5,272 research outputs found

    Agile Data Offloading over Novel Fog Computing Infrastructure for CAVs

    Full text link
    Future Connected and Automated Vehicles (CAVs) will be supervised by cloud-based systems overseeing the overall security and orchestrating traffic flows. Such systems rely on data collected from CAVs across the whole city operational area. This paper develops a Fog Computing-based infrastructure for future Intelligent Transportation Systems (ITSs) enabling an agile and reliable off-load of CAV data. Since CAVs are expected to generate large quantities of data, it is not feasible to assume data off-loading to be completed while a CAV is in the proximity of a single Road-Side Unit (RSU). CAVs are expected to be in the range of an RSU only for a limited amount of time, necessitating data reconciliation across different RSUs, if traditional approaches to data off-load were to be used. To this end, this paper proposes an agile Fog Computing infrastructure, which interconnects all the RSUs so that the data reconciliation is solved efficiently as a by-product of deploying the Random Linear Network Coding (RLNC) technique. Our numerical results confirm the feasibility of our solution and show its effectiveness when operated in a large-scale urban testbed.Comment: To appear in IEEE VTC-Spring 201

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times
    • …
    corecore