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Abstract

With the development of the wireless networks these years, devices are required to

have an even higher data rate, and thus the interference between devices remains

a significant problem to be solved. In order to secure a reliable transmission with-

out wasting network capacity, we would necessarily select a proper transmission

scheme. The Physical layer Network Coding (PNC) , is one of the optimum choices

as it can increase the efficiency largely, especially in a system with 2 users and 1

relay (TWRC). Generally speaking, we may divide our research into two aspects:

channel and channel coding.

From the channel coding’s view, we build the system of uncoded QPSK mod-

ulated PNC and convolutional coded PNC (again modulated by QPSK). Due to

the feature of the superimposed QPSK constellation, we introduce 3 different fixed

mappings (plus the adaptive mapping) in order to decode the superimposed sym-

bols at the relay more preciously. Also, we derive the theoretical upper bound of

the error rate of the superimposed symbols at the relay. For uncoded PNC, we

derive the SER; for coded PNC, we derive the BER, and we focus on an finite

accumulation of the terms so as to obtain a tight error bound which is closer to

the BER curve of the symbol-level simulation.

From the channel’s view, we build the system of QPSK modulated PNC on single-

carrier channel and the PNC on OFDM channels. For PNC on single-carrier

channels, we assume the transmission channels are all flat fading channels. Never-

theless, it is quite difficult for it to cope with the frequency selective channels and

time delay channels. As a result, we introduce OFDM technique which can largely

resist their interferences. We develop different adaptive mappings on OFDM inside

the sub-band to further improve the performance.

The theoretical upper bound for the error rate of the superimposed signals received

at the relay will be vital in the system-level simulation, which is the part of the

project DIWINE that my research benefits from.



Contents

Abstract ii

List of Figures vi

List of Tables viii

Acknowledgements ix

Declaration of Authorship x

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Publication list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 PNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Two-Way Relay Channel . . . . . . . . . . . . . . . . . . . . 8

2.1.2.1 Traditional Transmission in a TWRC . . . . . . . . 9

2.1.2.2 Straightforward Network Coding Scheme . . . . . . 10

2.1.2.3 Physical-Layer Network Coding(PNC) . . . . . . . 11

2.1.2.4 BPSK Modulation . . . . . . . . . . . . . . . . . . 12

2.1.2.5 QPSK Modulation . . . . . . . . . . . . . . . . . . 13

2.1.2.6 Mapping Selection and Error Calculation . . . . . . 14

2.2 Convolutional Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Trellis diagram . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2.1 Viterbi decoding . . . . . . . . . . . . . . . . . . . 21

2.2.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Coded modulation . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Parallel data transmission and multiple carriers . . . . . . . 29

iii



Contents iv

2.3.2 Coded OFDM (COFDM) . . . . . . . . . . . . . . . . . . . 32

2.3.3 Sub-band and adaptive modulation . . . . . . . . . . . . . . 34

3 Un-coded PNC 37

3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Analysis of Symbol Error . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 The XOR/Reversed XOR Mapping . . . . . . . . . . . . . . 45

3.2.2 The Anti-π
4
Mapping . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 The Adaptive Mapping . . . . . . . . . . . . . . . . . . . . 52

3.3 Simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 System-level Simulation 60

4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 5-node system . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 13-node system . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Mapping Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 PER calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Separate PER simulation . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Convolutional Coded PNC 74

5.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 BER analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Equal channel . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1.1 Pairwise Error Probability . . . . . . . . . . . . . . 81

5.2.1.2 Event Error Probability and BER . . . . . . . . . . 84

5.2.2 The real channel . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.3 The complex channel . . . . . . . . . . . . . . . . . . . . . . 90

5.2.3.1 The XOR mapping . . . . . . . . . . . . . . . . . . 91

5.2.3.2 The reversed XOR mapping . . . . . . . . . . . . . 97

5.2.3.3 The anti-π
4
mapping . . . . . . . . . . . . . . . . . 98

5.3 Simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 PNC on OFDM channels 106

6.1 Uncoded PNC on OFDM channels . . . . . . . . . . . . . . . . . . 106

6.1.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.2 Mapping selection . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.2.1 Adaptive mapping . . . . . . . . . . . . . . . . . . 111

6.1.2.2 Fixed mapping . . . . . . . . . . . . . . . . . . . . 112

6.1.2.3 The sub-band . . . . . . . . . . . . . . . . . . . . . 117

6.2 Convolutional coded PNC on OFDM channels . . . . . . . . . . . . 118

6.2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 118



Contents v

6.2.1.1 Single encoder . . . . . . . . . . . . . . . . . . . . 118

6.2.1.2 Multiple encoder . . . . . . . . . . . . . . . . . . . 120

6.3 Simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Conclusion and Further Work 127

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Glossary 130

Bibliography 131



List of Figures

2.1 Traditional transmission in a TWRC . . . . . . . . . . . . . . . . . 9

2.2 Straightforward network coding in a TWRC . . . . . . . . . . . . . 10

2.3 PNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The XOR mapping, the relative phase is around 90o . . . . . . . . . 17

2.5 The XOR mapping, the relative phase is around 45o . . . . . . . . 17

2.6 Structure of a general convolutional code . . . . . . . . . . . . . . . 18

2.7 Encoder for a (2,1,3) convolutional code . . . . . . . . . . . . . . . 19

2.8 Trellis diagram for a (2,1,3) convolutional code . . . . . . . . . . . . 21

2.9 Truncated window apply to Viterbi decoding . . . . . . . . . . . . . 24

2.10 General OFDM structure . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 The cyclic prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.12 TCM on OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.13 Adaptive OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.14 Transmission block structure of sub-band . . . . . . . . . . . . . . . 36

3.1 General model of MAC phase for PNC . . . . . . . . . . . . . . . . 38

3.2 Example multi-hop network . . . . . . . . . . . . . . . . . . . . . . 38

3.3 The XOR mapping, the relative phase is around 0 . . . . . . . . . . 41

3.4 The XOR mapping, the relative phase is around 90o . . . . . . . . . 42

3.5 The reversed XOR mapping, the relative phase is around 90o . . . . 42

3.6 The XOR mapping, the relative phase is around 45o . . . . . . . . 43

3.7 The anti π
4
mapping, the relative phase is around 45o . . . . . . . . 44

3.8 The anti π
4
mapping, the relative phase is around 0 . . . . . . . . . 45

3.9 The XOR mapping, the relative phase is around 0 . . . . . . . . . . 46

3.10 The reversed XOR mapping, the relative phase is around 0 . . . . . 48

3.11 The XOR mapping, the relative phase is around 45o . . . . . . . . . 49

3.12 The anti-π
4
mapping when the relative phase is around 45o . . . . . 50

3.13 The anti-π
4
mapping, the relative phase is around 0 . . . . . . . . . 51

3.14 The XOR mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.15 The reversed XOR mapping . . . . . . . . . . . . . . . . . . . . . . 56

3.16 The anti-π
4
mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.17 All mappings and all fadings . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Example system for system-level simulation: 5 nodes . . . . . . . . 61

4.2 Example system for system-level simulation: 13 nodes . . . . . . . . 63

4.3 System scenario in flow chart . . . . . . . . . . . . . . . . . . . . . 68

vi



List of Figures vii

4.4 PER for the multi-node network . . . . . . . . . . . . . . . . . . . . 71

4.5 PER for the uncoded PNC with different channel to noise ratio in dB 72

5.1 Structure of the convolutional coded PNC MAC phase . . . . . . . 76

5.2 Combined trellis of a (5,7) convolutional code . . . . . . . . . . . . 78

5.3 distance d1, d2, d3 and d4 . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 d5 and d6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Constellation diagram . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 π
2
case with reversed XOR mapping . . . . . . . . . . . . . . . . . . 97

5.7 The 1st bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 The 2nd bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9 Fading near 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.10 Fading near π
4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Simulation model of PNC on OFDM channels . . . . . . . . . . . . 107

6.2 The majority vote mapping in flow chart . . . . . . . . . . . . . . . 114

6.3 The local optimum mapping in flow chart . . . . . . . . . . . . . . 116

6.4 System model of coded PNC on OFDM channels (1 encoder) . . . . 119

6.5 System model of coded PNC on OFDM channels (1 decoder) . . . . 119

6.6 System model of coded PNC on OFDM channels(multiple encoder) 120

6.7 System model of coded PNC on OFDM channels (multiple decoder) 121

6.8 Majority vote mapping with sub-band . . . . . . . . . . . . . . . . 122

6.9 Local optimum mapping with sub-band . . . . . . . . . . . . . . . . 123

6.10 Performance comparison for uncoded PNC . . . . . . . . . . . . . . 124

6.11 Performance comparison for coded PNC . . . . . . . . . . . . . . . 125



List of Tables

2.1 BPSK modulated PNC . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 QPSK modulated PNC . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Decoding of the received code sequence for a (5,7) convolutional code 23

3.1 Constellation points and network coding . . . . . . . . . . . . . . . 39

3.2 The PNC constellation and the separate network coding value/
look-up table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Constellation points and network coding for the XOR mapping . . . 46

3.4 The superimposed network coding value for the XOR mapping . . . 47

3.5 The superimposed network coding value for the reversed XOR map-
ping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Constellation points and network coding for the reversed XOR map-
ping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Constellation points and network coding for the reversed XOR map-
ping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Constellation points and network coding for the an-π
4
mapping . . . 50

3.9 The anti-π
4
mapping when the relative phase is around 45o . . . . . 50

3.10 The anti-π
4
mapping, the relative phase is around 0 . . . . . . . . . 51

4.1 Rank of all mapping combination matrices . . . . . . . . . . . . . . 62

6.1 The look-up table for PNC on OFDM channel . . . . . . . . . . . . 110

viii



Acknowledgements

I would like to gratefully acknowledge my supervisor Professor Alister Burr for

offering me great help during my research study. I have benefit a lot from his

motivation, knowledge, enthusiasm and patience.

Also, I would like to thank Dr Dong Fang and Dr Mehdi Molu for valuable advice

which helped me strengthen my understanding of the research topic.

Further thanks go to all staff and colleagues of the Communication group, for their

help and support throughout my research . . .

ix



Declaration

I declare that this thesis is a presentation of original work and I am the sole author.

This work has not previously been presented for an award at this, or any other,

University. All sources are acknowledged as References.

x



Chapter 1

Introduction

1.1 Overview

With the recent development of wireless networks, system structures have become

so complicated that it is impossible to simulate the entire network (all nodes

and all links). This has stimulated the application of system-level simulation

[1] which can analyse the overall performance of a network based on link level

abstraction. This approach has already been widely applied in the conventional

networking paradigm, but its application to cooperative relaying networks, such

as that introduced by the DIWINE project [2], is less well understood. DIWINE

considers wireless communication in a dense relay / node scenario where PNC

(Physical-layer Network Coding) messages are flooded via dense massively air-

interacting nodes in a self-contained cloud of wireless devices. More details of the

DIWINE paradigm, and the approach so far taken to system-level simulation in

the project, are given in [3]. PNC [4] recovers a network coded combination of the

transmitted data symbols directly from the superimposed signal at a relay and

thus it is more efficient because it avoids treating combined signals as interference.

The system-level simulation could be applied to common multi-node transmission

system, which consist of multiple transmitors, multiple relays and 1 final desti-

nation. These will be very important in the Internet of Things (IoT) [5] such as

1
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smart family.

Among all PNC models, the simplest example may be the Two-way Relay Channel

(TWRC) [6] which involves 2 users and 1 relay. Other multi-hop systems can be

treated as the combinations of multiple TWRC which means we may estimate the

overall performance (in terms of packet error rate (PER)) from the error rate at

a single relay (system-level simulation). Our main focus is the building and the

performance analysis (the theoretical upper bound of the error rate at the relay

in terms of SER or BER) of the PNC TWRC at all stages (uncoded, coded, on

the Orthogonal Frequency Division Multiplexing [7](OFDM) channel, etc) so that

the system-level simulation in the project DIWINE can be applied based on these

result.

Our research is progressive and evolutionary. If we consider the channel properties,

we may divide the research into two parts: PNC on single carrier system and

PNC on OFDM system. Else, if we take the view of the application of the channel

coding, our research can also be divided between uncoded PNC and channel coded

PNC. Thus, there are 4 different systems which are combinations of either system

of the above two categories. We start our research from the basic QPSK modulated

TWRCmodel, then give the solution of the mapping under different channel fading

states. There are some relative values of the fade coefficients of the channels to

one relay (phase and amplitude) which make recovery of individual source data

symbols difficult. These are called “singular fade states”. Typically, we derive the

theoretical SER or BER at the relay across all channel states, and compare it with

the simulated result from the symbol-level simulation to prove that the theoretical

upper bound is applicable. Based on this, we build the system-level simulation of

a multi-hop system as required by the project DIWINE, and the theoretical SER

at the relay is applied to estimate the overall PER. Next, the convolutional code is

applied to the system to further boost the performance. Again, the building and

the performance analysis are both given. Finally, we apply the OFDM channels

to our system, as it is commonly used in the modern communication system to

cope with frequency selective channel and time delaying channels, to which the

single-carrier channel is vulnerable to deal with.
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1.2 Contribution

The major contributions in this thesis can be stated as follows:

• The theoretical upper bound (SER) for uncoded QPSK modulated PNC at

the relay is derived. There are three fixed mappings available (the bit-wise

XOR, the reversed XOR and the anti-π
4
) to deal with different singular fad-

ing between two transmitting channels, and we introduce the adaptive map-

ping which always picks the best mapping under the current fading states.

Adaptive mapping helps to build a unique constellation of possible received

superimposed symbols in which points with small Euclidean distance have

the same network code value, or conversely for points with different network

code value have large Euclidean distance. Particularly, we obtain the SER

under specified singular fading as it is require at the system-level simulation.

The averaged SER, however, is obtained by taking the Monte-Carlo simula-

tion over all fading states.

• The theoretical upper bound (BER) for the convolutional coded PNC at the

relay is obtained. Unlike some previous research which focuses on the decod-

ing of the individual data sent from both users, we are interested in the joint

decoding which decodes the received signals at the relay into superimposed

symbols. We start the derivation from the basic pairwise-error probability,

to the event error probability, and finally obtain the upper bound of the

BER at the relay.

• The introduction of the sub-band concept for PNC on OFDM channels.

Similar to the PNC on single-carrier channels, we introduce the adaptive

mapping which adapt all pairs of sub-channels (from both users), and name

it ‘fully adaptive mapping’. However, this will be quite difficult to realize if

we apply a linear channel code to it. As a trade-off, the sub-band is intro-

duced which consists of several adjacent sub-carriers. Also, we will introduce
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two adaptive mapping schemes in each sub-band: the ‘majority vote’ and

the ‘local optimum’ mapping schemes.

1.3 Thesis Outline

The structure of the thesis is as follows:

• In Chapter 2, a literature review of PNC is discussed, including system

model, transmission and decoding techniques, and mapping problems as-

sociated with modulation. Also, the concept of linear channel coding and

OFDM channels are discussed. These three concepts will be combined in our

project to obtain the best performance in terms of the error rate at the relay.

• In Chapter 3, an uncoded PNC model on flat fading channels is given, which

is modulated by QPSK. We present different mappings to deal with differ-

ent relative fading states, elaborate the detailed transmission and decoding

process (e.g. condense the mapping application into a matrix operation),

and derive the theoretical upper bound for the error rate across all singular

fadings in terms of the total Euclidean distance. Simulation results are then

presented to show the comparison between the theoretical error rate and the

result averaged by the symbol-level simulation.

• In Chapter 4, the system-level simulation is given to show the application

of the error rate derived in Chapter 3. By dividing the transmission models

into different phases, we can elaborate the transmission process in terms of

multiple vector/matrix operations. We assume that the transmission chan-

nel fading states are known to the destination nodes, and the transmission

nodes are ‘informed’ by the destination nodes of the best applicable map-

ping (in terms of the error rate at the relay and the rank of the combined
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mapping matrix) to be chosen. The system-level simulation is then applied

to estimate the overall packet error rate (PER). Simulation results are pre-

sented to show the comparison of PER between the system-level simulation

and the symbol-level simulation.

• In Chapter 5, we introduce convolutionally coded PNC on the single-carrier

channel. In addition to the elaboration of the system model, we again focus

on the derivation of the upper bound of the error rate at the relay across all

fading states. The derivation process is much more complicated than that

for the uncoded PNC. We start from the pairwise error probability, the event

error probability, and finally generalize them to the bit error rate. Simula-

tion results are again given for comparison.

• In Chapter 6, we proceed to the application of PNC on OFDM channels in

order to solve the time delay and frequency selective channels. Due to the

limitation of OFDM channels, we introduce the sub-band and the adaptive

mapping/modulation (the majority vote and the best effort). We build the

system for both uncoded and coded PNC, and compare their performance

with that on the single-carrier channels.

1.4 Publication list

Journal Papers

• Cheng Chen and Alister Burr. “System-level Simulation of the QPSK Mod-

ulated Physical Layer Network Coding,” Submitted to IET Journals

• Cheng Chen and Alister Burr. “Performance Analysis for the Convolutional-

Coded Physical-Layer Network Coding,” In preparation
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Conference Papers

• A. Burr, Cheng Chen, M. Molu, K. Ramantas and J. S. Vardakas, “System-

level simulation of multihop wireless networks using physical-layer network

coding,” 2015 European Conference on Networks and Communications (Eu-

CNC), Paris, 2015, pp. 285-289.

• A. G. Burr and Cheng Chen, “Low energy wireless relay networks using

physical layer network coding,” 2015 1st URSI Atlantic Radio Science Con-

ference (URSI AT-RASC), Gran Canaria, Spain, 2015, pp. 1-1.



Chapter 2

Literature Review

2.1 PNC

2.1.1 Introduction

To the best knowledge of the author, the first appearance of PNC is [8]. As

this reference describes, at the physical layer [9] of wireless networks, which is

the bottom level of the 7-layer of the Open Systems Interconnection model (OSI)

[10], all data are transmitted in the form of electromagnetic (EM) waves. Also,

Multiple-Input and Multiple-Output (MIMO) [11] [12] [13] techniques have been

widely used in the industry including 4G and WIFI, in which transmission of

the signal from a sender/user is often received by more than one node (relay or

receiver). Likewise, a receiver/relay may receive signals from multiple transmitters

simultaneously.

These characteristics may cause interference among signals, and the interference

has a negative effect on wireless networks (e.g. it distorts the wanted received

signal and degrades the decoding/de-mapping accuracy). The traditional way of

dealing with such situation is to treat the unwanted signal as noise and filter it out

through receiver design or transmission scheduling. e.g. Code Division Multiple

Access (CDMA) [14].

