2,328 research outputs found

    Palliative home-based technology from a practitioner's perspective: benefits and disadvantages

    Get PDF
    This critical review paper explores the concept of palliative home-based technology from a practitioner's perspective. The aim of the critical review was to scope information available from published and unpublished research on the current state of palliative home-based technology, practitioner-focused perspectives, patient-focused perspectives, quality of life, and the implications for clinical practice. Published and unpublished studies were included. An example of one UK patient-centered home-based technology is explored as an exemplar. The evidence suggests that despite the challenges, there are numerous examples of good practice in relation to palliative home-based technology. Improvements in technology mean that telehealth has much to offer people being cared for at home with palliative needs. However, some of the evaluative evidence is limited, and further rigor is needed when evaluating future technology-based solutions innovations

    Design and implementation of a secure and user-friendly broker platform supporting the end-to-end provisioning of e-homecare services

    Get PDF
    We designed a broker platform for e-homecare services using web service technology. The broker allows efficient data communication and guarantees quality requirements such as security, availability and cost-efficiency by dynamic selection of services, minimizing user interactions and simplifying authentication through a single user sign-on. A prototype was implemented, with several e-homecare services (alarm, telemonitoring, audio diary and video-chat). It was evaluated by patients with diabetes and multiple sclerosis. The patients found that the start-up time and overhead imposed by the platform was satisfactory. Having all e-homecare services integrated into a single application, which required only one login, resulted in a high quality of experience for the patients

    Healthcare PANs: Personal Area Networks for trauma care and home care

    Get PDF
    The first hour following the trauma is of crucial importance in trauma care. The sooner treatment begins, the better the ultimate outcome for the patient. Generally the initial treatment is handled by paramedical personnel arriving at the site of the accident with an ambulance. There is evidence to show that if the expertise of the on-site paramedic team can be supported by immediate and continuous access to and communication with the expert medical team at the hospital, patient outcomes can be improved. After care also influences the ultimate recovery of the patient. After-treatment follow up often occurs in-hospital in spite of the fact that care at home can offer more advantages and can accelerate recovery. Based on emerging and future wireless communication technologies, in a previous paper [1] we presented an initial vision of two future healthcare settings, supported by applications which we call Virtual Trauma Team and Virtual Homecare Team. The Virtual Trauma Team application involves high quality wireless multimedia communications between ambulance paramedics and the hospital facilitated by paramedic Body Area Networks (BANs) [2] and an ambulance-based Vehicle Area Network (VAN). The VAN supports bi-directional streaming audio and video communication between the ambulance and the hospital even when moving at speed. The clinical motivation for Virtual Trauma Team is to increase survival rates in trauma care. The Virtual Homecare Team application enables homecare coordinated by home nursing services and supported by the patient's PAN which consists of a patient BAN in combination with an ambient intelligent home environment. The homecare PAN provides intelligent monitoring and support functions and the possibility to ad hoc network to the visiting health professionals’ own BANs as well as high quality multimedia communication links to remote members of the virtual team. The motivation for Virtual Homecare Team is to improve quality of life and independence for patients by supporting care at home; the economic motivation is to replace expensive hospital-based care with homecare by virtual teams using wireless technology to support the patient and the carers. In this paper we develop the vision further and focus in particular on the concepts of personal and body area networks

    Integrated heart failure telemonitoring system for homecare

    Get PDF
    The integrated telemonitoring system (ITS) for homecare has been designed to improve quality of care as measured by increased nursing productivity, improved patients’ clinical and behavioral outcomes and reduction of cost. The system incorporates managerial, organizational, operational and clinical tasks optimized for delivery of quality care through telemonitoring. A secure, multi-modal computer network that integrates homecare nurses, patients and those who care into one seamless environment has been developed. The network brings together a new generation of small, hand-held, wireless terminals used by nurses and patients with a HIPPA-compliant electronic patient record system at the caregiver’s site. Wireless terminals use Gobi multi-standard networking technology for connectivity to any available wireless network. The unique features of ITS include a) picture recognition technology capable of extracting numeric data from in-home physiological signal monitor displays that include blood pressure, weight, oxygen saturation, transmission of lung sounds, and capturing echocardiography and electrocardiography data from mobile units; b) in-home caregiver-assisted interactive examinations of signs and symptoms that include visual impressions of ankle swelling, jugular vein distension measurement, and weight gain; c) video-conference capability, facilitating face-to-face two-way communication of nursing personnel with the patients. The ITS network has been designed to improve patients’ clinical and behavioral outcomes, increase nursing productivity, and reduce the cost of homecare. Patients’ co-operation and compliance has been achieved through use of easy-to-use videoconferencing terminals. (Cardiol J 2010; 17, 2: 200-204

