17,976 research outputs found

    Protected Routing in Wireless Sensor Networks: A study on Aimed at Circulation

    Get PDF
    The aim of this paper is to discuss secure routing in Wireless Sensor networks. I have made an endeavor to present an analysis on the security of Directed Diffusion, a protocol used for routing in wireless sensor networks. Along with this the paper also discusses the various attacks possible on this routing protocol and the possible counter-measures to prevent theses attacks

    Attacks on Geographic Routing Protocols for Wireless Sensor Network

    Get PDF
    With the increase in the military and several other applications of Wireless Sensor Network, provisions must be made for secure transmission of sensitive information throughout the network. Most of the routing protocols proposed for ad-hoc networks and sensor networks are not designed with security as a goal. Hence, many routing protocols are vulnerable to an attack by an adversary who can disrupt the network or harness valuable information from the network. Routing Protocols for wireless sensor networks are classified into three types depending on their network structure as Flat routing protocols, Hierarchical routing protocol and Geographic routing protocols. Large number of nodes in a wireless sensor network , limited battery power and their data centric nature make routing in wireless sensor network a challenging problem. We mainly concentrate on location-based or geographic routing protocol like Greedy Perimeter Stateless Routing Protocol. Sybil attack and Selective forwarding attack are the two attacks feasible in GPSR. These attacks are implemented in GPSR and their losses caused to the network are analysed

    Secure Geographic Routing in Ad Hoc and Wireless Sensor Networks

    Get PDF
    Security in sensor networks is one of the most relevant research topics in resource constrained wireless devices and networks. Several attacks can be suffered in ad hoc and wireless sensor networks (WSN), which are highly susceptible to attacks, due to the limited resources of the nodes. In this paper, we propose innovative and lightweight localization techniques that allow for intrusion identification and isolation schemes and provide accurate location information. This information is used by our routing protocol which additionally incorporates a distributed trust model to prevent several routing attacks to the network. We finally evaluate our algorithms for accurate localization and for secure routing which have been implemented and tested in real ad hoc and wireless sensor networks

    Energy Efficiency and Traffic Pattern Discovery for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are regularly framed by the joint effort of the expansive measure of insignificant sensor nodes, which are associated through a wireless medium. In wireless sensor organize, security is a fundamental position in well-lit of its utilization in applications like monitoring, tracking, controlling, surveillance etc. Secure correspondence is greatly critical in conveying key data precisely and on the time through asset imperative sensor nodes. In this paper, our commitment is triple. Firstly, we have outlined the system layer routing assaults on WSNs. Also, we have given a scientific categorization of secure routing protocols of WSNs. Thirdly, we have given a subjective correlation of existing secure routing protocols. This situation is practically equivalent to conveying US Mail through USPS: express sends cost more than customary sends; be that as it may, sends can be conveyed quicker. The convention additionally gives a secure message conveyance alternative to amplify the message conveyance proportion under antagonistic assaults. What's more, we likewise give quantitative secure investigation on the proposed routing convention in light of the criteria proposed. In this way, unauthenticated individual can't get to the first information. By along these lines, the convention gives a secure message conveyance alternative to augment the message conveyance proportion under ill-disposed assaults

    Secured System Layer Routing Protocols On Imperative Sensor Nodes

    Get PDF
    Sensor technology has shown tremendous development in the field of data environment like tracking and detection. The participating sensor nodes are prone to failure because of limited resources or limitations in security. The topology of the networks is highly dynamic in nature because of frequent failure of the sensor nodes. The Quality of Service (QoS) support to highly dynamic networks is one of the challenging tasks. In wireless sensor organize, security is a fundamental position in well-lit of its utilization in applications like monitoring, tracking, controlling, surveillance etc. Secure correspondence is greatly critical in conveying key data precisely and on the time through asset imperative sensor nodes. A 3 stage approach gives a secure message conveyance alternative to amplify the message conveyance proportion under antagonistic assaults. Firstly, we have outlined the system layer routing assaults on WSNs. Also, we have given a scientific categorization of secure routing protocols of WSNs. Thirdly, we have given a subjective correlation of existing secure routing protocols. The above quantitative secure investigation on the proposed routing convention in light of the criteria proposed