7
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Instead of treating interference as additive noise to be avoided, we can on the other

hand accept interference and use it to improve the overall throughput. To do so

in a multi-hop network, we require the system to have:

• A relay node which must be able to convert simultaneously received signals

into interpretable output signals to be relayed to their final destinations.

• A destination which must be able to extract the information addressed to it

from the relayed signals.

Network coding, which is able to combine and extract information through simple

Galois field GF(2n ) additions [15] [16], provides a good foundation to meet such

goals. However, network coding arithmetic is generally only applied on bits that

have already been detected. Specifically, it cannot be used to resolve the interfer-

ence of simultaneously arriving EM signals at the receiver. So, criterion 1 above

cannot reliably be met.

Thus, we aim to introduce Physical-layer Network Coding (PNC). The main idea

of PNC is similar to network coding, but at the lower physical layer that deals

with EM signal reception and modulation. As a result, sums of EM signals can be

mapped to GF(2n) sum of digital bit streams through a proper modulation-and-

demodulation technique at relay nodes, which is called de-mapping in this thesis.

In this way, the interference from the unwanted signal may become part of the

arithmetic operation in network coding.

2.1.2 Two-Way Relay Channel

We start from a model consisting of 2 users and 1 relay, called two-way relay

channel (TWRC). This three-node wireless network is a basic unit for cooperative

transmission being introduced in [17] [18] [19] [20]. In cooperative transmission,
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the relay node can choose different transmission strategies in forwarding to the

destination node, such as Amplify-and-Forward or Decode-and-Forward [17], ac-

cording to different Signal-to-Noise (SNR) situations. We focus on the Decode-

and-Forward (DNF) strategy, and consider frame-based communication in which

a time slot is defined as the time required for the transmission of one fixed-size

frame. Each node is equipped with an omni-directional antenna, and the channel

is half duplex so that transmission and reception at a particular node must occur

in different time slots.

Before introducing the PNC transmission scheme, we first describe the traditional

transmission scheduling scheme and the straightforward network-coding scheme

for mutual exchange of a frame in the three-node network [20] [21] or the TWRC.

2.1.2.1 Traditional Transmission in a TWRC

Figure 2.1: Traditional transmission in a TWRC

The traditional way for user A and B to exchange their information takes 4 time

slots as fig 2.1 shows. In time slots 1 and 2, user A and B send their information

I to the relay separately. This is because in the traditional transmission approach

interference is usually avoided by prohibiting the overlapping of signals from user

A and B to the relay in the same time slot.

After that, the relay sends the superimposed information back to both users in

time slots 3 and 4. Thus, a total of four time slots are needed for the exchange of

two frames in opposite directions.
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In practice, a better order might be Phase 1 − > Phase 4 − > Phase 2 − > Phase

3, as it reduces the amount of data required to be stored at the relay as well as

the end to end delay.

2.1.2.2 Straightforward Network Coding Scheme

Figure 2.2: Straightforward network coding in a TWRC

Ref. [21] and [20] outline a straightforward way of applying network coding in the

three-node wireless network, and Fig 2.2 illustrates the idea. First, user A sends

frame IA to relay at time slot 1 and then user B sends frame IB to the relay at time

slot 2. After receiving IA and IB, relay combines the frames into one as follows:

IR = IA ⊕ IB (2.1)

where ⊕ denote the bitwise exclusive OR operation being applied over the entire

length of frames IA and IB. The relay then broadcasts IR to both SA and SB at

the same time. When user A receives IR, it extracts IB from IR using the local

information IA, as follows:

IA = IA ⊕ IR

= IA ⊕ (IA ⊕ IB)

= IB (2.2)
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Thus, a total of three time slots are needed for the exchange of two frames in

opposite directions, which increases the transmission efficiency by 33%. We can

further optimize it by using a PNC model.

2.1.2.3 Physical-Layer Network Coding(PNC)

We now introduce PNC. In PNC, we require the system to have:

• symbol-level synchronization.

• the use of power control.

Thus, SA and SB arrive in the relay at the same time with the same frame/packet

length as well as amplitude. In this way, we can develop the PNC model shown

in Fig 2.3.

Figure 2.3: PNC

Assuming perfect synchronization, users could transmit their symbols/signal to

the relay at the same time without considering the mutual interference in time

slot 1, and the relay broadcast SR to both users like the straightforward network

coding scheme. We call them MAC phase and broadcast phase respectively. Thus

a total of only 2 time slots are needed, which doubles the transmission efficiency

comparing with the traditional way.
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2.1.2.4 BPSK Modulation

These information-theoretic approaches are about finding the capacity bound -

they are not really meant to be practical. But in this thesis we are concerned with

practical approaches and their performance, rather than the information-theoretic

limits.

Let us initially assume the use of BPSK modulation in all the nodes [6]. The

BPSK example uses symbol-level de-mapping or per-symbol denoising, while the

information-theoretic approaches such as [22] [23] [24] use codeword-level de-

mapping. However, these information-theoretic approaches are about finding the

capacity bound rather than practical approach. In this thesis we are concerned

with practical approaches and their performance, rather than the information-

theoretic limits. The motivation is:

• Symbol-level de-mapping is closer to practical communications, as it can be

applied for packets of small length .

• the peculiar operation at the relay gives rise to interesting problems related

to the modulation design in terms of choice of the signal constellation and

the network coding used at the relay.

Assume that the channel gains are 1 (flat fading), so the transmitted symbols

from A and B satisfy: SA, SB ∈ {−1, 1} which correspond to IA, IB ∈ {0, 1}.

The received signal at R is RS = SA + SB + SN , where SN is the noise at the

relay. If this process is noiseless (SN = 0), then the possible received symbols are

Rs ∈ {−2, 0, 2}. Then we decode Rs into the superimposed binary sequence IR,

and finally re-modulate it to SR in order to broadcast it. We may now form table

2.1

Clearly, if RS = 0, then it is impossible to decode the separate symbol from A and

B even in a noiseless case (in this case we know one user has send a ‘1’ and the
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IA SA IB SB RS IR SR

0 −1 0 −1 -2 0 −1
0 −1 1 1 0 1 1
1 1 0 −1 0 1 1
1 1 1 1 2 0 -1

Table 2.1: BPSK modulated PNC

other a ’0’, but we cannot tell which user sent which). Instead, we can still de-map

(denoise) it to a network coded form: the relay will be fully aware that the symbol

that both users transmitted have opposite polarity, and broadcast SR = 1 (here we

re-modulate IR to SR) to both users. In this way users can de-map the received

symbol to IR using table 2.1, and finally extract the wanted information using

formula 2.2. This special modulation/demodulation mapping scheme, referred to

as PNC mapping in this thesis, can be applied to obtain the equivalence of GF(2)

summation of bits from both users at the physical layer (IA⊕ IB). Also, this PNC

mapping reduces the overall complexity, since the relay does not need to decode

the separate message but only the network coded one, and is a major advantage

over traditional transmissions.

2.1.2.5 QPSK Modulation

Now we move on to the use of QPSK modulation in all the nodes. Recall that

a QPSK data stream can be considered as two BPSK data streams: an in-phase

stream and a quadrature-phase stream. Thus every transmitted symbol I can be

divided into an in-phase (I) and a quadrature-phase (Q), represented as I(1) and

I(2), which means the 1st and the 2nd bit of the transmitted symbols. Alternatively,

we can simply make I a 2-row matrix, with the 1st row acting as I(1) and the 2nd

as I(2). Thus, we can conclude that IA, IB ∈ Z22(a length 2 vector of binary

symbols), where Z = {

0
0

 ,

0
1

 ,

1
0

 ,

1
1

}.
Let M be a QPSK constellation mapper used at each user, then after modulation,

we obtain QPSK symbols SA and SB as SA = M(IA) and SB = M(IB). If we
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again assume the channel gains are 1 and the channels are noiseless, then at the

relay, we have:

RS(I) = SA(I) + SB(I)

RS(Q) = SA(Q) + SB(Q) (2.3)

Again the relay cannot extract the individual information transmitted by both

users (IA or IB). As long as the relay can de-map (In general cases, we cannot

ignore channel fading or the noise, and we will have to map the received signal

against a look-up table. These will be further explained in chapter 3), re-modulate

and resend the superimposed symbol sequence SR back to both users, the users

could still subtract the wanted information from SR, and the end-to-end delivery

of information will be successful, thus we have:

IR(1) = IA(1)⊕ IB(1)

IR(2) = IA(2)⊕ IB(2) (2.4)

For simplicity, we define the QPSK modulated symbol as S ∈ {±1± j} , and thus

we can make a similar PNC mapping to it as table 2.2 shows:

2.1.2.6 Mapping Selection and Error Calculation

Now we no longer assume that channels are noiseless or the gain are 1. We already

know that the received signal at the relay R over the MAC channel is written as

RS = hASA + hBSB + SN , where hA and hB are the channel coefficients from user

A and B, respectively. Here, SN is the Gaussian noise with a variance of σ2. We

assume slow block fading and perfect channel estimation at the receivers we then



15

IA SA IB SB RS IR SR

0 0 −1− j 0 0 −1− j −2− 2j 0 0 −1− j
0 0 −1− j 0 1 −1 + j −2 0 1 −1 + j
0 0 −1− j 1 0 1− j −2j 1 0 1− j
0 0 −1− j 1 1 1 + j 0 1 1 1 + j
0 1 −1 + j 0 0 −1− j −2 0 1 −1 + j
0 1 −1 + j 0 1 −1 + j −2− 2j 0 0 −1− j
0 1 −1 + j 1 0 1− j 0 1 1 1 + j
0 1 −1 + j 1 1 1 + j 2j 1 0 1− j
1 0 1− j 0 0 −1− j −2j 1 0 1− j
1 0 1− j 0 1 −1 + j 0 1 1 1 + j
1 0 1− j 1 0 1− j 2− 2j 0 0 −1− j
1 0 1− j 1 1 1 + j 2 0 1 −1 + j
1 1 1 + j 0 0 −1− j 0 1 1 1 + j
1 1 1 + j 0 1 −1 + j 2j 1 0 1− j
1 1 1 + j 1 0 1− j 2 0 1 −1 + j
1 1 1 + j 1 1 1 + j 2 + 2j 0 0 −1− j

Table 2.2: QPSK modulated PNC

draw up a look-up table of all possible received superimposed QPSK symbols at

the relay.

In the de-mapping stage, we first consider a de-mapping function consisting of a

look-up table L and a mapper C, preceded by maximum-likelihood (ML) detection.

The ML detection performs:

XR = argmin
(IA,IB)∈Z×Z

|RS − (hAM(IA) + hBM(IB))|2 (2.5)

to obtain the estimated IA as IA
′
and IB as IB

′
, where (hAM(IA)+hBM(IB)) ∈ L,

and XR =

IA′

IB
′

T

. The mapper C generates a network coded data matrix IR from

the ML estimates as IR = C(IA
′
, IB

′
). Using the constellation mapper MR, the

superimposed QPSK symbol to be broadcast is then given as SR = MR(IR). Note:

the ML detection is used just for obtaining the quantized version of the received
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signal. The communication throughput through the MAC channel is inevitably

restricted by the weaker link of the two terminals.

The relaying node R selects the best de-mapping method from a well-designed

finite mapping book based on the channel condition. This require the de-mapped

product to be unique. According to [6], for successful decoding we have:

• C(IA, IB) ̸= C(I
′
A, IB) for any IA ̸= I

′
A ∈ Z and IB ∈ Z

• C(IA, IB) ̸= C(IA, I
′
B) for any IB ̸= I

′
B ∈ Z and IA ∈ Z

where C is an arbitrary mapping. In the previous section, we make :

C(IA, IB) = IA ⊕ IB (2.6)

which is called “the XOR mapping”. However, this mapping may be vulnerable

when the relative phase between two channels satisfies some special conditions. As

can be seen from Fig 2.4 and Fig 2.5, this mapping may result in a situation that

closest points have different network coding value (IR) and thus have more chance

to have a decoding error. As a result, we introduce another 2 mappings against

different fadings (including phase and amplitude fading), which are called “re-

versed XOR mapping” (similar to [25]) and “anti-π
4
mapping” (We have a 5-QAM

mapping in [6], but it is not linear). The solid dividing lines are the decoding/de-

mapping thresholds for adjacent points, and the numbers on the graph correspond

to the IR values in table 2.2. The mappings and combinations will be further

explained in the next chapter.
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Figure 2.4: The XOR mapping, the relative phase is around 90o

Figure 2.5: The XOR mapping, the relative phase is around 45o

2.2 Convolutional Code

Convolutional code, as a linear channel code with error correcting capability, gen-

erates the codeword by feeding the data stream into a sliding application of a

boolean polynomial function. The word‘convolution’ comes from the The sliding
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application of the encoder over the data, and this code is thus called ‘convolu-

tional coding’. In the decoding stage, a time-invariant trellis is applied thanks

to the sliding nature of the convolutional codes. With some reasonable complex-

ity, this time invariant trellis decoding allows us to apply maximum-likelihood

soft-decision method. [26]

Figure 2.6: Structure of a general convolutional code

The structure of the convolutional code is shown in Fig 2.6. The braces in the

figure can be treated as a sliding window which shifts along the input data sequence

one block (k symbols) at a time as discussed in [27]. Thus we can define three

important variables:

• n as the current block of code symbols

• k as the current block of data symbols corresponding to code symbols n

• ν as the total number of input blocks within the sliding windows, known as

the constraint length of the code.

The term ν−1 may also be called the memory order of the code, and we name the

term k(ν − 1) as the memory of the code (the capability of the encoder to store
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Figure 2.7: Encoder for a (2,1,3) convolutional code

the number of previous data symbols). The code is then called a (n, k, ν) code.

We are interested in the normal case that both data and code symbols are binary.

In our research, we apply a (2,1,3) convolutional code with a constraint length of

3 and rate 1/2, shown in Fig 2.7, where d is the current data input, s0 and s1 are

the shifted delayed input, and c0 and c1 are output bits. As can be seen, there is a

two-tap delay in the system. Thus, the output codeword G(D) can be represented

as:

[G(D)] =
[
1 +D2 1 +D +D2

]
(2.7)

in which the ‘1’ term in the polynomial means the input bit, D means the input

bit with a delay of 1 time slot, and D2 with 2 time slots, etc. The addition is

modulo-2, equivalent to the exclusive OR operation that outputs a binary result.

This is the typical convolutional code we apply in our research. If we replace D

with 2 in 2.8 (and treat the addition as the convolutional addition), then we get :
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[G(D)] =
[
5 7

]
(2.8)

Thus, this can also be called a (5,7) convolutional code.

2.2.1 Trellis diagram

The trellis diagram was first introduced by Forney in [28], which can be tread as

an simplified version of a tree diagram in [29]. From the diagram, we define that:

• Columns/length of the diagram as information block periods

• Nodes as the state of the encoder after each data bit

• Branches as state transitions

• Branch labels as code symbols to be output

• Path as code sequence

If we input a sequence 10000 into a (5,7) convolutional encoder, then we will have

the trellis diagram shown in 5.2, there the black numbers represent the current

state, and the purple numbers are the output code bits. With the help of the

trellis diagram, it is easy to see that the encoded data is 11011100.

2.2.2 Decoding

Decoding is always the most difficult and complicated process in the implemen-

tation of convolutional codes. It is further complicated when we compare it with
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Figure 2.8: Trellis diagram for a (2,1,3) convolutional code

block codes because there are no distinct codewords, only potentially infinite code

sequences. This means that, in principle, the decoder might have to wait an

unlimited time before it is able to decide between two possible code sequences.

There are two basic techniques for decoding of convolutional codes: maximum

likelihood sequence detection (MLSD), and sequential decoding. These have also

been described as breadth first and depth first, respectively. The first is also better

known as Viterbi decoding, which is more commonly used. The words breadth first

and depth first comes from their different decoding methods. For the two paths

going into the same node, Viterbi decoding will always delete the one with larger

Hamming distance, which focuses on the breath of the trellis diagram, while the

other method focus on the total length instead.

2.2.2.1 Viterbi decoding

The word Viterbi inside the Viterbi algorithm for MLSD in convolutional code

is named after Andrew Viterbi in [30] in which the Viterbi algorithm was first

applied. Through careful comparison, it aims to find a predicted path inside the

code trellis that is most similar to the received signal sequence with one code block
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at a time in proceeding. The predicted most similar path is called the survivor

path. Thus, the algorithm may be summarized in a pseudo-code form as:

Algorithm 1 The Viterbi decoding [[27],pp.186]

For each data block period (column on trellis diagram) {
For each final state (node of right of column) {
For each branch leading top this node {
Calculate distance metric of received sequence from branch label
Add to metric talky kept at initial node (on left of trellis column)
}
Select branch with smallest distance metric. Store in a list of survivor paths
Delete the other paths from the list of survivors, and if this leaves some earlier
paths ’floating’, delete them too (leaving one survivor path to each final state
node)
}
if the deletion process leaves only one survivor path over some earlier data
period, the corresponding data block can be output.

The algorithm searches every path through the trellis. However, by noting that

only one path to a given node may be the correct one, it restricts the number

of paths to be considered to a finite level. Therefore it is guaranteed to find

the required closest path as well as a maximum-likelihood decoder (within the

decoding metric being used).
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stage 1 stage 2 stage 3 stage 4 stage 5

received 11 1101 110101 1101010 1101011011

sequence

best 11 1101 110111 11010010 1110011011

path 110100 1101110011

1101001010

1101001001

distance 0 0 1 1 2

stage 6 stage 7

received 110101101111 11010110111100

sequence

best 111001101111 11100110111100

path 110100101011

distance 2 2

Table 2.3: Decoding of the received code sequence for a (5,7) convolutional
code

Table 2.3 shows the application of this algorithm to the trellis of the (5,7) convo-

lutional code in decoding a received code sequence 11010110111100, starting from

the zero state. The best path (with smallest Hamming distance with the received

code sequence) may shift between different trellis branches in the different decod-

ing stages. Note that the distance in the calculation is the Hamming distance, and

we apply hard decision decoding to deal with it. At the end of the process, the

survivor path is 11010010101100, which has a Hamming distance of 2 compared

with the received code sequence. We may encounter the situation that there is a

‘tie’ (the word ‘tie’ comes from [27]) where two branches merge at one node as a

destination. This require the the decoder to make an arbitrary decision of which

branch to choose. Here we choose the higher of the two branches although the

choice could equally well be made randomly.
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At the end of the received sequence the survivor paths follow the same path in the

first trellis period only. Hence, the algorithm can only decode the 1st data block.

Later bits may be decoded in the following stages, and it is obvious that a delay

of more than one block period is necessary, and we cannot be sure how many

subsequent periods it will take before a given information bit may be decoded.

