229 research outputs found

    Privacy preserving distributed optimization using homomorphic encryption

    Full text link
    This paper studies how a system operator and a set of agents securely execute a distributed projected gradient-based algorithm. In particular, each participant holds a set of problem coefficients and/or states whose values are private to the data owner. The concerned problem raises two questions: how to securely compute given functions; and which functions should be computed in the first place. For the first question, by using the techniques of homomorphic encryption, we propose novel algorithms which can achieve secure multiparty computation with perfect correctness. For the second question, we identify a class of functions which can be securely computed. The correctness and computational efficiency of the proposed algorithms are verified by two case studies of power systems, one on a demand response problem and the other on an optimal power flow problem.Comment: 24 pages, 5 figures, journa

    Private Computation of Polynomials over Networks

    Full text link
    This study concentrates on preserving privacy in a network of agents where each agent seeks to evaluate a general polynomial function over the private values of her immediate neighbors. We provide an algorithm for the exact evaluation of such functions while preserving privacy of the involved agents. The solution is based on a reformulation of polynomials and adoption of two cryptographic primitives: Paillier as a Partially Homomorphic Encryption scheme and multiplicative-additive secret sharing. The provided algorithm is fully distributed, lightweight in communication, robust to dropout of agents, and can accommodate a wide class of functions. Moreover, system theoretic and secure multi-party conditions guaranteeing the privacy preservation of an agent's private values against a set of colluding agents are established. The theoretical developments are complemented by numerical investigations illustrating the accuracy of the algorithm and the resulting computational cost.Comment: 11 pages, 2 figure

    Private Computation of Polynomials over Networks

    Get PDF
    This study concentrates on preserving privacy in a network of agents where each agent seeks to evaluate a general polynomial function over the private values of her immediate neighbors. We provide an algorithm for the exact evaluation of such functions while preserving privacy of the involved agents. The solution is based on a reformulation of polynomials and adoption of two cryptographic primitives: Paillier as a Partially Homomorphic Encryption scheme and multiplicative-additive secret sharing. The provided algorithm is fully distributed, lightweight in communication, robust to dropout of agents, and can accommodate a wide class of functions. Moreover, system theoretic and secure multi-party conditions guaranteeing the privacy preservation of an agent's private values against a set of colluding agents are established. The theoretical developments are complemented by numerical investigations illustrating the accuracy of the algorithm and the resulting computational cost.Comment: 11 pages, 2 figure

    SIG-DB: leveraging homomorphic encryption to Securely Interrogate privately held Genomic DataBases

    Full text link
    Genomic data are becoming increasingly valuable as we develop methods to utilize the information at scale and gain a greater understanding of how genetic information relates to biological function. Advances in synthetic biology and the decreased cost of sequencing are increasing the amount of privately held genomic data. As the quantity and value of private genomic data grows, so does the incentive to acquire and protect such data, which creates a need to store and process these data securely. We present an algorithm for the Secure Interrogation of Genomic DataBases (SIG-DB). The SIG-DB algorithm enables databases of genomic sequences to be searched with an encrypted query sequence without revealing the query sequence to the Database Owner or any of the database sequences to the Querier. SIG-DB is the first application of its kind to take advantage of locality-sensitive hashing and homomorphic encryption to allow generalized sequence-to-sequence comparisons of genomic data.Comment: 38 pages, 3 figures, 4 tables, 1 supplemental table, 7 supplemental figure
    • …
    corecore