instead of manually analyzing a couple of mobile apps, we have the ability to consider a security-critical mistake in all applications of a given platform. We can identify systemic errors all developers of a given platform, a given programming language or a given security paradigm make – and fix it with the certainty that we truly found the core of the problem. Instead of manually analyzing the SSL installation of a couple of websites, we can consider all certificates – in times of Certificate Transparency even with historical data of issued certificates – and make conclusions based on the whole ecosystem. We can identify rogue certificate authorities as well as monitor the deployment of new TLS versions and features and make recommendations based on those. And instead of manually analyzing open source code bases for vulnerabilities, we can apply the same techniques and again consider all projects on e.g. GitHub. Then, instead of just fixing one vulnerability after the other, we can use these insights to develop better tooling, easier-to-use security APIs and safer programming languages

    Secure Communications in Next Generation Digital Aeronautical Datalinks

    Get PDF
    As of 2022, Air Traffic Management (ATM) is gradually digitizing to automate and secure data transmission in civil aviation. New digital data links like the L-band Digital Aeronautical Communications System (LDACS) are being introduced for this purpose. LDACS is a cellular, ground-based digital communications system for flight guidance and safety. Unfortunately, LDACS and many other datalinks in civil aviation lack link layer security measures. This doctoral thesis proposes a cybersecurity architecture for LDACS, developing various security measures to protect user and control data. These include two new authentication and key establishment protocols, along with a novel approach to secure control data of resource-constrained wireless communication systems. Evaluations demonstrate a latency increase of 570 to 620 milliseconds when securely attaching an aircraft to an LDACS cell, along with a 5% to 10% security data overhead. Also, flight trials confirm that Ground-based Augmentation System (GBAS) can be securely transmitted via LDACS with over 99% availability. These security solutions enable future aeronautical applications like 4D-Trajectories, paving the way for a digitized and automated future of civil aviation

    Securing BGP through Keychain-based Signatures

    No full text
    corecore