Thus we introduce a truncation window to secure a fixed, limited delay. This

technique limits the length of the survivor path to a certain level [31]. A decision

is made to eliminate the unwanted data blocks at each decoding period, and the

final survivor path is the one with the lowest distance metric.

Figure 2.9: Truncated window apply to Viterbi decoding

Now we focus on the last 2 periods of decoding with a truncated window of length

5 block as Fig 2.9 shows, where the yellow path is the current path in the window,

and the red path is the original decoded path. In the second decoding stage,

there is a ‘tie’ between the two survivor paths in the two sub-figures from which

they diverge. To decode the message, we trace the trellis back to the beginning

(from the first node) where the two paths are the same, and it corresponds to

a data ‘1’ (the downward from the first node). Thus we output that bit. Next,

according to the current survivor path , we output a ’1’ again. We note that the

path is not the same as the previous result, and is sub-optimum (one data error

has occurred). This shows how a truncation window could possibly degrade the
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decoding performance. In practice, the degradation is negligible if the truncation

window length is five or six times the constraint length.

In practice, the implementation of the decoder with truncation window will require

the survivor path to be stored in some form temporarily in each window, and the

decoder need to ‘track back’ each time when the window move forward, which

makes the implementation rather complex. Still, we have two basic techniques

that meet the requirements: register exchange and trace back [32], which means

the survivor is stored in a register or as a linked list, and can be interchanged or

traced during the decoding process.

Also, for soft decision decoding, the decoder must be fed with finite-precision soft

information, which may reduce the decoding accuracy compared with using the

true soft information input. This may require a quantization, typically 8 levels,

which corresponds to 3-bit representation.

We have up to now focused on hard decision decoding, and Hamming distance is

used as the metric. However, we can use any appropriate metric in the algorithm

as it is completely general. This means, if we consider Euclidean distance as the

metric, then soft-decision decoding is also available. If we consider the White

Gaussian noise channel, then the soft decision decoding is optimum [27] given

that the full Viterbi algorithm is applied to the maximum-likelihood decoding.

2.2.3 Performance Analysis

The bit error probability Peb of convolutional codes decoded using the Viterbi

algorithm was published in [31] [33]. Here we aim to obtain Peb of convolutional

codes using the Viterbi soft decision decoding techniques. [34]

The bit error probability Peb has an upper bound in the form of a summation as:

Peb ≤
∞∑
i=1

∞∑
d=dH

ia(d, i)Pep (2.9)
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where a(d, i) is the number of paths which divert from the correct path with

information weight i (number of errors in sequence data) and distance d (errors in

code sequence), Pep is the probability that a given erroneous path is chosen by the

decoder instead of the correct one, called pairwise error probability, and dH is the

minimum free Hamming distance of the code. If the sequence fed into the decoder

is not binary, then the Euclidean distance is calculated here instead of Hamming

distance. We will further explain these in chapter 5.

However, this upper bound, in the form of general expression, may have a large

gap with the simulation result in the low SNR region because it is an infinite

summation. We aim to find a more precise estimation of Peb. [34] provides a

calculation of the upper bound of Peb so that it is tighter at error rate of 10−2 and

below for some commonly used codes by rearranging equation 2.10 as:

Peb ≤
∞∑

d=dH

e(d)Pep (2.10)

where

e(d) =
∞∑
i=1

ia(d, i) (2.11)

e(d) is called data-weighted distance spectrum, and it can be obtained by looking up

the table in [27]. For the (5,7) code we applied in our research, e(d) = 1, 4, 12, 32...

which corresponds to i = 1, 2, 3, 4...

[34] makes this bound tighter by summing not to infinity but to some smaller

number of terms. Thus, it is then not strictly an upper bound

When we apply soft-decision decoding, if the code is binary, then the pairwise

error probability can be expressed by the Hamming distance of the code. Thus,

for every value of d in (2.11), we have:
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Pep = Q

[√
2dR

Eb

N0

]
(2.12)

where R is the code rate (for a (5,7) code, R = 1
2
). This will also be further

explained in chapter 5 to obtain a tight bound.

There are two possible ways that binary codes may be applied to PNC: the mul-

tilayer PNC [35] and the multilevel coded PNC [36]. The multilayer PNC use an

outer FEC code with an inner network code (which means a networking coding

layer and a channel coding layer.), while multilevel coded PNC propose a scheme

in which separate encoders are applied to each bit of the constellation label. Our

research are mainly based on the multilayer PNC. This will be further explained

in chapter 5.

2.2.4 Coded modulation

Coded modulation (CM) [37] is a general concept for a system in which an en-

coder is combined with a higher order modulator (e.g. QPSK) with more than

one bit per symbol to increase the spectral efficiency. Examples of encoders can

be simple linear block codes or convolutional codes. Further more, some more

advanced encoders such as turbo codes or low-density parity-check (LDPC) codes

can also be applied. For commonly used higher order modulation schemes, we may

also introduce quadrature-amplitude modulation (QAM), and phase-shift keying

(PSK).

Previous research [38] has precisely described some important process of coded

modulation as:

• Combine an error correcting channel code (convolutional code, block code,

turbo code) and a signal constellation.
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• Signal constellation aggregates the coded bits as to map them into points in

a way that enhances the distance properties of the code (typically Euclidean

distance).

• Thus, a codeword can be seen as a vector of signal points.

• If we assume the channel is AWGN, the decoder will map the codeword to

the closest received vector in terms of Hamming distance (hard-decision de-

coding), or map the squared Euclidean distance to the LLR (Log Likelihood

Ratio) value (soft decision-decoding).

Our project benefits from the LLR and the mapping method mentioned above,

although the structure in our system is not a strict coded modulation.

Nowadays, more advanced coded modulation systems are applied including bit-

interleaved coded modulation (BICM) which inserts a bit interleaver between

the encoder and the modulator. Also, the CM system can also be extended to

MIMO systems with several antennas at both the transmitter and the receiver.

Coded modulation has been widely applied in the industry today such as IEEE

802.11a/g/n/ac/p, 4G (HSDPA and HSUPA), 3GPP Long Term Evolution (LTE),

WiMAX, and the latest DVB standards (DVB-T2, DVB-S2, and DVB-C2).

Coded modulation could achieve high coding gain within the given bandwidth

by means of combining coding and modulation. Thanks to the mapping inside

the linear modulation process, coded modulation could increase the constellation

size and accuracy by adding additional redundancy to the trellis-coded signal.

More importantly, coded modulation can be decoded with a soft-decision Viterbi

decoding to have a coding gain (for a two-dimensional coded modulation over a

White Gaussian channel) of about 3dB for a BER of 10−5.
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2.3 OFDM

Orthogonal frequency division multiplexing (OFDM) [39]has been widely imple-

mented in modern communication standard with more than 30 years of research

and development, including WIFI and 4G. In the early days, the massive complex

computation and high speed memory still remain a problem for the realization of

OFDM. These problems have been solved thanks to the advances of digital sig-

nal processing (DSP) and very large scale integrated circuit (VLSI) technologies.

Also, sinusoidal generators and coherent demodulation require additional arrays,

and the use of the fast Fourier Transform (FFT) helps to eliminate them. Fur-

thermore, the recent favour of OFDM is due to its excellent performance which

has been proved in [40] [41].

2.3.1 Parallel data transmission and multiple carriers

OFDM is a parallel data transmission system. In a conventional serial data sys-

tem, the symbols may occupy the entire allocated bandwidth, and are transmitted

in turns (sequentially). A parallel data transmission system is capable of overcom-

ing the problem that such a serial system may encounter due to high bandwidth.

A parallel system has several sequential streams of data which are transmitted

simultaneously (several serial system operating at the same time), so that the

throughput is boosted by the number of sequential streams. As a result the allo-

cated bandwidth is divided, and each stream takes only a small part of it.

When there is a frequency selective fading, parallel transmission can spread the

channels over several frequency bandwidth. In the traditional serial system, ad-

jacent symbols maybe seriously distorted by the fading or impulsive interference

in the channel. However, parallel system adapt this situation that many symbols

are only slightly distorted (while some symbols remain heavily distorted), mak-

ing the reconstruction/decoding of the symbols easier even without forward error

correction (FEC). Also, as we divide the entire bandwidth into a number of sub-

channels/sub-carriers, each sub-channel is relatively flat (the original bandwidth
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may be frequency selective). Another advantage is that equalization at each sub-

band becomes easier as OFDM channels can be equalised just by compensating for

the phase shift and attenuation of each sub-band separately (if the system has no

ISI or ICI). Alternatively, [42] shows that the implementation of different encoding

may even avoid such equalization by proper phase estimation.

We know that the total frequency bandwidth is divided into N frequency sub-

channels (In OFDM, these sub-channels can be overlapping to each other). It

is very important to separate them in a proper way. OFDM separates the sub-

channels by making them orthogonal to each other, as the orthogonal signals can

be separated at the receiver by correlation. This also eliminates the inter carrier

interference (ICI). To further adapt the system, we can choose the carrier spacing

by letting it be equal to the reciprocal of the symbol period. Thus, OFDM can

be regarded as a form of multi-carrier modulation with carefully selected carrier

spacing so that each sub-carrier is orthogonal to the others.

Figure 2.10: General OFDM structure

Fig 2.10 shows the general structure of a typical FFT-based OFDM system.The

incoming serial data is first converted to parallel form and is modulated on the
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sub-carriers, with X bits on each sub-carrier, where X is the signal constellation

of the modulation on sub-carrier. e.g, for QPSK modulation, X = 2. Then the

modulated complex signal is coonverted to the time domain in the baseband by

the inversed FFT (IFFT).

Figure 2.11: The cyclic prefix

When the above ISI or inter-carrier interference (ICI) are eliminated, FFT will

help the receiver to separate the sub-channels and maintain their orthogonality.

However, factors such as the multipath of the channel can still result in addi-

tional ISI. To solve this, a simple solution is to increase the symbol duration by

introducing a guard period to make the distortion insignificant. There are several

ways of doing that, and among them the cyclically extended guard interval [41]

is commonly chosen. The word ‘cyclic’ shows that this interval is repeated in the

sequence, and is also called cyclic prefix, where each OFDM symbol is extended

by a period extension of the signal itself. Taking Fig 2.11 as an example. the

cyclic prefix comes from the signal of the last Ncp samples and is added at the

beginning of the entire serial OFDM symbol, where Ncp is the length of the cyclic

prefix. Note: in order to dissolve time delay effectively, Ncp needs to be larger or
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equal to the maximum delay of the channel, expressed in samples. We choose the

cyclic prefix so that:

• The carrier synchronization at the receiver can be maintained, so signal

rather than a long time of silence is always transmitted.

• The transmission system could be modeled by applying the cyclic convolu-

tion between the OFDM signal and the channel response. [7]

Thus the total duration of the symbol may become

Ttotal = Tcp + T (2.13)

where Tcp is the guard interval (duration of the cyclic prefix) and T is the useful

symbol duration. As long as Tcp is longer than the channel impulse response or the

mutipath delay, then the ISI can be eliminated. However, the guard interval/cyclic

prefix will reduce data throughput, and the limit of Tcp varies according to different

applications. In the industry, Tcp is usually less than T/4. (We may have a larger

Tcp if the delay is huge, and this will require more sub-carriers in order to maintain

the transmission efficiency)

After this, the serial OFDM symbols are convolved with the channel impulse re-

sponse and passed to the receiver. Upon receiving the signal, the receiver performs

the inverse of the operations of the transmitter to recover the original data. A one-

tap equalizer maybe used to eliminate the channel distortion, and its coefficients

are obtained from the channel information.

2.3.2 Coded OFDM (COFDM)

OFDM is able to transmit data in a frequency selective channel by means of time

and frequency diversity. However, it cannot change the channel’s fading status.
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Thus, due to the position of the individual sub-carrier, it could be deeply affected

by the fading on its allocated sub-channel. Thus, we may consider the use of a

channel code or a coded modulation to further improve the transmission accuracy.

An example is trellis coded modulation (TCM) [43][44], which can be treated as

the combination of a linear modulation (e.g QPSK modulation) and a linear code

with trellis decoding (e.g convolutional code). Fig 2.12 shows the structure of

COFDM.

Figure 2.12: TCM on OFDM

We know that the major advantage of OFDM over traditional serial transmission

is that OFDM can convert a wide-band frequency selective channel into several

narrow-band relatively flat channels by means of parallel and multi-carrier trans-

mission. This enables the uses of linear channel coding on OFDM.

Although the trellis code could improve the BER effectively, it is invulnerable

towards impulsive [45] or burst noise [46], which may be caused by co-channel

interference and phase noise that lead to data-dependent crosstalk. The transmis-

sion errors have a strong time/frequency correlation. Thus, we need to avoid the
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adjacent data being transmitted on the same sub-carrier. To do this, we introduce

an interleaver that breaks the correlation after the encoding step. As 2.12 shows,

it is inserted between encoder and modulator.

From [47], we know that with a properly designed guard interval (cyclic prefix),

interleaving and channel coding, COFDM is able to solve the impact of strong

echoes. Also, computer simulation and laboratory demonstrations [48] [49] have

shown the BER improvement resulting from this. Also, [39] suggests that COFDM

may enable the use of omni-directional antennas in urban areas and mobiles re-

ception with a high carrier-to-noise (C/N) ratio, because COFDM is more resist

to multipath.

2.3.3 Sub-band and adaptive modulation

In COFDM, the BER of different sub-carriers depends on the noise and the fre-

quency response of the sub-channels, and each sub-carrier is attenuated individ-

ually by the sub-channel’s fast-fading and time delay. Thus, the BER of each

sub-carrier may be very different. If the system is non-adaptive, then the over-

all BER is mainly determined by the few severely faded sub-carriers. Instead of

employing higher order modulation or higher rate channel codings across all sub-

carriers sub-carriers, we may identify the sub-carriers with high bit errors and

modulate/encode them separately.

We may merge several sub-carriers into a sub-band [50] [51], and apply adaptive

modulation [52] to each sub-band to optimize the overall SNR before the IFFT

block. This technique on OFDM channels could be traced back to 1989 by Kalet,

and was further developed by [53] and [54]. Importantly, [53] shows that the

required SNR for a BER of 10−3 can be reduced by 5dB to 15dB if we apply

adaptive modulation instead. Furthermore, [55] exploit the capacity of fading

channel (refer to time variant Shannonian channel).
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According to these previous researches, we group the adjacent sub-carriers (with

similar frequency response) into sub-band, and apply the adaptive mappings (in-

troduced in section 2.1) to each sub-band. In this way, all sub-carriers in the same

sub-band [50] will be mapped in the same way. Different sub-bands, however, can

be mapped or modulated differently providing that each sub-band is independent

to the others.

Fig 2.13 shows the structure of adaptive modulation in OFDM. To realize this,

we group the sub-carriers into sub-bands, and calculate their instantaneous SNR

under each mode of modulation. Then the average instantaneous SNRs are com-

pared with threshold values (which should be pre-defined) to choose the mode.

This process is where the word ‘adaptive’ from. Finally, the information about

modulation (and coding) to be used are sent to the transmitter using a feedback

channel (assumed to be flat and noiseless). This procedure is used not only in the

OFDM channel, but also the system-level simulation in our research.

As Fig 2.13 shows, the coded frames in different sub-bands have different sizes,

which shows that different channel codes (with different code rates) can be applied

to different sub-bands according to the sub-channels’ fading states. This is followed

by the adaptive modulation on each sub-band which outputs the modulated frame

with a same length.

Fig 2.14 shows the transmission block structure of the sub-band in COFDM sug-

gested by [56], in which the OFDM frames is divided into several sub-bands, and

the linear coded frames combines a number of OFDM symbols. In this scheme,

the modulated symbols in each coded frame after encoding should be the same,

as the number of sub-carriers in each sub-band is the same.
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Figure 2.13: Adaptive OFDM

Figure 2.14: Transmission block structure of sub-band



Chapter 3

Un-coded PNC

There a re a lot of previous similar work related to this topic. [57] derives the SER

for the AWGN channel where the singular fading is either 0 or π
2
(fixed fading). [58]

analyses the case where the magnitude of the channels has a Rayleigh distribution,

but the phases are the same (a fading of 0). Furthermore, [59] derives the error

rate for fading channels, but the model is not a PNC model, and the bits from

two users are being detected individually.

Based on the above research, [60] gives the BER analyse of the BPSK modulated

PNC over Rayleigh fading channels by putting the Euclidean distance and the

angles between constellation points into the formula suggested in [61]. [62] further

improves the theoretical error rate with the ML decoding. Finally, [63] extends the

research to QPSK/M-QAM modulation. However, it exams the error rate when

the relative fading is 0. Also, it focuses on the XOR mapping only.

In the literature review we assume that channels are noiseless and the gains are 1.

These are all ideal, and in reality we would expect noisy Rayleigh fading channels.

As a result, in QPSK modulated PNC, there is a problem that adjacent points

may have different network coded value (IR), which may lead to a de-mapping

failure. Thus we introduce mapping selection and error rate calculation.

In this section, we describe the QPSK modulated un-coded PNC MAC model, and

all the mappings used under different channel fading states.

37
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3.1 System Model

Figure 3.1: General model of MAC phase for PNC

The system model of the PNC MAC phase is shown in Fig 3.1 above. In this

scheme, we assume that two users, A and B, transmit data to the relay with the

same frame/packet length simultaneously. We assume all transmitting processes

are perfectly synchronized. Our focus is the error rate of the superimposed in-

formation at the relay, assuming that the relay knows the channel information.

Note that a variety of more complicated multihop wireless relay networks, such

as that illustrated in Fig 3.2, may be built up from a set of these two-user MAC

Figure 3.2: Example multi-hop network
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phase models, since every relay in Fig 3.2 receives signals from two sources (or

prior relays) simultaneously.

We assume that the source nodes A and B transmit QPSK modulated symbols

SA, SB taking the complex values{
√
2
2
(±1,±j)}, in which the symbol energy is

normalised to 1. We also assume that conventional Gray-coded binary mapping

is used. Thus we can have the relationship between S and I in Table 3.1 .

QPSK symbol (S) binary symbol (I)
√
2
2
(−1− j) 0 0

√
2
2
(−1 + j) 0 1

√
2
2
(1− j) 1 0

√
2
2
(1 + j) 1 1

Table 3.1: Constellation points and network coding

There are 2 users in the PNC, and each of them could transmit 4 possible symbols

to the relay. As a result, there are 16 possible received symbol combinations

at the relay, which we refer to 16 constellation points. Next, we compare the

received superimposed complex symbol with the look-up table, and calculate the

Euclidean distances between the symbol and every member in the look-up table.