    A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring

    Full text link
    [EN] Sensor networks can be used in many sorts of environments. The increase of pollution and carbon footprint are nowadays an important environmental problem. The use of sensors and sensor networks can help to make an early detection in order to mitigate their effect over the medium. The deployment of wireless sensor networks (WSNs) requires high-energy efficiency and secures mechanisms to ensure the data veracity. Moreover, when WSNs are deployed in harsh environments, it is very difficult to recharge or replace the sensor's batteries. For this reason, the increase of network lifetime is highly desired. WSNs also work in unattended environments, which is vulnerable to different sort of attacks. Therefore, both energy efficiency and security must be considered in the development of routing protocols for WSNs. In this paper, we present a novel Secure and Low-energy Zone-based Routing Protocol (SeLeZoR) where the nodes of the WSN are split into zones and each zone is separated into clusters. Each cluster is controlled by a cluster head. Firstly, the information is securely sent to the zone-head using a secret key; then, the zone-head sends the data to the base station using the secure and energy efficient mechanism. This paper demonstrates that SeLeZoR achieves better energy efficiency and security levels than existing routing protocols for WSNs.Mehmood, A.; Lloret, J.; Sendra, S. (2016). A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring. Wireless Communications and Mobile Computing. 16(17):2869-2883. https://doi.org/10.1002/wcm.2734S286928831617Sendra S Deployment of efficient wireless sensor nodes for monitoring in rural, indoor and underwater environments 2013Javaid, N., Qureshi, T. N., Khan, A. H., Iqbal, A., Akhtar, E., & Ishfaq, M. (2013). EDDEEC: Enhanced Developed Distributed Energy-efficient Clustering for Heterogeneous Wireless Sensor Networks. Procedia Computer Science, 19, 914-919. doi:10.1016/j.procs.2013.06.125Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Garcia, M., Lloret, J., Sendra, S., & Rodrigues, J. J. P. C. (2011). Taking Cooperative Decisions in Group-Based Wireless Sensor Networks. Cooperative Design, Visualization, and Engineering, 61-65. doi:10.1007/978-3-642-23734-8_9Garcia, M., & Lloret, J. (2009). A Cooperative Group-Based Sensor Network for Environmental Monitoring. Cooperative Design, Visualization, and Engineering, 276-279. doi:10.1007/978-3-642-04265-2_41Jain T Wireless environmental monitoring system (wems) using data aggregation in a bidirectional hybrid protocol In Proc of the 6th International Conference ICISTM 2012 2012Senouci, M. R., Mellouk, A., Senouci, H., & Aissani, A. (2012). Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols. Journal of Network and Computer Applications, 35(4), 1317-1328. doi:10.1016/j.jnca.2012.01.016Heinzelman WR Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks In proc of the 33rd Annual Hawaii International Conference on System Sciences 2000 2000Xiangning F Yulin S Improvement on LEACH protocol of wireless sensor network In proc of the 2007 International Conference on Sensor Technologies and Applications SensorComm 2007 2007Tong M Tang M LEACH-B: an improved LEACH protocol for wireless sensor network In proc of the 6th International Conference on Wireless Communications Networking and Mobile Computing WiCOM 2010 2010Mohammad El-Basioni, B. M., Abd El-kader, S. M., Eissa, H. S., & Zahra, M. M. (2011). An Optimized Energy-aware Routing Protocol for Wireless Sensor Network. Egyptian Informatics Journal, 12(2), 61-72. doi:10.1016/j.eij.2011.03.001Younis O Fahmy S Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach In proc of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM 2004 2004Noack, A., & Spitz, S. (2009). Dynamic Threshold Cryptosystem without Group Manager. Network Protocols and Algorithms, 1(1). doi:10.5296/npa.v1i1.161Nasser, N., & Chen, Y. (2007). SEEM: Secure and energy-efficient multipath routing protocol for wireless sensor networks. Computer Communications, 30(11-12), 2401-2412. doi:10.1016/j.comcom.2007.04.014Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors Journal, 11(1), 45-55. doi:10.1109/jsen.2010.2051539Parra L Sendra S Jimenez JM Lloret J Smart system to detect and track pollution in marine environments, in proc. of the 2015 2015 1503 1508Atto, M., & Guy, C. (2014). Routing Protocols and Quality of Services for Security Based Applications Using Wireless Video Sensor Networks. Network Protocols and Algorithms, 6(3), 119. doi:10.5296/npa.v6i3.5802Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780-790. doi:10.1016/j.future.2011.04.019Bri D Sendra S Coll H Lloret J How the atmospheric variables affect to the WLAN datalink layer parameters 2010Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422-429. doi:10.1109/jcn.2013.000073Amjad M 2014 Energy efficient multi level and distance clustering mechanism for wireless sensor networksMeghanathan, N. (2015). A Generic Algorithm to Determine Maximum Bottleneck Node Weight-based Data Gathering Trees for Wireless Sensor Networks. Network Protocols and Algorithms, 7(3), 18. doi:10.5296/npa.v7i3.796
    corecore