37 research outputs found

    Secure Two-Way Transmission via Wireless-Powered Untrusted Relay and External Jammer

    Get PDF
    In this paper, we propose a two-way secure communication scheme where two transceivers exchange confidential messages via a wireless powered untrusted amplify-and-forward (AF) relay in the presence of an external jammer. We take into account both friendly jamming (FJ) and Gaussian noise jamming (GNJ) scenarios. Based on the time switching (TS) architecture at the relay, the data transmission is done in three phases. In the first phase, both the energy-starved nodes, the untrustworthy relay and the jammer, are charged by non-information radio frequency (RF) signals from the sources. In the second phase, the two sources send their information signals and concurrently, the jammer transmits artificial noise to confuse the curious relay. Finally, the third phase is dedicated to forward a scaled version of the received signal from the relay to the sources. For the proposed secure transmission schemes, we derive new closed-form lower-bound expressions for the ergodic secrecy sum rate (ESSR) in the high signal-to-noise ratio (SNR) regime. We further analyze the asymptotic ESSR to determine the key parameters; the high SNR slope and the high SNR power offset of the jamming based scenarios. To highlight the performance advantage of the proposed FJ, we also examine the scenario of without jamming (WoJ). Finally, numerical examples and discussions are provided to acquire some engineering insights, and to demonstrate the impacts of different system parameters on the secrecy performance of the considered communication scenarios. The numerical results illustrate that the proposed FJ significantly outperforms the traditional one-way communication and the Constellation rotation approach, as well as our proposed benchmarks, the two-way WoJ and GNJ scenarios.Comment: 14 pages, 6 figures, Submitted to IEEE Transactions on Vehicular Technolog

    Joint Power Splitting and Secure Beamforming Design in the Wireless-powered Untrusted Relay Networks

    Full text link
    In this work, we maximize the secrecy rate of the wireless-powered untrusted relay network by jointly designing power splitting (PS) ratio and relay beamforming with the proposed global optimal algorithm (GOA) and local optimal algorithm (LOA). Different from the literature, artificial noise (AN) sent by the destination not only degrades the channel condition of the eavesdropper to improve the secrecy rate, but also becomes a new source of energy powering the untrusted relay based on PS. Hence, it is of high economic benefits and efficiency to take advantage of AN compared with the literature. Simulation results show that LOA can achieve satisfactory secrecy rate performance compared with that of GOA, but with less computation time.Comment: Submitted to GlobeCom201

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Securing Untrusted RF-EH Relay Networks Using Cooperative Jamming Signals

    Get PDF
    We propose a new scheme to secure a wireless-powered untrusted cooperative-communication network, where a legitimate source node (Alice) transmits her information messages to a legitimate destination node (Bob) through the multiple amplify-and-forward untrusted relays. The relay nodes are assumed to be honest but curious nodes; hence, they are trusted at the service level but are untrusted at the information level. To reduce the energy consumption of the network, only one relay node is selected in each time slot to forward Alice's information signal. We assume a power-splitting-based energy-harvesting scheme, where each relay node splits its received signal into information and energy streams. Since the relay nodes are assumed to be untrusted at the information level, they attempt to decode the information intended to Bob while harvesting energy at the same time. When the relaying mode is selected, the scheme is realized over two non-overlapping time phases. To prevent any information leakage to the untrusted relay nodes, Bob and a cooperative jammer (John) inject jamming (artificial noise) signals during the first phase. During the second phase, the untrusted relay nodes that will not be forwarding the information signal must harvest energy to accumulate more energy to help Alice in future time slots. Moreover, the cooperative jammer will jam the untrusted relays to further power their batteries and prevent them from decoding the information-forwarding relay signal in case they decided to cheat and decode it. We model the battery state transitions at each relay as a finite-state Markov chain and analyze it. Our numerical results show the security gains of our proposed scheme relative to two benchmark schemes.This work was supported by NPRP from the Qatar National Research Fund (a member of Qatar Foundation) under Grant 8-627-2-260. The statements made herein are solely the responsibility of the authors.Scopu
    corecore