In this way, we could de-map the complex symbols into network coded ones by

taking the related network coded value of the constellation point which has the

shortest Euclidean distance with the received symbol. For example, if there are two

constellation point (1,0) and (0,0) with network coded value 1 and 0 respectively,

then a received symbol (0.6,0) will be de-mapped as (1,0) if we define the threshold

as (0.5,0), and will be further de-mapped as a network coded 1.

After the de-map stage, we form the symbol into a row vector of size 4. If we

define IA(1) as the 1st bit of the network coded symbol sent from user A, then the

de-mapped vector (consist of the separate binary value) is defined as:

XR = {IA(1) IA(2) IB(1) IB(2)}
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And we can refer it to the constellation as table 3.2 shows:

Constellation de-mapped Constellation de-mapped

(R) vector (XR) (R) vector (XR)
√
2
2

(
hA(−1− j)+hB(−1− j)

)
0 0 0 0

√
2
2

(
hA(1− j)+hB(−1− j)

)
1 0 0 0

√
2
2

(
hA(−1− j)+hB(−1 + j)

)
0 0 0 1

√
2
2

(
hA(1− j)+hB(−1 + j)

)
1 0 0 1

√
2
2

(
hA(−1− j)+hB(1− j)

)
0 0 1 0

√
2
2

(
hA(1− j)+hB(1− j)

)
1 0 1 0

√
2
2

(
hA(−1− j)+hB(1 + j)

)
0 0 1 1

√
2
2

(
hA(1− j)+hB(1 + j)

)
1 0 1 1

√
2
2

(
hA(−1 + j)+hB(−1− j)

)
0 1 0 0

√
2
2

(
hA(1 + j)+hB(−1− j)

)
1 1 0 0

√
2
2

(
hA(−1 + j)+hB(−1 + j)

)
0 1 0 1

√
2
2

(
hA(1 + j)+hB(−1 + j)

)
1 1 0 1

√
2
2

(
hA(−1 + j)+hB(1− j)

)
0 1 1 0

√
2
2

(
hA(1 + j)+hB(1− j)

)
1 1 1 0

√
2
2

(
hA(−1 + j)+hB(1 + j)

)
0 1 1 1

√
2
2

(
hA(1 + j)+hB(1 + j)

)
1 1 1 1

Table 3.2: The PNC constellation and the separate network coding value/
look-up table

This table is also the look-up table at the relay. However, it is not the optimum

choice to leave X as the final decoding result, because the noise could distort the

transmitted symbol closer on to a neighbouring constellation point with different

network coded value. One way to solve it is to do phase synchronization as [64]

gives, which synchronize the phase of both channels to a same value (relative phase

shift = 1).

In our research, instead, we would like to introduce three mappings which enlarge

the distance to result in an error. To realize this, we choose a mapping that gives

the same network code for source symbol combinations that result in the same

signal, if the values of hA and hB are close to a given fading state. The mapping is

attributed to each user in the modulator. There are several mappings available for

this QPSK modulated PNC. Among them the bit-wise XOR mapping performs a

modulo-2 linear combination in both the 1st and the 2nd bit of the network coding

value, represented as:

M1 =


1 0

0 1

1 0

0 1

,
which indicates that the 1st bit of the mapped symbol label is formed as the
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modulo-2 sum of the bits from the two sources corresponding to the real parts,

while the second is the modulo-2 sum of the imaginary part bits. Then we form

a matrix multiplication of the decoded symbol (the 4 column vector) and the

mapping matrix so as to recover the decoded superimposed data as the decoding

stage:

IR = XRM1

This mapping performs well when the relative phase between the two channels is

around a multiple of π. Fig 3.3 shows the decision region(we use black line as the

dividing line that is used for de-map) and the network coded values (in black) for

this mapping. Note: in all the following figures, the pairs of the 2-bit numbers

represent the network coded values for the superimposed symbol S. As can be

seen, in Fig 3.3 the closest points have the same network coding, which, in general,

results in the lowest symbol error rate in decoding the network coded symbols.

Finally, we obtain the SER by compare IR with the superimposed binary symbols

of IA and IB, merged by the mapping chosen.

Figure 3.3: The XOR mapping, the relative phase is around 0

Unfortunately the XOR mapping is not the optimum selection when the relative

phase between the two channels is around an odd multiple of π
2
. Fig 3.4 shows the
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Figure 3.4: The XOR mapping, the relative phase is around 90o

Figure 3.5: The reversed XOR mapping, the relative phase is around 90o

result of the XOR mapping in this situation: the closest pairs of points have differ-

ent network coding, and hence there will be a much higher error probability for the

network coded symbol. Note: again the solid dividing lines are the decoding/de-

mapping thresholds for adjacent points, and the numbers on the graph correspond

to the IR values. This setting applys to all similar figures in this chapter. So

instead we apply a bit-reversed XOR mapping named as the reversed XOR map-

ping, which is similar in effect to the corresponding mapping mentioned in [6].
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Figure 3.6: The XOR mapping, the relative phase is around 45o

The mapping matrix is:

M2 =


1 0

0 1

0 1

1 0

,
and the resulting constellation mapping under the relative phase of π

2
is shown

in Fig 3.5. Like we described in literature review, the bold number in the figure

shows the network coded value (IR) of every point. Thus, we diffrentiate the two

mappings against a particular relative phase π
4
(or its odd multipliers).

However, neither mappings may be the optimum choice when the relative phase

is around an odd multiple of π
4
as Fig 3.6 shows the example.

We have previous research [6] noted that there are no linear mappings in this case

which fulfills the exclusive law when the relay is used in the TWRC, but here

we are considering more general relay network configurations such as that of Fig

3.1, for which different criteria for end-to-end decodability apply. (see [3] and

references therein). However the mapping matrix
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M3 =


0 1,

0 1

1 1

1 0

,
(which we will refer to as the “anti-π

4
mapping matrix”) results in the constellation

shown in Fig 3.7, which again results in the closest pairs of points sharing the

same network coded symbol label. The threshold for choosing this mapping will

be introduced in the next section.

Figure 3.7: The anti π
4 mapping, the relative phase is around 45o

And again, this mapping is not a cure-all, neither is it the optimum mapping when

the relative phase is either around 0 (shown in Fig 3.8) or π
2
(these two cases have

the same error rate due to the mapping symmetry)either. We will analyse these

in the next section.

3.2 Analysis of Symbol Error

In this section, we derive the theoretical SER for the QPSK modulated PNC.

We build different constellation diagrams according to different channel fading

states (phase and amplitude), and calculate the theoretical SER based on the
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Figure 3.8: The anti π
4 mapping, the relative phase is around 0

diagrams. We will analyse the three fixed mappings and the adaptive channel

method separately, and compare their performance. A comparison between the

average theoretical error bound and the result of Monte Carlo simulation is given.

For convenience, we define several variables according to the different mapping:

• d1 =
√
2|j(hB − hA) + hB|, to be used in the XOR and the reversed XOR

mapping.

• d2 =
√
2|j(hB)| =

√
2|hB|, to be used in all mapping.

• d3 =
√
2
2
|2hA| =

√
2|hA|, to be used in all mapping.

• d4 =
√
2
2
|2 (j (hA) + j (hB)) | =

√
2|hA + hB|, to be used in all mappings .

• d5 =
√
2
2
|2(j(hA) − hB)| =

√
2|jhA − hB|, to be used in the anti-π

4
mapping

only.

3.2.1 The XOR/Reversed XOR Mapping

We combine the consideration of the XOR and the reversed XOR mappings in

order to exploit their symmetry.
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Figure 3.9: The XOR mapping, the relative phase is around 0

According to Fig 3.9 (the mapping situation when XOR mapping is chosen and

the relative fading is around 0, which will have the same SER with the situation

that the reversed XOR mapping is chosen and the relative fading is around π), we

can divide all constellation points into 3 groups as table 3.3 shows:

label Error Distances

1, 6, 11, 16 {d2, d2}
2, 8, 9, 15 {d2, d2, d3}
4, 7, 10, 13 {d2, d2, d1, d3}
3, 5, 12, 14

Table 3.3: Constellation points and network coding for the XOR mapping

where blue numbers in Fig 3.9 from 1 to 16 representing different constellation

points as shown in table 3.4, and SNR is the signal (at each transmitter) to noise

(at the relay) ratio. Thus we have the symbol error rate PS as:

PS =
1

16

{
2× 16Q

(
d2
2

√
2SNR

)
+ 8Q

(
d1
2

√
2SNR

)
+ 12Q

(
d3
2

√
2SNR

)}
(3.1)

= 2Q
(
|hB|
√
SNR

)
+

1

2
Q
(
|j(hB − hA) + hB|

√
SNR

)
+

3

4
Q
(
|hA|
√
SNR

)
(3.2)



47

XR label superimposed XR label superimposed

NC value NC value

0 0 0 0 1 0 0 1 0 0 0 9 1 0
0 0 0 1 2 0 1 1 0 0 1 10 1 1
0 0 1 0 3 1 0 1 0 1 0 11 0 0
0 0 1 1 4 1 1 1 0 1 1 12 0 1
0 1 0 0 5 0 1 1 1 0 0 13 1 1
0 1 0 1 6 0 0 1 1 0 1 14 1 0
0 1 1 0 7 1 1 1 1 1 0 15 0 1
0 1 1 1 8 1 0 1 1 1 1 16 0 0

Table 3.4: The superimposed network coding value for the XOR mapping

Similarly, according to table 3.5, we could have the constellation diagram as shown

in Fig 3.10 (the mapping situation when the XOR mapping is chosen and the

relative fading is around π
2
has the same error rate). Thus, we can obtain the error

distances as table 3.6 shows:

XR label superimposed XR label superimposed

NC value NC value

0 0 0 0 1 0 0 1 0 0 0 9 1 0
0 0 0 1 2 1 0 1 0 0 1 10 0 0
0 0 1 0 3 0 1 1 0 1 0 11 1 1
0 0 1 1 4 1 1 1 0 1 1 12 0 1
0 1 0 0 5 0 1 1 1 0 0 13 1 1
0 1 0 1 6 1 1 1 1 0 1 14 0 1
0 1 1 0 7 0 0 1 1 1 0 15 1 0
0 1 1 1 8 1 0 1 1 1 1 16 0 0

Table 3.5: The superimposed network coding value for the reversed XOR
mapping

label Error Distances

1, 6, 11, 16 {d2, d2}
2, 8, 9, 15 {d2, d2, d3}
3, 5, 12, 14 {d2, d2, d1, d3}
4, 7, 10, 13 {d2, d2, d1, d3, d4}

Table 3.6: Constellation points and network coding for the reversed XOR
mapping
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Figure 3.10: The reversed XOR mapping, the relative phase is around 0

Now we can work out the error rate for the reversed XOR mapping in this partic-

ular channel fading state:

PS =
1

16

{
2× 16Q

(
d2
2

√
2SNR

)
+ 8Q

(
d1
2

√
2SNR

)
+ 12Q

(
d3
2

√
2SNR

)

+ 2× 4Q

(
d4
2

√
2SNR

)}
(3.3)

= 2Q
(
|hB|
√
SNR

)
+

1

2
Q
(
|j(hB − hA) + hB|

√
SNR

)
+

3

4
Q
(
|hA|
√
SNR

)
+

1

2
Q
(
|hA + hB|

√
SNR

)
(3.4)

Finally we analyse the situation when the relative phase is around π
4
according to

Fig 3.11 (the situation when the reversed XOR mapping is chosen at this fading

state) as table 3.7 shows:

label Error Distances

1, 2, 6, 8 {d2, d2, d3}
9, 11, 15, 16
3, 4, 5, 7 {d2, d2, d1, d3}

10, 12, 13, 14

Table 3.7: Constellation points and network coding for the reversed XOR
mapping
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Figure 3.11: The XOR mapping, the relative phase is around 45o

Then the SER for the π
4
case is:

PS =
1

16

{
2× 16Q

(
d2
2

√
2SNR

)
+ 8Q

(
d1
2

√
2SNR

)

+ 8Q

(
d3
2

√
2SNR

)}
(3.5)

= 2Q
(
|hB|
√
SNR

)
+

1

2
Q
(
|j(hB − hA) + hB|

√
SNR

)
+

+
1

2
Q
(
|hA|
√
SNR

)
(3.6)

3.2.2 The Anti-π4 Mapping

In this section, we take a look at the constellation of the anti-π
4
mapping when the

relative phase is around π
4
and 0 (the case of π

2
is not considered here because it

will have the same theoretical SER as the 0 case due to symmetry)

First, with the help of table 3.8, we could analyse the situation when the relative

phase is around π
4
, which gives rise to Fig.3.12
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XR label superimposed XR label superimposed

NC value NC value

0 0 0 0 1 0 0 1 0 0 0 9 0 1
0 0 0 1 2 1 1 1 0 0 1 10 1 0
0 0 1 0 3 1 0 1 0 1 0 11 1 1
0 0 1 1 4 0 1 1 0 1 1 12 0 0
0 1 0 0 5 0 1 1 1 0 0 13 0 0
0 1 0 1 6 1 0 1 1 0 1 14 1 1
0 1 1 0 7 1 1 1 1 1 0 15 1 0
0 1 1 1 8 0 0 1 1 1 1 16 0 1

Table 3.8: Constellation points and network coding for the an-π4 mapping

Figure 3.12: The anti-π4 mapping when the relative phase is around 45o

Thus, we can obtain the error distances as table 3.9 shows:

label Error Distances

1, 2, 6, 8 {d2, d2, d3}
9, 11, 15, 16
3, 4, 5, 7 {d2, d2, d4, d3}

10, 12, 13, 14

Table 3.9: The anti-π4 mapping when the relative phase is around 45o
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According to table 3.9, the SER for the anti-π
4
mapping is

PS =
1

16

{
3× 16Q

(
d2
2

√
2SNR

)
+ 8Q

(
d3
2

√
2SNR

)

+ 8Q

(
d4
2

√
2SNR

)
+ 2× 8Q

(
d5
2

√
2SNR

)}
= 3Q

(
|hB|
√
SNR

)
+

1

2
Q
(
|hA|
√
SNR

)
+

1

2
Q
(
|hA + hB|

√
SNR

)
+Q

(
|jhA − hB|

√
SNR

)
(3.7)

label Error Distances

1, 6, 11, 16 {d2, d2}
4, 7, 10, 13 {d2, d2, d4, d5}
2, 8, 9, 15 {d2, d2, d4}
3, 5, 12, 14

Table 3.10: The anti-π4 mapping, the relative phase is around 0

Next, according to the look-up table 3.10, we can build the constellation shown in

Fig 3.13:

Figure 3.13: The anti-π4 mapping, the relative phase is around 0

When the relative phase is about 0,
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PS =
1

16

{
3× 16Q

(
d2
2

√
2SNR

)
+ 16Q

(
d3
2

√
2SNR

)}
= 3Q

(
|hB|
√
SNR

)
+Q

(
|hA + hB|

√
SNR

)
(3.8)

3.2.3 The Adaptive Mapping

The adaptive mapping method selects the optimum mapping according to the

channel fading states. So, the XOR mapping is chosen when the relative phase

is around 0, and the reversed XOR mapping is chosen when the relative phase is

around π
2
. The threshold which differentiates them is the phase fading of π

4
.

The anti-π
4
mapping may be optimum when the relative phase is around π

4
. How-

ever, this mapping eliminates error between the most adjacent pairs of points at

the cost of introducing more errors between the other adjacent points labels within

the same constellation, which may increase the BER. Thus, we need to ensure that:

PS−adaptive = PS(anti
π

4
) < PS(XOR) (3.9)

where PS−adaptive is the SER for the adaptive mapping, PS(anti
π
4
) is the SER

for the anti π
4
mapping, and PS(XOR) is the SER for the XOR mapping (the

expression will be the same if we choose the reversed XOR mapping). We here

ignore the influence of d3 (actually d3 can be cancel out in the equation) and d5

as they are far larger than d1 or d2. Then

3Q
(
|hB|
√
SNR

)
+

1

2
Q
(
|hA|
√
SNR

)
< 2Q

(
|hB|
√
SNR

)
+

1

2
Q
(
|hA|
√
SNR

)
+

1

2
Q
(
|hA + jhB|

√
SNR

)
(3.10)
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or

1

16

{
3× 16Q

(
d2
2

√
2SNR

)
+ 8Q

(
d3
2

√
2SNR

)}

<
1

16

{
2× 16Q

(
d2
2

√
2SNR

)
+ 8Q

(
d1
2

√
2SNR

)

+ 8Q

(
d3
2

√
2SNR

)}
(3.11)

As can be seen, d1 is far less than d4 or d5, so we can ignore their terms without

losing a great accuracy. Thus the trade-off is:

PS−adaptive = PS−XOR +
16Q

(
d2
2

√
2SNR

)
− 8Q

(
d1
2

√
2SNR

)
16

(3.12)

If we take the approximate value, then:

d2 ≈ 2d1 (3.13)

which is the threshold for picking this particular mapping. Thus the SER in this

situation (d2 < 2d1) is:

PS =
1

16

{
3× 16Q

(
d2
2

√
2SNR

)
+ 8Q

(
d3
2

√
2SNR

)}
= 3Q(|hB|

√
S) +

1

2
Q
(
|hA + hB|

√
SNR

)
(3.14)

For all other amplitude fading situations, when the relative phase fading is around

0 or π
2
, the SER is:
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PS =
1

16

{
2× 16Q

(
d2
2

√
2SNR

)
+ 8Q

(
d1
2

√
2SNR

)}
(3.15)

= 2Q
(
|hB|
√
SNR

)
+

1

2
Q
(
| (hA + hB) + jhB|

√
SNR

)
(3.16)

and when the relative phase is around π
4
, the SER is:

PS =
1

16

{
2× 16Q

(
d2
2

√
2SNR

)
+ 8Q

(
d1
2

√
2SNR

)

+ 8Q

(
d3
2

√
2SNR

)}
(3.17)

= 2Q
(
|hB|
√
SNR

)
+

1

2
Q
(
|hA + hB|

√
SNR

)
+

+
1

2
Q
(
|hA + jhB|

√
SNR

)
(3.18)

Since the expressions are different, the estimation of the SER behaviour over all

fading channels could only be averaged using the Monte-Carlo simulation. How-

ever, we don’t necessarily need the average SER in the process of the later system-

level simulation. The averaged error rate is only needed for an rough estimation

of the final error rate at the destination.

