370 research outputs found

    Secure Full-Duplex Device-to-Device Communication

    Get PDF
    This paper considers full-duplex (FD) device-to-device (D2D) communications in a downlink MISO cellular system in the presence of multiple eavesdroppers. The D2D pair communicate sharing the same frequency band allocated to the cellular users (CUs). Since the D2D users share the same frequency as the CUs, both the base station (BS) and D2D transmissions interfere each other. In addition, due to limited processing capability, D2D users are susceptible to external attacks. Our aim is to design optimal beamforming and power control mechanism to guarantee secure communication while delivering the required quality-of-service (QoS) for the D2D link. In order to improve security, artificial noise (AN) is transmitted by the BS. We design robust beamforming for secure message as well as the AN in the worst-case sense for minimizing total transmit power with imperfect channel state information (CSI) of all links available at the BS. The problem is strictly non-convex with infinitely many constraints. By discovering the hidden convexity of the problem, we derive a rank-one optimal solution for the power minimization problem.Comment: Accepted in IEEE GLOBECOM 2017, Singapore, 4-8 Dec. 201

    Secure Full-Duplex Device-to-Device Communication

    Get PDF
    This paper considers full-duplex (FD) device-to-device (D2D) communications in a downlink MISO cellular system in the presence of multiple eavesdroppers. The D2D pair communicate sharing the same frequency band allocated to the cellular users (CUs). Since the D2D users share the same frequency as the CUs, both the base station (BS) and D2D transmissions interfere each other. In addition, due to limited processing capability, D2D users are susceptible to external attacks. Our aim is to design optimal beamforming and power control mechanism to guarantee secure communication while delivering the required quality-of-service (QoS) for the D2D link. In order to improve security, artificial noise (AN) is transmitted by the BS. We design robust beamforming for secure message as well as the AN in the worst-case sense for minimizing total transmit power with imperfect channel state information (CSI) of all links available at the BS. The problem is strictly non-convex with infinitely many constraints. By discovering the hidden convexity of the problem, we derive a rank-one optimal solution for the power minimization problem.Comment: Accepted in IEEE GLOBECOM 2017, Singapore, 4-8 Dec. 201

    Limited Feedback Scheme for Device to Device Communications in 5G cellular networks with Reliability and Cellular Secrecy Outage Constraints

    Get PDF
    In this paper, we propose a device to device (D2D) communication scenario underlaying a cellular network where both D2D and cellular users (CUs) are discrete power-rate systems with limited feedback from the receivers. It is assumed that there exists an adversary which wants to eavesdrop on the information transmission from the base station (BS) to CUs. Since D2D communication shares the same spectrum with cellular network, cross interference must be considered. However, when secrecy capacity is considered, the interference caused by D2D communication can help to improve the secrecy communications by confusing the eavesdroppers. Since both systems share the same spectrum, cross interference must be considered. We formulate the proposed resource allocation into an optimization problem whose objective is to maximize the average transmission rate of D2D pair in the presence of the cellular communications under average transmission power constraint. For the cellular network, we require a minimum average achievable secrecy rate in the absence of D2D communication as well as a maximum secrecy outage probability in the presence of D2D communication which should be satisfied. Due to high complexity convex optimization methods, to solve the proposed optimization problem, we apply Particle Swarm Optimization (PSO) which is an evolutionary approach. Moreover, we model and study the error in the feedback channel and the imperfectness of channel distribution information (CDI) using parametric and nonparametric methods. Finally, the impact of different system parameters on the performance of the proposed scheme is investigated through simulations. The performance of the proposed scheme is evaluated using numerical results for different scenarios.Comment: IEEE Transactions on Vehicular Technology, 201

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin
    • …
    corecore