3 research outputs found

    Performance Evaluation of Optimized Physical Layer Network Coding

    Get PDF
    With the development of the wireless networks these years, devices are required to have an even higher data rate, and thus the interference between devices remains a significant problem to be solved. In order to secure a reliable transmission with- out wasting network capacity, we would necessarily select a proper transmission scheme. The Physical layer Network Coding (PNC) , is one of the optimum choices as it can increase the efficiency largely, especially in a system with 2 users and 1 relay (TWRC). Generally speaking, we may divide our research into two aspects: channel and channel coding. From the channel codingā€™s view, we build the system of uncoded QPSK mod- ulated PNC and convolutional coded PNC (again modulated by QPSK). Due to the feature of the superimposed QPSK constellation, we introduce 3 different fixed mappings (plus the adaptive mapping) in order to decode the superimposed sym- bols at the relay more preciously. Also, we derive the theoretical upper bound of the error rate of the superimposed symbols at the relay. For uncoded PNC, we derive the SER; for coded PNC, we derive the BER, and we focus on an finite accumulation of the terms so as to obtain a tight error bound which is closer to the BER curve of the symbol-level simulation. From the channelā€™s view, we build the system of QPSK modulated PNC on single- carrier channel and the PNC on OFDM channels. For PNC on single-carrier channels, we assume the transmission channels are all flat fading channels. Never- theless, it is quite difficult for it to cope with the frequency selective channels and time delay channels. As a result, we introduce OFDM technique which can largely resist their interferences. We develop different adaptive mappings on OFDM inside the sub-band to further improve the performance. The theoretical upper bound for the error rate of the superimposed signals received at the relay will be vital in the system-level simulation, which is the part of the project DIWINE that my research benefits from

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiļ¬ed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ļ¬eld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects
    corecore