3.3 Simulation result

We introduce the simulation result as well as the comparison of the simulation and

the theory here. Across all figures in this section, we can find that all theoretical

curves may stay apart from its related simulated curves at lower SNR, but will

merge with them at higher SNR, showing that our theory give rise to an upper

bound of the performance analysis.
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Figure 3.14: The XOR mapping

The performance of the XOR mapping over several singular fadings can be seen

from Fig 3.14. Note: unless specified, the amplitude fading is set to 1 as default.

This mapping perform quite well when phase is around 0, and the performance is

getting worse along with the increase of phases (up to π
2
). Interestingly, the SER

performance gets better when amplitude fading gets lower (when phase shift is π
2
,

the SER of the curve with an amplitude fading of 1/2 perform better than that

of 1, which is the default value). This is because distance d1 and d3 become far

larger than d2 when amplitude fading gets lower, and can be ignored.

At lower SNR(SNR< 3dB), the theoretical curve locate above the simulation

points, and finally they merge at higher SNR, showing that the theoretical SER

is an upper bound.
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Figure 3.15: The reversed XOR mapping

The performance of the reversed XOR mapping is shown in Fig 3.15 above. If

we compare it with Fig 3.14, then we can conclude that the performance resulted

from the reversed XOR mapping and the XOR mapping is symmetric about π
4
.
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Figure 3.16: The anti-π4 mapping

The performance of the anti-π
4
is shown in Fig 3.16. As can be seen, its SER

performance reaches optimum when the the phase is π
4
. But when the amplitude

fading gets smaller, the performance becomes worse, because the addition error

with distance d2 will become more important than d1, which is explained in the

section “Adaptive mapping”.
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Figure 3.17: All mappings and all fadings

Finally, we simulate the situation across all fading states by means of Monte-Carlo

simulation shown in Fig 3.17. We notice that :

• The adaptive mapping perform the best (at least 2dB better than any fixed

mappings) as expected.

• The XOR/reversed XOR mapping performs the same across all singular

fadings due to symmetry.

• The anti-π
4
mapping performs the worst across all fadings, showing that it is

very vulnerable outside its particular favoured fading state.

3.4 Summary

We build the three mappings for the QPSK modulated PNC MAC phase, and

derive their SER upper bound across all relative phases and amplitude. Also,
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we have simulate and calculate the theoretical SER performance of the adaptive

mapping with the help of the Monte-Carlo simulation.These upper bounds are

not strictly mean to be the information-theoretic limits, but are practical in our

project, especially in the lator system-level simulation.



Chapter 4

System-level Simulation

In this section we aim to perform a system-level simulation of a multi-node system.

We start from a 5-node system (2 users and 2 relays) shown in Fig. 4.1 and further

extend it to a 13-node system (4 users and 8 relays) shown in Fig. 4.2. Note: all

dash arrows represent the noisy wireless transmission channels (AWGN channels),

and all solid arrows represent the point-to-point noise-less wired link channels.

4.1 System Model

4.1.1 5-node system

To simplify some explanations, we define the vertical and horizontal concatenation

of matrices here:

• if A =
[
1 1

]
and

• B =
[
2 2

]
then

60
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•

A
B

 =

1 1

2 2

 and

• [A B] =
[
1 1 2 2

]

Figure 4.1: Example system for system-level simulation: 5 nodes

We start our research from the 5-node system shown in Fig. 4.1. As can be seen,

the left side of the dividing line perform similar to the system model of the previous

chapter except users transmit to 2 relays rather than 1, and the relays will decode

the superimposed binary symbol as IRA and IRB respectively with the help of the

mapping they applied on each relay (here we assume the mapping matrix are MA

and MB).

Then the process going into the right side of the dividing line. IRA and IRB are

transmit to the final destination one by one through noiseless wired channel which

we assume that there are no attenuations on these channels.

Then the destination will perform a matrix multiplication to retrieve the original

binary symbol IA and IB. Instead of the superimposed symbol at the relays,
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the final destination will recover a concatenated symbol I. This symbol will be

compared with
[
IA IB

]
to obtain the overall error rate. This is performed by a

matrix multiplication as:

I = XDG
−1 (4.1)

Where XD =

IRA

IRB

 and G =
[
MA MB

]
However, we need to make sure that the generator matrix G is full rank in order to

perform the inverse operation. Thus, we need to choose the mappings wisely. In

other word, we choose the best realizable pairs of mappings. As we introduced in

the last chapter, each relay has 3 mappings to choose (the XOR, the reversed XOR

and the anti-π
4
), and thus there are altogether 32 = 9 combinations of mapping

matrices, which is enormous. Recalling the settings in the last chapter(M1 is the

XOR mapping, M2 is the reversed XOR mapping, and M3 is the anti-
π
4
mapping),

we could analyse their ranks separately in order to filter out the non-realizable

combinations (the combinations which are not full-rank):

combination metrics rank[
M1 M1

]
2[

M1 M2

]
3[

M1 M3

]
4[

M2 M1

]
2[

M2 M2

]
3[

M2 M3

]
4[

M3 M1

]
4[

M3 M2

]
4[

M3 M3

]
2

Table 4.1: Rank of all mapping combination matrices
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Observing from table 4.1 above, the full-rank (rank = 4) combination metrics are:

[M1;M3], [M2;M3], [M3;M1] and [M3;M2], which means we only need to choose

the best mapping among these 4 without doing anymore filtering or looping.

As a result, the destination will deal with the calculation of total error rate and

feedback the relays of the best realizable mapping selection. We will further discuss

about how these are realized in the next section.

4.1.2 13-node system

Figure 4.2: Example system for system-level simulation: 13 nodes

We divide the 13-node system into different phases. The word phase correspond

to different stages of transmission. There are 4 wireless transmission stages in the

system model, and we name them from phase 1 to 4 respectively. In each phase, the

two source nodes (user/relay act as transmitter) transmit their own sequences to

two separate destination nodes (relays that act as the destination) on independent

channels simultaneously. Relays can either be source nodes or destination nodes.

Take relay A1 as example: In phase 1 it is defined as a destination node, but in

phase 3 it is the source node/transmitter.
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We assign different time slots for different phases in order to avoid the interferences

between phases, thus the transmitting sequence is from phase 1 to 4 in turns. In

each phase, both sources transmit a QPSK stream (an N × 1 matrix, where N is

the total symbols to be transmitted) to the relays like the PNC. Then the relays

build the mapping matrix based on the fading state of the pairs of channels and

then decode the received symbols into the concatenated vectors X accordingly.

This is the same as that defined in the system model.

The mapping matrices are all 4×2. As introduced in the previous section, there are

3 mappings: M1 (the XOR mapping), M2 (the reversed XOR mapping), and M3

(the anti-π
4
mapping). In phase 1, if MA1 represents the mapping that destination

relay A1 chooses, andX1 is the de-mapped concatenated vector, then we can define

a matrix multiplication to recover the superimposed symbol as:

IA1 = XA1MA1 (4.2)

Both relays then pass then decoded superimposed symbols to the relays (A2 and

B2) in a subsequent phase (phase 3) together with their mapping matrices. Phase

2 proceeds in the same way as phase 1, and similarly in phases 3 and 4. Relays A1

and B1, and C1 and D1 forward the superimposed symbols to relays A2 and B2, C2

and D2, which again choose appropriate mappings to recover new superimposed

symbols. We name the mappings applied on these relays as MA2, MB2, MC2, MD2

respectively.

If we ignore the distortion of noise, then the expected de-mapped concatenated

vectors are the same in the same phase as:

XA1 = XB1 (4.3)

and

XC1 = XD1 (4.4)
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The relays in phase 1 and 2 will act as transmitters in phase 3 and 4. Thus, the

transmitted sequences will be like:

IA1 = IB1 = XA1

[
MA1 MB1

]
(4.5)

and

IC1 = ID1 = XC1

[
MC1 MD1

]
(4.6)

Thus in phase 3 and 4, with the same assumption, we have:

XA2 = XB2 = XA1

[
MA1 MB1

]
(4.7)

and

XC2 = XD2 = XC1

[
MC1 MD1

]
(4.8)

Similar to equation (4.7) and (4.8), we have :

IA2 = IB2 = XA2

[
MA2 MB2

]
(4.9)

and

IC2 = ID2 = XC2

[
MC2 MD2

]
(4.10)

Finally, the 4 symbols are transmitted to the destination one by one. We concate-

nate these signals into an N × 8 matrix (because each of them is N × 2 in size)
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X:

XD =
[
IA2 IB2 IC2 ID2

]
=
[
XA2MA2 XA2MB2 XC2MC2 XC2MD2

]
=
[
XA2(MA2 MB2) XC2(MC2 MD2)

]
(4.11)

Using the result of (4.9) and (4.10), we can deduce a generator matrix (formed by

the combination of the mappings at each relay) as:

G =

[MA1 MB1]× [MA2 MB2] 04,4

04,4 [MC1 MD1]× [MC2 MD2]

 (4.12)

Where 04,4 is a zero matrix of size 4× 4. So the final step is to recover the original

information from each user as a concatenated matrix XA D. This is realized by a

matrix multiplication:

I = XDG
−1 (4.13)

However, we need to assume that the final generator matrix is full-rank so as to

perform a inverse matrix operation. In order to achieve that, we need to ensure

that every concatenated mapping matrix is full rank, which means all the 4 × 4

matrices :

[MA1 MB1], [MA2 MB2], [MC1 MD1], [MC2 MD2]

are full-rank. In this way, we just need to do the mapping selection 4 times given

that all these matrices are independent to the others (because all channels are

independent). In other word, we have successfully reduced the overall complexity.
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4.2 Mapping Selection

This system aims to pick the realistically optimum mapping at all phases. As a

result, the pairs of relays act as the receiver will calculate the theoretical SERs

for all three mappings under the current fading states, and pass them to one of

destination nodes in another phase. Again take phase 1 as example: relay A1 and

B1 will calculate the all 3 SER values using the theory we derived in last chapter,

and pass them to either A2 or B2. Then the destination will form a set of SER

combinations (error occurs when either destination relay decodes its superimposed

symbol, which is close to the direct summation of the SER at both relays), and

sort it in the order of low to high. Note the exhaustive search is needed here to

distinguish the optimum mapping combinations whose related mapping matrix is

full rank. As a result, we design a flow chart to explain the mapping selection in

Fig 4.3:

In the flow chart, we can see that an exhaustive search is needed in each destination

node, which is represented in a loop. From the 5-node system, we already know

that there are altogether 4 possible realizable mapping combos to be select in each

phase. Thus, we can solve the exhaustive search in algorithm 2.
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Figure 4.3: System scenario in flow chart

In algorithm 2, we have P[M1,M3] as the combine SER when relay 1 choose the XOR

mapping, and relay 2 choose the anti− π
4
mapping, which applies to other mapping

combinations as well. Sd is a boolean variable showing whether the destination

received the mapping matrices from the relays. Sr is a boolean variable showing

whether the relays receives signal from the tranmitters, PS(1)[M1] represent the SER

at one relay in a sinlge phase if the XOR method is applied, and this is similar for
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Algorithm 2 The improved mapping scenario

while Sr == 1 do
for i = 1, i < 2, i++ do
PS (i, 1)← PS(i)[M1]

PS (i, 2)← PS(i)[M2]

PS (i, 3)← PS(i)[M3]

end for
while Sd == 1 do
P[M1 M3] ← PS(1)[M1] + PS(2)[M3]

P[M2 M3] ← PS(1)[M2] + PS(2)[M3]

P[M3 M1] ← PS(1)[M3] + PS(2)[M1]

P[M3 M2] ← PS(1)[M3] + PS(2)[M2]

end while
SERM = sort[P[M1 M3], P[M2 M3], P[M3 M1], P[M3 M2]]
loop
if SERM(1) == P[M1 M3] then
M = [M1 M3]

else if SERM(1) == P[M2 M3] then
M = [M2 M3]

else if SERM(1) == P[M3 M1] then
M = [M3 M1]

else
M = [M3 M2]

end if
end loop

end while

the other relay and the other mappings. SERM is a vector of all the combinations

of SER, f is a function which can fetch the mapping matrix from the concatenated

SER, and M is the optimum realizable mapping.

This pre-filtered exhaustive search may introduce more complexities in higher-

order modulations, but we still prefer using it here as the maximum numbers of

search is still acceptable to the devices.

4.3 PER calculation

In this section, we present a symbol-level simulation over the two-user-two-relay

model for the end-to-end PER. The system settings are the same as for the BER

simulation except the output is the PER instead of BER, and the packet size N



70

is set to be 100 (100 bits in one packet/frame). Also, with the help of the closed

form derived early, we can estimate the PER value as:

PP = 1− (1− PS−A)
N (4.14)

≈ PS−A ×N (4.15)

where PP is the end-to-end PER, PS−A is the averaged SER at either relay with

the adaptive mapping, and N is the packet size 100. Again, we notice that the

SER used here is averaged over Monte-Carlo simulation. However, this is not

necessary as the system-level simulation does not require the average SER, and

this theoretical closed form is only used to estimate the system behaviour.

4.4 Simulation result

For the simulation of PER, which is shown in Fig 4.4, the theoretical curve acts

as the upper bound as expected, showing that the system-level simulation works

effective for complicated multi-node systems.
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Figure 4.4: PER for the multi-node network

4.5 Separate PER simulation

We have up to now assume that for all PNC MAC phase, the SNR on each users

are the same, and both channels have the same average amplitude. However, this

may not be easily realized in industry. Instead, we may have different channel to

noise (at the relay) ratio. We simulate its PER in Fig 4.5 .

From Fig 4.5, we can see that when the amplitude of one channel is far smaller

than the other’s, the PER maintains high regardless of the CNR(channel-to-noise

ratio) of the better channel. Thus, we may even ignore the data sent via the worse

channel, and make the TWRC into a point-to-point model. As a result, we may

have two additional mappings as:
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M4 =


1 0

0 1

0 0

0 0


and

M5 =


0 0

0 0

1 0

0 1
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Figure 4.5: PER for the uncoded PNC with different channel to noise ratio
in dB

These are also shown in the DIWINE project paper [3], and are simulated by the

author.
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4.6 Summary

We build two general multi-node transmission models in order to practice the

system-level simulation, and we also design the algorithm for all relays to choose

a realizable best mapping. Thus , the system-level simulation of the overall PER

can be derived from the SER at any relay node in the system. This will enable

the use of system-level simulation in most general multi-hop system.



Chapter 5

Convolutional Coded PNC

There are a lot of previous research about the coded PNC, one of them is [65],

in which it decodes the individual information sent from both transmitters as

joint channel-decoding network coding (Jt-CNC). This model is an evolutionary

product based on many researches including [66] [67] [68] [69] [70] [71]. As we can

see, it claims to have these advantages:

• 1. Jt-CNC decoder is optimal in terms of BER performance.

• 2. Jt-CNC aloow the users to have different channel codings.

• 3. Jt-CNC allow asynchronous linear coded PNC.

Based on the above advantages and the achievement in [72], further research of

asynchronous linear coded PNC like[73] have sprung out. However, Jt-CNC will

make the trellis very large if the code length reaches a certain amount, as the

trellis expands exponentially with the increase of the code length.

Thus, we aim to build the joint decoding instead, and the PNC system is again

synchronized [74] like the model of the uncoded PNC. Also, we assmue that both

74
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users apply the same channel coding. In this situation, joint decoding will be much

less complicated in the encoding and decoding than Jt-CNC without a significant

loss of BER performance.

5.1 System model

The convolutionally coded PNC MAC phase is similar to the uncoded PNC in

which user A and B transmit data to the relay simultaneously (we need to assume it

is perfectly synchronized) with the same frame/packet length at time slot 1. Thus,

the relay receives the symbol-by-symbol superimposed symbols instead of two

separate data streams. After de-mapping and decoding, the symbols are decoded

into a linear combined superimposed binary sequence (IR) based on mapping. We

may compare it with a linear combination of the sequences of the original binary

data from both users with the same mapping mapping (C(IA, IB)) to obtain the

error rate. We are typically interested in the MAC phase only, because it deals

with the superimposed symbol and is thus more complicated. Like the uncoded

PNC, we have 3 mappings available: the XOR, the reversed XOR and the anti- π
4

mapping. Likewise, the received symbol at the relay is again:

RS = hASA + hBSB + SN (5.1)

where RS is the received signal at the relay, SA and SB are the modulated signals

sent from each user, and SN is the noise at the relay, hA and hB representing the

channels’ frequency response. Also, we assume that both channels are flat fading

channels (the frequency response is a constant complex value during one packet

time), because we will further extend our research onto the OFDM channel, whose

narrow-band sub-channels can be treated as flat fading channels.

As long as we apply a convolutional code to the PNC, we need to assume that both

transmitters apply the same convolutional code before the baseband information
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being fed into the encoders. This is because we do joint decoding which decodes

the received signal into a linear superimposed binary sequences rather than the

separate information form the both users. Figure 5.1 shows the structure of a

convolutional coded PNC model in the MAC phase.

Figure 5.1: Structure of the convolutional coded PNC MAC phase

In figure 5.1 we have a simple block interleaver locate between encoder and mod-

ulator at each user in order to improve the overall error rate.

In the de-mapping stage, every received symbol in the signal sequence is compared

with every element in a look-up table. This look-up table is formed by all con-

stellations according to the channel fading state, and the ‘Network Coding’ term

refer to the related network coding value of each constellation point in the look-

up table. Take the XOR mapping as example: its 1st bit correspond to the real

part, and the 2nd bit to the imaginary part of the network coding of the noiseless

superimposed symbol if we assume the channel gains are 1. These settings are the

same as for un-coded PNC.
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However, in the the uncoded system, we de-map the received symbols by finding

the term inside the look-up table that has the smallest Euclidean distance against

the received symbol (which is similar to a hard-decision decoding). Now in the

coded PNC, we calculate the accumulated Euclidean distances in the exponential

form, and take the LLR value accordingly (corresponding to a soft-decision decod-

ing) instead. To do this, we first refer to table 3.2 which shows the relationship

between the constellation (R) and de-mapped vector (XR). Then, we link the

constellation to the superimposed network coded value (IR) through table 3.4, 3.5

or 3.8 depend on mapping. The 1st and the 2nd bit of the network coding are

calculated separately. Take the 1st bit as an example:

U
′

R(1) = log

∑
n:NC(R(n))=1X exp(−(Mn))∑

n′ :NC(R(n′ ))=0X exp(−(Mn′ ))
(5.2)

where NC function returns the network coding value of the target, X denotes a

’don’t care’ state (either 0 or 1). U
′
R(1) is the maximum likelihood (ML) ratio of

the 1st bit. If we define the matrix of the lookup table as R(n), then function M

as the ratio of squared Euclidean distance over noise standard deviation can be

written:

Mn =
|Rs −R(n)|2

2σ2
(5.3)

where σ is the noise standard deviation.