    The E-health Strategic Research Orientation at the Centre for Telematics and Information Technology

    Get PDF
    This report gives an overview of research themes, research groups and research partners of the E-Health Strategic Research Orientation (SRO) at the University of Twente

    Horizons and Perspectives eHealth

    Get PDF
    EHealth platform represents the combined use of IT technologies and electronic communications in the health field, using data (electronically transmitted, stored and accessed) with a clinical, educational and administrative purpose, both locally and distantly. eHealth has the significant capability to increase the movement in the direction of services centered towards citizens, improving the quality of the medical act, integrating the application of Medical Informatics (Medical IT), Telemedicine, Health Telematics, Telehealth, Biomedical engineering and Bioinformatics. Supporting the creation, development and recognition of a specific eHealth zone, the European Union policies develop through its programs FP6 and FP7, European-scale projects in the medical information technologies (the electronic health cards, online medical care, medical web portals, trans-European nets for medical information, biotechnology, generic instruments and medical technologies for health, ICT mobile systems for remote monitoring). The medical applications like electronic health cards ePrescription, eServices, medical eLearning, eSupervision, eAdministration are integral part of what is the new medical branch-eHealth, being in a continuous expansion due to the support from the global political, financial and medical organizations; the degree of implementation of the eHealth platform varying according to the development level of the communication infrastructure, allocated funds, intensive political priorities and governmental organizations opened to the new IT challenges.eHealth, telemedicine, telehealth, bioinformatics, telematics

    The Fast Health Interoperability Resources (FHIR) standard and homecare, a scoping review

    Get PDF
    The scoping review reported by this article aimed to analyze the state of the art of the use of Fast Health Interoperability Resources (FHIR) in the development of homecare applications and was informed by the following research questions: (i) what type of homecare applications benefit from the use of FHIR?; (ii) what FHIR resources are being implemented?; (iii) what publicly available development tools are being used?; and (iv) how privacy and security issues are being addressed? An electronic search was conducted, and 27 studies were included in the scoping review after the selection process. The results show a current interest in using FHIR to implement: i) applications to provide interoperable measurement devices for home monitoring; (ii) applications to remotely collected Patient Reported Outcome Measures (PROM); (iii) Personal Health Records (PHR); and (iv) specific applications for self-management. According to the results, the FHIR resources being implemented are quite diverse and contribute for the challenge of handling the variability caused by diverse healthcare processes. However, the use of publicly available development tools (e.g., SMART on FHIR or HAPI) is not yet generalized. Moreover, just a small number of studies reported the validation of the implemented resources using publicly available FHIR validators. Finally, in terms of privacy and security issues, different approaches were identified: authentication and authorizations mechanisms, end-to-end encrypted messaging mechanisms, and decentralized management and audit trail based on blockchain technologies.publishe

    Impact of Mobile and Wireless Technology on Healthcare Delivery services

    Get PDF
    Modern healthcare delivery services embrace the use of leading edge technologies and new scientific discoveries to enable better cures for diseases and better means to enable early detection of most life-threatening diseases. The healthcare industry is finding itself in a state of turbulence and flux. The major innovations lie with the use of information technologies and particularly, the adoption of mobile and wireless applications in healthcare delivery [1]. Wireless devices are becoming increasingly popular across the healthcare field, enabling caregivers to review patient records and test results, enter diagnosis information during patient visits and consult drug formularies, all without the need for a wired network connection [2]. A pioneering medical-grade, wireless infrastructure supports complete mobility throughout the full continuum of healthcare delivery. It facilitates the accurate collection and the immediate dissemination of patient information to physicians and other healthcare care professionals at the time of clinical decision-making, thereby ensuring timely, safe, and effective patient care. This paper investigates the wireless technologies that can be used for medical applications, and the effectiveness of such wireless solutions in a healthcare environment. It discusses challenges encountered; and concludes by providing recommendations on policies and standards for the use of such technologies within hospitals
    • …
    corecore