Next, after the de-interleaving stage, the LLR is fed into a conventional Viterbi

decoder and decoded to the binary information. The decoded information is the

superimposed network-coded information rather than the individual information

from both transmitters.

However, traditional Viterbi decoding cannot decode the LLR easily even the both

transmitters are encoded with the same convolutional encoder. As [75] shows, the
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Figure 5.2: Combined trellis of a (5,7) convolutional code

LLR is fed into a “full-state” Viterbi algorithm decoder which is combined with

the trellis from both users. Thus, finding the superimposed symbol at the relay

will require exhaustive search for the most-likely path from the both trellis. Thus,

this search actually decodes the separate information held by both users rather

than the superimposed symbol directly. To improve that, [75] compresses the full-

state trellis to a reduced state trellis suggested in Fig 5.2 (arrows represent the

superimposed codeword it will be decoded as, and numbers represent the com-

bined (bit-wise XOR) states), and shows that this compression does not lose much

generality or accuracy in terms of the superimposed BER at the relay.

As [76] defines, the HDF has a layered straucture, in which the inner layer provides

the XOR property, while outer layer provides the error correction capability. Sim-

ilarly in our research, the outer layer is the linear convolutional code responsible

for error correction, while the inner layer closer to the channel symbols perform

a linear operation depend on the mapping chosen. From [27] we know the linear

combination of 2 linear codeword is another codeword, thus the de-noised super-

imposed codeword at the relay must be a superimposed codeword from both users,

upon which our derivation of the BER is based.

Next we consider the constellation diagram at the relay shown in Fig 5.3 and
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Figure 5.3: distance d1, d2, d3 and d4

Fig 5.4. The modulation applied with the PNC is QPSK modulation, thus the

transmitted symbols and the channels are all complex. I If we apply the XOR

mapping, for simplicity, we consider here the 1st bit of the network coding value

corresponding to the constellations: we assume that the symbols in which the

correct and the erroneous sequences differ in only the real part without a significant

loss of generality, since a QPSK is equivalent to 2 orthogonal BPSKs. However,

this does not apply to the antiπ
4
mapping which we need to consider both real and

imaginary part of the constellation. For convenience, we define 6 error distances

according to the plots in Fig 5.3 and Fig 5.4:

• d1 =
√
2|jhA + hB|;

• d2 =
√
2|hB|;

• d3 =
√
2|hA|;



80

Figure 5.4: d5 and d6

• d4 =
√
2|hA(1− j) + jhB|;

• d5 =
√
2|jhA − hB|;

• d6 =
√
2|jhA − jhB| =

√
2|hA − hB|;

5.2 BER analysis

In this section we calculate the superimposed BER at the relay with ML decod-

ing by means of the error-event probability. We calculate it mainly through the

binomial expansion and the total Euclidean distance.

5.2.1 Equal channel

We start our research from the equal channel case, in which the two channels

frequency response are equal and are both normalised to 1 .
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5.2.1.1 Pairwise Error Probability

For convenience, we define the expected correct superimposed sequence as s, which

is equal to the linear combinition (with regard to mapping) of the binary infor-

mation that the two users hold, denoted as s = SAhA + SBhB, where h is the

channel gain. Accordingly, in the de-mapping stage, the erroneous superimposed

sequences at the relay after de-noising is defined as s′.

In addition to these, we further introduce the correct codeword sequences as c =

CA⊕CB (binary codeword sequence in between the encoding and the modulation

stage). Similarly, we define the erroneous codeword at the relay as c′. Again, c′

doesn’t physically exist in the system, but is a virtual by-product in the decoding

stage.

Next, we define some important terms below:

• Event E (c, c′) : Event that a data sequence that should be decoded as a

network coded sequence c is instead decoded as an erroneous sequence c;

• Pairwise error-event probability Pep (c, c
′): the probability of E (c, c′) , writ-

ten by:

Pep (c, c
′) = P (E (c, c′)) (5.4)

• Union of the event E (c, c′) defined as
∪
c,c′

E (c, c′).

Since there are many s ≡ c and s′ ≡ c′(≡ symbol means ‘decoded as’ here), thus

the pairwise error probability becomes:

Pep(c, c
′) =

∑
s≡c

P (s|c)P

(∪
s′≡c′

E (s, s′)

)
(5.5)
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where P (s|c) denotes the probability of the superimposed signal sequences s given

c. Since we use linear QPSK modulation, we can assume that all s give rise to c

are equally probable, thus:

Pep (s, s
′) = P (E (s, s′)) = P (||Rs − s||2 > ||Rs − s′||2) = Q

(
d (s, s′)

2σ

)
(5.6)

here d (s, s′) =
√
||s− s′||2 denotes the Euclidean distance between the superim-

posed signal sequence s and the erroneous sequence s given that ||x||2 =
∑
i

xi
2 and

σ is the noise standard deviation per dimension. According to the union bound:

P

(∪
s′≡c′

E (s, s′)

)
≤
∑
s′≡c′

P (E (s, s′)) =
∑
s′≡c′

Pep (s, s
′) (5.7)

Hence the pairwise error probability for the binary coding sequence c and c is:

Pep (c, c
′) ≤

∑
s≡c

P (s |c)
∑
s′≡c′

Q

(
d (s, s′)

2σ

)
(5.8)

Now we can look at a particular example. Normally we could assume that the

correct sequence is c = 000000 for a (5,7) convolutional code (becasue the convo-

lutional code is linear, which means every codeword appear at the same probability.

Thus, we can make an all-0 sequence as the correct sequence for simplicity, as ev-

ery ‘1’ in the erroneous sequence marks an error) and the erroneous sequence is

c′ = 111011 (the closest sequence in Hamming distance). Also, we assume that two

users apply QPSK modulation, the two channels are both equal to 1, and we can

just look at the 1st bit of the network coding (in the XOR mapping, it corresponds

to the real part) without loss of generality. Thus, the superimposed sequence s

takes the values −
√
2,0,
√
2. Then for c = 000000 there are 26 sequences of s taking
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the value of {±
√
2,±
√
2,±
√
2,±
√
2,±
√
2,±
√
2}, and they are all equally proba-

ble with P (s|c) = 1
64
. For c′ = 110111, there are 2 erroneous sequences s′ taking

the values {0, 0,±
√
2, 0, 0, 0}. Thus, we can calculate that there are two values

of total Euclidean distances d (s, s′) between them: the smaller one takes the val-

ues
√
10 (when the 3rd bits of s and s′ have same polarities), and the other one

takes the value

√
2× 5 +

(
2
√
2
)2

= 3
√
2(when they are different), which makes

Pep (c, c
′) as:

Pep (000000, 110111) = 64× 1

64

(
Q

(√
10

2σ

)
+Q

(
3
√
2

2σ

))

= Q

(√
10

2σ

)
+Q

(
3
√
2

2σ

)
(5.9)

At high SNR, the term Q
(

3
√
2

2σ

)
which corresponds to a Euclidean distance of s

√
2

will be asymptotically negligible compared to the term Q
(√

10
2σ

)
with a Euclidean

distance of
√
10.

Now we move on to the general case for the equal channel model. Assume the

total length of the sequence s and s′ are both n bits long, and there are l 1s in

c (correspond to l 0s in s). c′/s′, however, differs from c/s in dH places as the

following form shows:

s =

0, 0 . . . 0, 0, 0, 0 . . . 0, 0, 0︸ ︷︷ ︸
l

,±
√
2,±
√
2 . . .±

√
2, . . .±

√
2︸ ︷︷ ︸

n−l


s′ =

0, 0 . . . 0︸ ︷︷ ︸
l−k

,±
√
2 . . .±

√
2︸ ︷︷ ︸

k

, 0, 0, 0 . . . 0, 0, 0︸ ︷︷ ︸
dH−k

,±
√
2, . . .±

√
2︸ ︷︷ ︸

n−l−dH+k


Observing from the above form that there are 2n−l sequences s (which are again

equiprobable) and 2n−l−dH+2k sequences s′. In 2k of the letter (those in which both

s and s′ are 0 in l−k places, and both s and s′ take the value ±
√
2 with the same

polarity in n− l− dH), the Euclidean distance is
√
2dH , which is minimum. Once
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again we ignore the term with higher Euclidean distance. Then the pairwise error

probability is approximately:

Pep (c, c
′) ≃ 2kQ

(√
dH√
2σ

)
(5.10)

Still we cannot treat this as a proper upper bound because we have neglected

some terms (terms corresponding to the Euclidean distance of 3
√
2 in the previous

example). So consider the situation where s and s′ takes opposite polarities in p

bits out of the n− l− dH + k places. Then the total Euclidean distance becomes

d (s, s′) =
√
2dH + 8p, and there are 2k (n−l−dH+k)Cp such sequences, making it:

Pep (c, c
′) ≃ 2k

n−l−dH+k∑
p=0

(n−l−dH+k)CpQ

(√
dH + 4p√

2σ

)
(5.11)

Once again, the term inside the Q fucntion in the expansion has an increment of

Hamming distance 4, which means it is negligible for higher SNR values. Since

the distribution of k is binomial (k is the number of places containing 1s in dH

places). Thus the average pairwise error probability over all pairs of c, c′ which

differs in dH places is:

Pep (dH) ≃
dH∑
k=0

dHCk

2dH
2kQ

(√
dH
σ

)
=

(
3

2

)dH

Q

(√
dH√
2σ

)
(5.12)

5.2.1.2 Event Error Probability and BER

For a linear convolutional channel code, an error event is the event that any

erroneous sequence is chosen which diverts from the correct path from a given

point in the sequence (the start of the sequence) and returns to it at some later

point, denoted as E (c) =
∪

c′ E (c, c′). We assume that erroneous sequence c′

differs from c from the first symbol and later converges with c. Thus, according
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to the union bound, the error event probability Pev is:

Pev (c) = P (E (c)) ≤
∑
c′

Pep (c, c
′) (5.13)

Substituting from (5.8) we have:

Pev (c) ≤
∑
c′

∑
s≡c

P (s |c)
∑
s′≡c′

Q

(
d (s, s′)

2σ

)
=
∑
s≡c

P (s |c)
∑
c′

∑
s′≡c′

Q

(
d (s, s′)

2σ

)
(5.14)

We take into account the number of network coded bit errors that arise from

a given erroneous coded sequence c′, denoted as eb (c
′). Then the BER of the

superimposed symbol at the relay is:

Peb (c) ≤
∑
s≡c

P (s |c)
∑
c′

eb (c
′)
∑
s′≡c′

Q

(
d (s, s′)

2σ

)
(5.15)

Then the average BER is given by taking the average over all possible coded

sequences:

Peb ≤
∑
c

P (c)
∑
s≡c

P (s |c)
∑
c′

eb (c
′)
∑
s′≡c′

Q

(
d (s, s′)

2σ

)
(5.16)

Again we look back to the example in which the correct network coded sequence

is an all-0 sequence (a network coded 0 corresponds to a ±
√
2) with length n:
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s =

±√2,±√2 . . .±√2, . . .±√2︸ ︷︷ ︸
n


s′ =

±√2 . . .±√2︸ ︷︷ ︸
n−dH

, 0, 0, 0 . . . 0, 0, 0︸ ︷︷ ︸
dH


There are 2n such sequences s, and they are assumed to be equiprobable. And

again, we look only at the minimum Euclidean distance between s and s′, which

is
√
2dH . This is because the next-to-minimum distance has an increment of 2

√
2,

and hence can be ignored. Thus Pev is:

Pev (0) ≤ 2n
1

2n

∑
c′

∑
s′≡c′

Q

(
d (s, s′)

2σ

)
=
∑
c′

∑
s′≡c′

Q

(
d (s, s′)

2σ

)
=

∑
dH≥dmin

∑
c′:d(c,c′)=dH

∑
s′≡c′

Q

(
d (s, s′)

2σ

)
=

∑
dH≥dmin

A (dH)
∑

s′≡c′:d(c,c′)=dH

Q

(
d (s, s′)

2σ

)

≃
∑

dH≥dmin

A (dH)Q

(√
2dH
2σ

)
(5.17)

On the 2nd and the 3rd line we group the erroneous sequences according to their

Hamming distance from c (Hamming distances between their related c and c′)

denoted as s′ ≡ c′ : d (c, c′) = dH , because the pairwise error probability (the

inner summation) depends primarily on the Hamming distances. We denote the

number of sequences c′ which differ from c at a Hamming distance of dH as A (dH).

Finally we notice that for each c′ there is only 1 s′ that meets the requirement,

and the minimum Euclidean distance is
√
2dH . Taking into account the number

of bit errors that arise from c′, the BER is:

Peb (0) ≃
∑

dH≥dmin

e (dH)Q

(√
2dH
2σ

)
(5.18)
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where e(dH) is the error-weighted distance spectrum defined as the number of

sequences at Hamming distance dH weighted according to the average number of

bit errors that occur on the paths. Also, it is the average value of e(c′) over all

sequences of c′ at a Hamming distance dH from 0. Now let us return to a general

correct sequence c. We can still write:

Pev (c) ≤
∑

dH≥dmin

∑
c′:d(c,c′)=dH

∑
s′≡c′

Q

(
d(s, s

′)

2σ

)

≃
∑

dH≥dmin

∑
c′:d(c,c′)=dH

∑
s′≡c′:d(s≡c,s′)=

√
2dH

Q

(√
2dH
2σ

)

=
∑

dH≥dmin

∑
c′:d(c,c′)=dH

2kc,c′Q

(√
2dH
2σ

)
(5.19)

Since the value of the pairwise error probability (which is the inner summation)

depends on dH only, also we know from the forms that the number of erroneous

signal sequences s′ is given by 2k (k is the number of places in which the network

coded sequence c corresponding to s contains 1 and the c′ ≡ s′ contains 0, denoted

as k(c,c′). Thus, the average error event probability over all correct sequences is:

Pev ≃
∑
c

P (c)
∑

dH≥dmin

∑
c′:d(c,c′)=dH

2kc,c′Q

(√
2dH
2σ

)

=
∑

dH≥dmin

Q

(√
2dH
2σ

)∑
c

P (c)
∑

c′:d(c,c′)=dH

2kc,c′

=
∑

dH≥dmin

A (dH)

(
3

2

)dH

Q

(√
2dH
2σ

)
(5.20)

In the last chapter, we derive the overall PER from SER at the relay. In the

convolutional coded PNC, however, we cannot do it this way as the outcome of

the convolutional decoder is bit stream rather than symbols. And this is why we

would finally derive the BER instead.
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However, there is another error rate called ‘word error probability’ (WER) which

is the error rate inside a single codeword, given by:

PW = 1− (1− Pev)
N (5.21)

where PW is the WER, and N is the packet length If we are doing the system-level

simulation on the convolutional coded PNC, we coudl still obtain the estimated

overall PER as:

PP = 1− (1− PW−A)
N (5.22)

≈ PW−A ×N (5.23)

where PW−A is the averaged WER at the relay. However, we still foucs on the

derivation of BER as this is the direct outcome that can be measured. If we assume

all correct sequences c are equiprobable as well as using the result of (5.12) that
dHCk

2dH
2k =

(
3
2

)dH . Thus, taking into account the number of bit errors for each

erroneous sequence we have the average BER as:

Peb ≃
∑

dH≥dmin

e (dH)

(
3

2

)dH

Q

(√
2dH
2σ

)
=

∑
dH≥dmin

e (dH)Pep (dH) (5.24)

As a result, the theoretical average BER of the superimposed symbol at the relay

depends on Pep (dH) only.

5.2.2 The real channel

We introduce the fixed real fading channels in order to calculate the number of

erroneous sequences in terms of the binomial expansion in this section. First
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we look at the comparison of the expected noiseless superimposed sequences and

the erroneous superimposed sequences that being detected as s′. Here we define

hA = 1 + δ and hB = 1− δ, which δ is real, then:

s =

±√2δ . . . ±√2δ.... . . . . . . . . .±√2δ . . .±√2δ︸ ︷︷ ︸
l

,±
√
2 . . .±

√
2 . . .±

√
2 . . .±

√
2︸ ︷︷ ︸

n−l


s′ =

±√2δ . . .±√2δ,︸ ︷︷ ︸
l−k

∓
√
2 . . .∓

√
2,︸ ︷︷ ︸

p

±
√
2 . . .±

√
2︸ ︷︷ ︸

k−p

,±
√
2δ . . .±

√
2δ︸ ︷︷ ︸

dH−k

,±
√
2 . . .±

√
2︸ ︷︷ ︸

n−l−dH+k


For the correct sequence s, there are l bits that take a value ±2δ (network coded

1), and thus n − l bits of ±2 (network coded 0). We define dH as the number of

places that S and S ′ differ from in terms of their related network coding value,

and k is the number of bits among dH places that s takes a network coded 1 while

s′ takes a network coded 0. Among k we further define variable p such that in this

p places, the symbol of s and s′ have different polarity.

Our main focus is on the dH places, but we cannot ignore the remaining n − dH

places when s and s′ have different polarities. However, in dH places the distance

to cause an error is either
√
2(1− δ) or

√
2(1 + δ), while the distance to cause an

error in the remaining n − dH places is 2
√
2, which is negligible compared with

√
2(1− δ) or

√
2(1 + δ)(especially in higher SNRs).

Now we calculate the total numbers of erroneous sequences The length of s is n,

so there are 2n possible sequences, and we assume that they are equally probable.

Thus the possibility of choosing a particular sequence is 1
2n
. For each sequence s,

there are dH places that differ from s′ as we defined. Inside dH places we have

another variable k ranging form 0 to dH , and p from 0 to k, showing that both k

and p are all binomial. thus, the total erroneous sequences N at such dH places is

:
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N = dHCk
kCp (5.25)

Then we move on to the Euclidean distances d(s, s′) lying between s and s′, which

is:

d(s, s′) =
√

2(dH − p)(1− δ)2 + 2p(1 + δ)2

=
√

2dH(1− δ)2 + 8pδ (5.26)

Note that both k and p are binomial, thus the average pairwise error probability

over all possible network coding sequence c (correct) and c′ (erroneous) which

differ in dH places is:

Pep(dH) =

dH∑
k=0

N

2dH
Q

(
d(s, s′)/2

σ

)

=

dH∑
k=0

dHCk
kCp

2dH
Q

(√
2dH(1− δ)2 + 8pδ

σ

)
(5.27)

5.2.3 The complex channel

We now move on to the complex channels which is more close to the real situation.

In this situation, we not only need to calculate the number of erroneous sequences

by means of the binomial expansion, but also need to calculate the number of the

correct sequence in the same way.
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5.2.3.1 The XOR mapping

The XOR mapping is the most appropriate mapping when the relative phase shift

σ is around 0 as shown in Fig. 5.5. For convenience, we could define the channels

as hA = 1+ δ and hB = 1− δ, and δ is in general complex. We are most interested

in the case where |δ| is small, because otherwise the constellation points will be

divided into 4 cluster of 4 aggregated points each, which means the error distances

will just be within the clusters only. Also, we could assume that δ lies in the first

quadrant without a loss of generality. This is because we could still obtain the the

equivalent result by taking its conjugate if δ lies in the second quadrant. Thus,

the error distances are:

d1 =
√
2|1− (1− 2j)δ|

d2 =
√
2|hB| = 2|1− δ|

d3 =
√
2|hA| = 2|1 + δ|

d4 =
√
2|1 + (1 + 2j)δ|

Putting δ = δ0 exp(jθδ), these error distances will further become:

d1 =
√
2
(
1 + 5δ0

2 − 2δ0cos(θδ)− 4δ0sin(θδ)
)

d2 =
√

2
(
1 + δ0

2 − 2δ0cos(θδ)
)

d3 =
√

2
(
1 + δ0

2 + 2δ0cos(θδ)
)

d4 =
√

2
(
1 + 5δ0

2 + 2δ0cos(θδ)− 4δ0sin(θδ)
)

Note if θδ ≤ arctan

(
δ0√
1−δ0

2

)
, the minimum distance is the minimum of d1 and

d2. this is similar for the case that d3 should be used instead of d4

According to Fig. 5.5, we can divide all points into 5 sets from a to e, with points

in a same sets having a same total error distances :
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Figure 5.5: Constellation diagram

• a: 1 d1 and 1d3 (a d2 is covered by a d1 in this situation, because d1 is smaller

in this case);

• b: 1 d2 and 1d3;

• c: 1 d2 and 1d3;

• d: 1 d2;

• e: 1 d1.

Among them, constellation points in sets d and e have only 1 error distance, and

the rest have 2. From the network coding view, there are 2 ways for a network

coded 0 to become a network coded 1, but only 1 way for a network coded 1 to

become a network coded 0. This result in introducing extra erroneous sequences.

Taking set a as example: a network coded 1 may become a ‘0’ by being distorted

at a distance of either d2 or d1. If there are altogether a1 d1s and a2 d2s, then its
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easy to see that the distribution of both a1 and a2 are binomial. Unfortunately

both the correct sequence and the erroneous sequences need a further division.

Here we define the correct sequence as c, and the erroneous sequence as c′. Also,

we assume that k bits out of dH places that c takes a network coded 1 (c′ takes a

network coded 0 at the same position). These variables will help to sum up the

total number of correct sequences c as:

For c taking a network coded 1, the distribution of k is:

• p bits in set a;

• q in set b;

• r = k − p− q in set c.

Likewise, for c taking a network coded 0, the distribution of dH − k is:

• s in set e;

• t = dH − k − s in set d.

All the above variables are binomial distributed. Let s ≡ c denote some noiseless

superimposed signal sequences s at the receiver which is decoded as the network

coded sequence c, then its probability P (s|c) is:

P (s|c) =
kCp

k−pCq
dH−kCs

2dH
(5.28)
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Now we look at the erroneous sequences s′ ≡ c′, and further divide the variables.

• In set a, there are p̄ out of p points locate at an error distance of d1, and

p− p̄ at d3s;

• q̄ of q at d2 and q − q̄ at d3 In set b;

• r̄ of r at d2 and r − r̄ at d4 in set c,

• all t at d1 in set d,

• all s at d2 in set e,

Again they are binomial distributed. Thus the number of such sequences is:

N(s′ : d(s, s′) = de) =
pCp̄

qCq̄
k−p−qCr̄ (5.29)

Where de ∈ d(s, s′) is the set of Euclidean distance values between s and s′, and

N(s′ : d(s, s′) = de) represent the number of erroneous superimposed sequences s′

at a distance de from s.

Next we calculate the total Euclidean distance d:
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d(s, s′)) =

(
p̄d1

2 + (p− p̄)d3
2 + q̄d2

2 + (q − q̄)d3
2 + r̄d2

2

+ (r − r̄)d4
2 + sd1

2 + td2
2

) 1
2

=

(
(p̄+ s)d1

2 + (q̄ + r̄ + t)d2
2

+ (p− p̄+ q − q̄)d3
2 + (r − r̄)d4

2

) 1
2

=
√
2

(
dH + (dH + 4(k − p+ p̄− q − r̄ + s))δ0

2

− 2(dH − 2(k − p̄− q̄ − r̄))δ0cos(θδ)

− 4(k − p+ p̄− q − r̄ + s)δ0

) 1
2

=
√
2

(
dH(1 + δ0

2 − 2δ0cos(θδ)) + 4k(δ0
2 + δ0cos(θδ))

− 4(p+ q)(δ0
2 − δ0sin(θδ))

+ 4p̄(δ0
2 − δ0cos(θδ)− δ0sin(θδ))− 4q̄δ0cos(θδ)

− 4(r̄(δ0
2 + δ0cos(θδ)− δ0sin(θδ)) + 4s(δ0

2 − δ0sin(θδ))

) 1
2

(5.30)

Next, we calculate the pairwise error probability Pep. We define E as the event,

and
∪

x Ex as the union of event Ex, so:
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Pep(c, c
′) =

∑
s≡c

P (s|c)P
( ∪

s′≡c′

E(s, s′)

)
≤
∑
s≡c

P (s|c)
∑
s′≡c′

P (E(s, s′))

=
∑
s≡c

P (s|c)
∑
s′≡c′

Q
(d(s, s′)

2σ

)
= E

s≡c

[∑
s′≡c′

P (s|c)Q
(d(s, s′)

2σ

)]
= E

s≡c

[ ∑
de∈d(s,s′)

P (s|c)N(s′ : d(s, s′) = de)Q
( de
2σ

)]

=
∑

de∈d(s,s′)
E
s≡c

[
P (s|c)N(s′ : d(s, s′) = de)Q

( de
2σ

)]
(5.31)

Where s ≡ c denotes that the correct code sequence c is decoded as the correct

superimposed sequence s, E is the expectation, de ∈ d(s, s′) denote that de is in

the set of Euclidean distance values between s and s’. P (s|c), N(s′ : d(s, s′) = de),

Q( de
2σ
) have been calculated in equation 5.28, 5.29 and 5.30. Next we calculate the

average pairwise error probability over all c,c’ which differ in dH places as:

Pep(dH) ≤
dH∑
k=0

dHCk

2dH
Pep(c, c

′) (5.32)

Where dH ∈ (c, c′) is the hamming distances between the selected correct sequence

and the erroneous sequences.

Finally we form the average superimposed BER at the relay Peb by the pairwise

error probability and the error-weighted distance spectrum e(dH):

Peb ≤
∑

dH≥dmin

e(dH)Pep(dH) (5.33)



97

5.2.3.2 The reversed XOR mapping

Now we move on to the reversed XOR mapping when the relative phase shift σ

is around π
2
, which is shown in Fig.5.6 below. As we can see, the 1st bit of the

network coding for this revered XOR mapping is the revered value (change form 1

to 0 or the otherwise) of the that for the XOR mapping, while the 2nd bit maintain

the same. This change does not affect the calculation of the BER due to symmetry.

Thus, the average BER for the reversed XOR mapping under a π
2
channel fading

state.

Figure 5.6: π
2 case with reversed XOR mapping

Again for convenience, we could define the channels as hA = j+ δ and hB = j− δ,

where δ is in general complex and its amplitude is small. Thus we can obtain the

error distances as:
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d1 =
√
2|(δ + 1)(j − 1)|

d2 =
√
2|jhB| = 2|1 + jδ|

d3 =
√
2|hA| = 2|j + δ|

d4 =
√
2|1 + (1 + 2j)δ|

5.2.3.3 The anti-π
4
mapping

Again for convenience, we could define the channels as hA = 1+j√
2
+ δ and hB =

1+j√
2
− δ (σ), where δ is in general complex and its amplitude is small. Thus we

can obtain the error distances as:

d1 =
√
2|1 + j√

2
− δ|

d5 =
√
2|j(δ + 1)−

√
2|

d6 = 2
√
2|δ|

The anti-π
4
mapping is different from either the XOR mapping or the reversed

XOR mapping as it is not a linear mapping. Thus, it doesn’t maintain the same

symmetry as the other 2 mappings. In this case, we have to analyse the real and

the imaginary part (or the 1st and the 2nd network coding value) separately. To

start with, we take a look at the 1st bit of the network coding value. We can divide

all points into 4 sets from a to d , with points in a same sets having a similar error

distances with neighbours as can be seen for Fig 5.7. Like the XOR mapping, we

assume that c and c′ differs in dH places, and there are k bits out of dH that take

a network coded 1. Thus we could assign:

• p bits in set a;

• k − p in set c;
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Figure 5.7: The 1st bit

Likewise, for c taking a network coded 0, the distribution of dH − k is:

• q in set b;

• dH − k − q in set d.

All the above variables are binomial distributed. Thus for s ≡ c, we can derive its

probability P (s|c) as:

P (s|c) =
kCp

dH−kCq

2dH
(5.34)

Now we look at the erroneous sequences s′ ≡ c′, and further divide the variables.
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Figure 5.8: The 2nd bit

• p1 of p at d5, p2 of p− p1 at d6 and p− p1 − p2 at d2 In set a;

• q1 of q at d5, q2 of q − q2 at d6 and q − q1 − q2 at d2 In set b;

• all k − p at d2 in set c,

• all dH − k − q at d2 in set d,

Again they are binomial distributed. Thus the number of the erroneous sequences

is:

N(s′ : d(s, s′) = de) =
pCp1

p1CP2

qCq1
q1Cq22

dH−p1−p2−q1−q2 (5.35)

because all points have 2 d2s. Next we calculate the total Euclidean distance d.
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d(s, s′) =√
(dH − p1 − p2 − q1 − q2)d2

2 + (p1 + q1)d5
2 + (p2 + q2)d6

2 (5.36)

Filling into (11), we can get the average pairwise error probability for the sequence

formed by the 1st bit of the network coding Pep(1)(dH), and also Peb(1).

Next, we analyse the 2nd bit of the constellation points. As Fig 5.8 shows, we

divide them into 6 sets as the inner set a d and the outer set e and f . Again we

consider the sequence s ≡ c which in the dH places where c differs from c′. Like

the analysis of the 1st bit of the network coding, there are k bits out of dH that

take a network coded 1. Thus we could assign:

• p in set a.

• q bits in set b;

• r = k − p− q in set e;

Likewise, for c taking a network coded 0, the distribution of dH − k is:

• s in set c.

• t bits in set d;

• u = dH − k − s− t in set f ;

All the above variables are binomial distributed. Thus for s ≡ c, we can derive its

probability P (s|c) as:

P (s|c) =
kCp

k−pCq
dH−kCs

dH−k−sCt

2dH
(5.37)
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Now we consider the case s′ ≡ c′ in which:

• p′ of p at d6 and p− p′ at d2 In set a;

• q′ of q at d5 and q − q′ at d2 In set b;

• s′ of s at d6 and s− s′ at d2 In set c;

• t′ of t at d5 and t− t′ at d2 In set d;

• r′ of r at d3 and k − p− q − r′ at d2 In set e;

• u′ of q at d3 and dH − k − s− t− u′ at d2 In set f ;

such a sequence has the Euclidean distance from s as:

d(s, s′) =
(
(dH − p′ − q′ − s′ − t′)d2

2 + (r′ + u′)d3
2

+ (q′ + t′)d5
2 + (p′ + s′)d6

2
)− 1

2
(5.38)

And the number of such sequences is:

N(s′ : d(s, s′) = de) =
pCp′

qCq′
sCs′

tCt′
k−p−qCr′

dH−k−s−tCu′ (5.39)

Finally, we take the average value of the BER derived from both the 1st and the

2nd bit of the network coding, as they are encoded separately and are independent

to each other.

5.3 Simulation result

In this section, we give the simulation and the theoretical curve of the convolu-

tional coded PNC. Note: In reality, the theoretical curve act as the upper bound,
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and is accumulated from dH = dmin to infinity. The more accumulation operation,

the worse BER the performance curve will have. However, we aim to find the curve

which is more converge with the simulation one, thus we take an finite addition of

the term (e.g. from 5 to 6) without losing any generality. Because the addition of

items affect less on the curve at high SNR, but much more at lower SNR.

Figure 5.9: Fading near 0

In Fig 5.9, we compare the performance of the simulation and the union bound at a

singular fading around 0. We assume that the system apply the adpative mapping,

thus the XOR mapping is chosen in this situation. Recall that two channels are

set as 1 + δ and 1− δ. We simulate from the equal channel (δ = 0) to real fading

channel (δ = 0.25), and finally the complex channel (δ = 0.25∠ π
32
). Typically, the

addition of terms in which we calculate BER stops at a Hamming distance of 6,

which correspond to 2 errors in a codeword.
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Figure 5.10: Fading near π
4

In Fig 5.10, we compare the performance of the simulation and the union bound

at a singular fading around π
4
. Again the addition of terms in which we calcu-

late BER stops at a Hamming distance of 6, which correspond to 2 errors in a

codeword.Assuming that the anti-π
4
mapping is chosen, we simulate the complex

channel (δ = 0.25∠ π
32
) for both the simulation and the union bound. Also, we

introduce the performance the XOR mapping is chosen, which is far worse than

the anti-π
4
mapping. However, in the coded PNC, the difference between the per-

formance of the above 2 mappings at a singular fading of π
4
is not that huge. This

is because the code has improved the performance of the system by a lot, and on

the other hand amplifies the advantages of the optimum mapping at the current

singular fading over other fixed mappings.
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5.4 Summary

With the help of the pairwise error probability and the event error probability, we

derive the upper bound of the superimposed BER at the relay for joint decoding.

We derive not only the XOR mapping, but also the revesed XOR mapping and

the anti-π
4
mapping, showing that the performance could be estimated with the

appropriate upper bound.



Chapter 6

PNC on OFDM channels

6.1 Uncoded PNC on OFDM channels

So far we have based the PNC on single carrier channels. The channels we choose

are flat fading channels whose frequency response remains flat during one packet

period. However, in real situations, we may face frequency selective/fast fading

channels whose response cannot be regarded as ‘flat’. Also, this system is vulner-

able to time response channels which cause ISI. Thus, we introduce the OFDM

method. As introduced in the section 1.3, OFDM will have advantages that allow

us to optimize our system:

• By dividing the channel into narrowband flat fading sub channels, OFDM is

more resistant to frequency selective fading than single carrier systems are.

• Eliminates ISI through use of a cyclic prefix.

• Using adequate channel coding and interleaving one can recover symbols lost

due to the frequency selectivity of the channel. Thus we may apply a linear

convolutional code to the system.

• It is possible to use maximum likelihood decoding with reasonable complex-

ity, which is similar to the coded PNC on single-carrier system.

106
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• OFDM is computationally efficient through using FFT techniques to imple-

ment the modulation and demodulation functions.

• Provides good protection against co-channel interference and impulsive par-

asitic noise.

Also, all of our previous systems are based on the assumption that the relay receives

the information from two transmitters at the same time (perfect synchronization).

[77] and [78] helps to achieve the theoretical work of synchronization, and [79]

even moves forward to its implementation. However, perfect synchronization is

quite difficult to achieve due to phase errors and noise [80]. Thus, we introduce

the guard interval/cyclic prefix on OFDM channels to solve the problem at the

cost of losing some affordable capacity.

6.1.1 System model

Figure 6.1: Simulation model of PNC on OFDM channels
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We start our reseach on OFDM with un-coded PNC. The simulation model of

un-coded PNC on OFDM channels is shown in Fig 6.1. After linear QPSK mod-

ulation, the sequence of data I sent from either user is fed into a serial-to-parallel

convertor so as to be allocated onto the OFDM sub-carriers. The convertor con-

verts the data sequence to a matrix whose number of row is equal to the number

of sub-carriers. Typically, we make the number of sub-carriers 64 as this is the

commonly applied in the industry. To do this, we set the length of the original

data sequence I to be a multiple of 64 so as to fill all sub-carriers evenly (We can

still fill the empty spaces on some sub-carriers with all ‘0’s as padding if the length

is not a multiple of 64).

Then, we take the inverse Fast Fourier Transform (IFFT) of the symbols on all

sub-carriers to transform all symbols into the time domain.

In an OFDM system, we typically add cyclic prefix (CP) in order to counter the

ISI. The size of the CP is decided by the maximum delay of the multipath channel.

We define the multipath channel in Matlab as:

h = (randn(1,L+ 1) + 1i*randn(1,L+ 1))/sqrt(2*(L+ 1));

where L is the maximum multipath delay, typically we set this equal to Ncp,

so that it does not cause intersymbol or intercarrier interference. Note that the

factor
√
L+ 1 is required to normalise the channel so that (on average) it does

not change the signal power. In this way we can compare its performance with

PNC on single-carrier. We set the number of signal samples in the cyclic prefix

as 8 (NCP = L = 8). We typically copy the time-domain samples from sample 56

to 64, and duplicate them before all the samples as the CP. Also, this channel is

defined in time domain rather than frequency domain.

After that, the time-domain symbols are convoluted with the time delay channel

in time domain.

Finally, symbols from both users are transformed back to serial form and accumu-

lated at the relay together with noise. We assume that Rs is the received signal

at the relay, hA and hB represent the channels’ frequency responses, SA and SB
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are the modulated signal sent from both users, and SN is the noise symbol at the

relay. Then, for PNC on single-carrier, we already know that the relay will receive

Rs = hASA + hBSB + SN (6.1)

in which QPSK symbols are transmitted in frequency domain and are directly

multiplied by the channel frequency response.

However, the symbol transmission of PNC on OFDM channels is in the time

domain. Thus, symbols on each sub-carrier are convolved with the related sub-

carrier’s channel impulse response separately rather than multiplied by the channel

frequency response. As a result, the relay receives:

Rs = yA ∗ SA + yB ∗ SB + SN (6.2)

where ∗ denotes the convolution operation, and yA and yB denotes the two chan-

nel‘s impulse responses corresponding to the frequency response h. By considering

parallel transmission in OFDM, we divide the channels into 64 sub-channels, with

the impulse response y1A to y64A and y1B to y64B . Based on that, we can obtain the

sub-channels’ frequency response h1
A to h64

A and h1
B to h64

B respectively.

At the relay, the superimposed sequence of symbols are transformed to parallel

form first. We then remove the CP which is “polluted” by the ISI, and truncate

the OFDM frames on each sub-carrier by NCP . After that, we apply the fast

Fourier Transform (FFT) on all samples to transform them back to the frequency

domain. This is followed by de-mapping and decoding so as to decode the received

symbols into linear superimposed symbols.

The de-mapping process on each sub-carrier is similar to that of un-coded PNC in

a single-carrier system in which we calculate the Euclidean distance against each

element in the look-up table. However, the realization of de-mapping is much more

complicated here. In the single-carrier system, we define the channels’ frequency
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responses directly as hA and hB, and the look-up table has a size of 1 × (16× 2)

for each pair of transmission channels (hA and hB), as shown in table 3.2. In our

OFDM system, we have 64 sub-carriers, and each of them have a such look-up

table. These will be merged to a combined look-up table of size 64 × (16 × 2)

shown in table 6.1.

Constellation de-mapped until Constellation de-mapped

(R) vector (XR) (R) vector (XR)
−h1

A(1+j)−h1
B(1+j)√

2
0 0 0 0 until

h1
A(1+j)+h1

B(1+j)√
2

1 1 1 1
−h2

A(1+j)−h2
B(1+j)√

2
0 0 0 0 until

h2
A(1+j)+h2

B(1+j)√
2

1 1 1 1

· · · · ·
· · · · ·
· · · · ·

−h64
A (1+j)−h64

B (1+j)√
2

0 0 0 0 until
h64
A (1+j)+h64

B (1+j)√
2

1 1 1 1

Table 6.1: The look-up table for PNC on OFDM channel

Note: in the single-carrier system, all transmissions are assumed to be in the

frequency domain only. However, in OFDM, the symbols are convolved with

channels’ impulse response in time domain. Thus, we will have to transfer the

impulse response y associate with each sub-carrier into frequency response h so

as to fill them in the look-up table. Thus, for each received OFDM frame, the

de-mapped symbol XR becomes a matrix of size 64× 4:

Xn
R = {InA(1) InA(2) InB(1) InB(2)}

where Xn
R is the de-mapped symbol on the nth sub-carrier, and InA(1) is the 1st bit

of the network coded symbol sent from user A on the nth sub-carrier.

6.1.2 Mapping selection

Recall that in the QPSK modulated PNC on single-carrier channels, we assign dif-

ferent mappings to the relay in order to counter different singular fadings which are
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formed by the frequency response of both channels (hA and hB). These mappings

are also available for PNC on the OFDM channel as well. However, the OFDM

channel involves multiple sub-channels, and accordingly we assign mappings to

each sub-carrier/pair of sub-channel (here he word pair means the sub-carrier at

both users with the same position, e.g : h1
A and h1

B). As a result, relay may have

different mappings associated with different sub-carriers (adaptive mapping), or

the same mappings for sub-carriers which may not be the optimum mapping under

the singular fading (fixed mapping).

As we introduced in the previous chapters, there are 3 basic mappings available for

QPSK modulated PNC, described as the XOR mapping, the reversed XOR map-

ping, and the anti-π
4
mapping. All other mappings are the different combinations

of these three.

6.1.2.1 Adaptive mapping

The adaptive mapping on OFDM is very similar to that applied to the single carrier

channels. The relay treats each sub-carrier as an independent singular fading

and feedback the best mapping (in terms of SER) on each sub-carrier to both

transmitters separately. The expression of SER under different singular fadings

has been introduced in chapter 3 already.

For PNC on single carrier channels, the mappings remain the same within each

packet for a given singular fading as we assume that all channels are invariant

during one packet time. Likewise, for PNC on OFDM channels, we can make

a similar assumption that all sub-channels are invariant during one sub-carrier

packet time.

However, due to the parallel-to-serial conversion at both transmitter, the trans-

mitted OFDM packets are converted from the parallel sub-carrier packets, and the

adjacent symbols in the OFDM packets comes from different sub-carriers. As a

result, if different mappings have been assigned to adjacent sub-carriers, we then

need to apply different mappings in the decoding of adjacent symbols in OFDM
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frames. This is possible in uncoded PNC, but if we consider the application of

a linear codeword to the system, we will immediately find difficulty in decoding

the superimposed symbols to a linear combination of the original binary sequence.

This is because the decoding of a linear codeword require a sequence of data

rather than decoding the information bit-by-bit. Instead, we will expect a scheme

in which a fixed mapping is associated with all/some sub-carriers, or at least inside

each sub-band. These optimized mappings will be introduced in the next section.

6.1.2.2 Fixed mapping

We consider applying a certain fixed mapping to all sub-carriers as we wish to

further apply a linear channel code to the system. As a result, we need to make

the system choose the best mapping among all 3 fixed mappings.

The majority vote mapping is one of the possible solutions for the PNC on the

OFDM channels. In this mapping, a “vote” is held in the relay to determine which

fixed mapping is going to be applied to sub-carriers. Its algorithm can be seen

from the flow chart in Fig 6.2

To realize it, the relay will examine the fading associated with sub-carriers against

the thresholds between different mappings. The thresholds has been introduced

in the section ‘adaptive mapping’ in chapter 1. In this way, relay can quickly

determine which mapping is the optimum for a certain sub-carrier. Next, relay

gives a “vote” or a “token” to that chosen mapping, and will move on to the

next sub-carrier. When voting is finished, relay will count the “token” held by

each mapping, and the mapping with the most tokens win. Once the result is

“published”, all sub-carriers will accept that winning mapping as a compromise.

However, in some cases, 2 different mappings may hold same number of tokens,

which will make the voting result more complicated. To solve this, we define the

priority of these mappings as an invisible rule, which is: M1 > M2 > M3. We

know that M3 (the anti-π
4
mapping) performs the worst across all fading states,

thus we give it the lowest priority. The other two mappings-M1: the XOR mapping
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and M2: the reversed XOR mapping-have the same SER performance across all

singular fading. However for simplicity, we give the XOR mapping the highest

priority over the reversed XOR mapping. We express all these rules in algorithm

3.

Algorithm 3 The majority vote mapping

t1 = t2 = t+ 3 = 0
while Sr == 1 do
for i = 1, i < 64, i++ do
if fi ∈ th3 then
t3 ++

else if fi ∈ th2 then
t2 ++

else
t1 ++

end if
end for
if t1 > t2 then
loop
if t1 > t3 then
M = M1

else
M = M3

end loop
else if t2 > t3 then
M = M2

else
M = M3

end if
end loop

end while

where fi is the singular fading of the current sub-carrier, t1 to t3 and th1 to th3

are the tokens and threshold associate with the three mappings. In the for loop,

we start from th3, because the threshold of the anti-π
4
is the amplitude, while th1

and th2 are all phases.

We can further adapt this mapping into the local optimum mapping which is in-

spired by the system-level simulation. This mapping calculates the three average

SER in which the three fixed mappings are applied to all sub-carriers. The best

effort mapping is better than the majority vote mapping in the cases that a partic-

ular fixed mapping has the most vote, but the application of it to all sub-carriers
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may not result in the lowest overall SER compared with the SER obtained from

the application of another fixed mapping to sub-carriers. Its algorithm can be seen

from the flow chart in Fig 6.3, and is further explained in algorithm 3.

Algorithm 4 The local optimum mapping

while Sr == 1 do
for i = 1, i < 64, i++ do
for j = 1, j < 3, j ++ do
Psj = Psj + Psj(i)

end for
end for
if Ps1 > Ps2 then
loop
if Ps1 > Ps3 then
M = M1

else
M = M3

end loop
else if Ps2 > Ps3 then
M = M2

else
M = M3

end if
end loop

end while

where Psj is the accumulated overall SER for mapping Mj, and Psj(i) is the SER

for the application of mapping Mj on the ith sub-carrier. Again we give the

priority sequence as M1 > M2 > M3.

The choice of mappings is highly dependent on the type of system. Overall,

adaptive mapping is the best if we consider the un-coded PNC on OFDM channels.

If we require the system to be upgraded to a linear coded system, then the best

effort mapping would be favoured over the majority vote mapping at the cost of

introducing more complexity.
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6.1.2.3 The sub-band

So far we have introduced the situations which the two optimized mappings are

applied to all sub-carriers. These method may have a large degradation of the

overall SER compared with the adaptive mapping. As a result, we consider apply-

ing either the majority vote or the best effort mapping in a number of consecutive

sub-carriers, which we name as “sub-band”. If the size of the sub-band is reduce

to 1, then it is the same as the adaptive mapping. On the other hand, if the size

is large as 64, then the mapping result will be the same as that in the last section.

The smaller sub-band size, the more accurate (the word accurate here means ei-

ther the lower the SER, or the closer its performance to the fully adaptive case)

the system behaves. However, in order to adapt the system to the linear coded

PNC on OFDM channels, we need to set the minimum limit for the cluster. We

could apply one sub-carrier at a time though, but the problem then would be

complexity. Because if we do so, we would need 64 encoders and decoders, and

also that the coded frames would need to be quite long to fit a reasonable length

codeword. Thus, we set the size of sub-band as 8 sub-carriers, as the maximum

channel impulse response length is 8, and the coherence bandwidth is also likely

to be 8. This setting will be further explained in the next section which we further

apply a linear channel code to the system.

We may even consider applying unbalanced sub-band which the size of the sub-

band may not be fixed. This method is typically useful when there are consecutive

channels that is optimum for one particular mapping. e.g. If the best mapping

for the initial 16 sub-carrier is:

M1,M1,M1,M1,M1,M2,M2,M2

M2,M3,M3,M3,M1,M1,M1,M1

Then, instead of having two sub-bands as



118

{M1,M1,M1,M1,M1,M1,M1,M1} and {M1,M1,M1,M1,M1,M1,M1,M1}

we may have 4 sub-bands as: {M1,M1,M1,M1,M1}, {M2,M2,M2,M2,M2}, {M3,M3,M3}

and {M1,M1,M1,M1}

This optimization will help the SER performance of the system approach closer to

that of the adaptive channel method, but adds more complexity. Furthermore, it

is vulnerable to the situation that there are too many individual sub-carriers that

have different singular fading with their neighbors.

6.2 Convolutional coded PNC on OFDM chan-

nels

Finally we combine all the optimization methods onto the PNC system which

includes the mapping choosing, the convolutional code, and the OFDM channel

(sub-band included).

Like the uncoded PNC on OFDM channels, we set the number of sub-carriers as 64

with a cyclic prefix of 8. Taking into account that the sub-band will help improve

the performance of the system, we introduce 8 sub-bands with a bandwidth of 8

adjacent sub-carriers to the model.

However, if we apply different mappings to different sub-bands or sub-carriers, we

would need to use separate encoders/decoders on each of them. As a result, we

could either make each user have only 1 encoder, or separate encoders assigned to

each sub-band.

6.2.1 System model

6.2.1.1 Single encoder

The system model of the coded OFDM with 1 encoder is shown in Fig 6.4, and

the relay part is shown in Fig 6.5. As can be seen, the encoder module (consisting
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of encoder, interleaver and modulator) is added to the system ahead of the OFDM

module.

Figure 6.4: System model of coded PNC on OFDM channels (1 encoder)

Figure 6.5: System model of coded PNC on OFDM channels (1 decoder)

Like coded PNC on single-carrier system, we have a block interleaver locate in

between encoder and modulator, and a block de-interleaver between encoder and

modulator. These prevent the adjacent bits in the same codeword to ‘suffer’ from

the same channel fading so as to improve the overall performance.
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This model is comparatively less complicated as there is only 1 encoder at each

user (which also means only 1 decoder is required at the relay). As a result, 1

particular mapping should be applied to all of the sub-carriers, which means the

sub-bands are no longer needed here. Thus, symbols on some sub-carriers would

be heavily faded if the mapping is not the optimum mapping for its fading state.

To solve this, we make some sub-bands have different mappings with their neigh-

bours. However, the data stream feed into the interleaver is a linear codeword. If

the sub-bands have multiple mappings, then the correpondent codeword message

will also change, which may makes the correspondent code sequence of the actual

transmitted symbols maynot be a linear codeword. Thus, the PNC on the OFDM

channels with one encoder cannot have the sub-band settings.

6.2.1.2 Multiple encoder

We thus use OFDM channels with multiple encoders as shown in Fig 6.6. As

can be seen, the symbols feed into the serial to parallel convertor is the binary

sequence, which is same as the system we introduced in the last chapter.

Figure 6.6: System model of coded PNC on OFDM channels(multiple en-
coder)

At the cost of introducing some more complexity ((N−1) times more encoder units,

where N is the number of sub-bands), we can now assign different mappings for

each sub-band according to the relative fading state of the sub-carriers. If we still
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apply a (5,7) convolutional encoder to all sub-carrier, then the decoding section

will consist of 8 (5,7) decoders.

We can further adapt the system by applying different linear codes (with different

rates) to different sub-bands. This includes the Convolutionl code with longer

codeword(e,g, (11,13)), and other linear channel code (Turbo, LDPC, etc) as long

as the adaptive modulation could make the modulated sequence on each sub-carrier

have the same length.

Figure 6.7: System model of coded PNC on OFDM channels (multiple de-
coder)

As a result, we have multiple linear decoders at the receiver corresponding to

different sub-bands as Fig 6.7 shows, and the decoding is carried out in each sub-

band independently.

6.3 Simulation result
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Figure 6.8 and 6.9 shows the SER of the uncoded PNC on OFDM channels with

majority vote and local optimum mappings in various sub-bands respectively. We

simulate across different Rayleigh fading channels with multipath delays. As pre-

dicted, the larger the sub-band size, the poorer SER performance the system have,

and the performance curve movers closer to the case where no sub-band is applied.

On the other hand, the smaller the sub-band size, the better SER performance, and

the performance curve movers closer to that where the adaptive channel method

is applied.
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Figure 6.10: Performance comparison for uncoded PNC

Figure 6.10 shows the comparison of SER performance of the adaptive mapping

(fully adaptive channel) on OFDM channel, the adaptive mapping on single-carrier

channel, the 8 sub-band majority vote mapping, and the 8 sub-band best effort

mapping. It can be seen that with the same sub-band size, the best-effort mapping

performs slightly better than majority vote (by approximately 0.5dB) at the cost

of introducing some complexity. Also, we note that for adaptive mapping, the

performance on the OFDM channel is worse than that on the single-carrier channel.

This results from the loss of energy in the cyclic prefix.
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Figure 6.11: Performance comparison for coded PNC

Figure 6.11 shows the comparison between the coded PNC on OFDM (1 encoder,

local optimum mapping) and the uncoded PNC on single-carrier channel across all

singular fading states (average BER). As can be seen, the coded PNC on OFDM

performs poorer in lower SNR, which may be caused by the energy loss in the

CP. Still, the BER curve of the coded PNC on OFDM has a reasonable diversity

and surpass that on single-carrier channel as it benefits from the tight coherent

bandwidth.
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6.4 Summary

We simulate the PNC on OFDM channels in this chapter, and introduce the

mappings (fixed, fully adaptive) across all sub-carriers. Furthermore, we introduce

the mappings inside every sub-band in order to realize the convolutional coded

PNC on OFDM channels. This includes both the multi-encoder and single-encoder

models.



Chapter 7

Conclusion and Further Work

7.1 Conclusion

In this thesis, our research aim is to build a system-level simulation of multi-hop

(multiple PNC) networks. To do this, we focus on the derivation of the error

rate of the superimposed signals received at the relay. The error rate is a tight

theoretical upper bound, and can be used for feeding back to each relay the best

mapping. For uncoded PNC, we calculate the superimposed SER at the relay; for

channel coded PNC, we calculate the superimposed BER at the relay.

In Chapter 3, we introduce the QPSK modulated PNC model, and three fixed

mappings for different relative fading states (in both amplitude and phase). Also,

we introduce the adaptive mapping which ‘intelligently’ chooses the best fixed

mapping according to the different fading states. In addition to these, we derive

the theoretical upper bound of the superimposed SER at the relay for all the

mappings under all fadings, and simulate the SER graph which compares the

upper bound with the performance of the symbol-level simulation of the system.

According to the result, we are confident to show that the derived upper bound is

tight.

In Chapter 4, we build two models that apply system-level simulation. In these

models, The SER of each mapping (out of 3) is calculated at the node in next

127



128

phase, and feedback the best realizable mapping (the mapping that result in the

lowest SER) to the current phase. Typically, we design the algorithm for these

progress shown in the flow chart. Finally, we obtain the overall PER through

symbol-level simulation, and the theoretical upper bound of PER as the system-

level simulation. Again the upper bound is tight.

In Chapter 5, we equip our PNC model with a linear channel code (convolutional

code), as it can boost the performance of the transmission (in terms of error rate).

Instead of separate decoding (called Jt-CNC), we still use joint decoding to obtain

the superimposed BER after taking the size of the trellis into account. We then

focus on the derivation of the superimposed BER at the relay from the pairwise-

error probability, the event-error probability, and finally accumulate the terms into

an upper bound on the superimposed BER. We take an finite summation of terms

as we want a tight upper bound, which is shown in the simulation result.

In Chapter 6, we introduce the OFDM channel to reduce the possible consequences

resulting from the time delay channels and frequency selective channels. These

consequences may reduce the performance of the single-carrier system. In addition,

we introduce the sub-band which enables the adaptive mapping within each sub-

band, and the application of linear channel coding. By comparison, we determine

that PNC on an OFDM channel performs as good as that on the single-carrier

channel despite slightly poorer error performance due to the CP.

7.2 Further Work

• We have so far assume that the relay have a perfect channel estimation.

However, this is quite difficult in the industry (e.g. the affection of Doppler

effect). Thus we may consider a proper channel estimation which is able to

estimate the channel dynamically.

• We may consider higher order modulation to be applied in our PNC system.

e.g. 64 QAM, and the possibility of extending the current BER theory to



129

it. Due to the complexity of 64 QAM, we can no longer apply exhaustive

search to it. thus, we may consider some other algorithms.

• We may apply some other channel coding which are more powerful. e.g.

turbo code and LDPC code. At the cost of introducing more complexity, we

could expect to have a better BER performance.

• For the coded PNC on OFDM channel, we may apply some other interleaving

skills. e.g. interleave within the sub-band. We will compare coded inter-

leaved OFDM without subbands with the subband based approach. Also,

we may consider some other interleavers other than the simplest block inter-

leaver so as to further improve the performance.



Glossary

PNC Physical layer Network Coding

TWRC Two Way Relay Channel

DIWINE Dense cooperatIve WIreless cloud NEtwork

BER Bit Error Rate

SER Symbol Error Rate

PER Packet Error Rate

OFDM Orthogonal Frequency Division Multiplexing

CDMA Code Division Multiple Access

MIMO Multiple-Input and Multiple-Output

MAC Multiple Access Channel

dB Decibel

SNR Signal to Noice Ratio

ML Maximum Likelihood

LLR Log Likelihood Ratio

HDF Hierachical Decode and Forward
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