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Abstract—In this paper, we propose a two-way secure com-
munication scheme where two transceivers exchange confidential
messages via a wireless-powered untrusted amplify-and-forward
(AF) relay in the presence of an external jammer. We take into
account both friendly jamming (FJ) and Gaussian noise jamming
(GNJ) scenarios. Based on the time switching (TS) architecture
at the relay, the data transmission is done in three phases. In the
first phase, both the energy-starved nodes, the untrustworthy
relay and the jammer, are charged by non-information radio
frequency (RF) signals from the sources. In the second phase,
the two sources send their information signals and concurrently,
the jammer transmits artificial noise to confuse the curious
relay. Finally, the third phase is dedicated to forward a scaled
version of the received signal from the relay to the sources.
For the proposed secure transmission schemes, we derive new
closed-form lower-bound expressions for the ergodic secrecy sum
rate (ESSR) in the high signal-to-noise ratio (SNR) regime.
We further analyze the asymptotic ESSR to determine the key
parameters; the high SNR slope and the high SNR power offset
of the jamming based scenarios. To highlight the performance
advantage of the proposed FJ, we also examine the scenario
of without jamming (WoJ). Finally, numerical examples and
discussions are provided to acquire some engineering insights,
and to demonstrate the impacts of different system parameters
on the secrecy performance of the considered communication
scenarios. The numerical results illustrate that the proposed FJ
significantly outperforms the traditional one-way communication
and the constellation rotation (CR) approach, as well as our
proposed benchmarks, the two-way WoJ and GNJ scenarios.

Index Terms—Wireless power transfer, Physical layer security,
Two-way communication, Untrusted relaying, Jammer

I. INTRODUCTION

A. Background and Motivation

C OOPERATIVE relaying improves energy efficiency, ex-
tends coverage, and increases the throughput of wireless

communication networks. Accordingly, in recent years, the
benefits of relaying have been viewed from the standpoint
of wireless physical-layer security (PLS) [1] which has been
recognized as an emerging design paradigm to enhance the
security of next generation wireless networks [2]. In the
context of relaying-based transmission networks, a key area of
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interest is the untrusted relaying where the source-destination
communication is assisted by a relay which may also be a
potential eavesdropper [2], [3]. In practice, untrusted relaying
scenario may occur in large-scale wireless systems such as
heterogeneous networks, device-to-device (D2D) communi-
cations and Internet-of-things (IoT) applications, where the
data of sources are often retransmitted by several intermediate
nodes with low security clearance.

Secure transmission employing an untrusted relay was first
studied in [4], where an achievable non-zero secrecy rate is
obtained through jamming signal transmission. To be specific,
two general types of jamming signals have been proposed
in the literature to improve the PLS of wireless networks:
1) friendly jamming (FJ) and 2) Gaussian noise jamming
(GNJ). In the former, the jamming signal is a priori known
at the legal receiver [1]–[6], while in the latter, the legiti-
mate receiver has no information about the jamming signal
and hence, the receiver considers the jamming signal as an
interfering signal [7], [8]. We mention that FJ offers better
secrecy performance compared to GNJ, due to the fact that
the legitimate receiver cancels the pre-defined jamming signal.
Of course, this performance advantage is obtained at the cost
of higher implementational complexity to the network. In
the area of untrusted relaying, for the first time, the authors
in [9] proposed destination-based cooperative jamming (CJ)
technique to achieve a positive secrecy rate for a one-way
untrusted relay, in which the jammer is co-located with the
destination receiver. Motivated by the pioneering work [9], a
great deal of research has been dedicated in the field of one-
way untrusted relaying [10]–[13].

Recently, several works have considered the more interest-
ing scenario of two-way untrusted relaying [14]–[17], where
physical-layer network coding can enhance the security of
communication by receiving a superimposed signal from the
two sources instead of each individual signal. The authors in
[14] proposed a game-theoretic power control scheme between
the two sources and multiple jammers, where single user
decoding (SUD) is assumed for the untrusted relay to extract
the information signal. We note that, in the SUD operation, the
relay attempts to decode one message while the other signal
is considered as an interference. However, the untrusted relay
in two-way relaying can potentially eavesdrop the legitimate
transmissions according to another advanced strategy namely
multi-user decoding (MUD), in which the relay attempts
to decode two information signals transmitted by the two
sources. It is worth noting that the MUD can be considered as
the worst case scenario in untrusted relaying networks [15],
[16]. In [15], the authors proposed iterative algorithms to
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jointly optimize the pre-coding vector at the multiple antenna
sources and the precoding vector at the multiple antenna
MUD relaying network such that the instantaneous secrecy
sum rate without friendly jammer is maximized. Then, a
joint optimization of transmit covariance matrices and relay
selection was proposed in [16] for a two-way MUD relaying
network and in the absence of a friendly jammer. The proposed
optimal algorithm in [16] is solved through the semi-definite
programming combined with a line search method and thus
suffers from high computational complexity. Xu et al. in
[17] proposed a new secure transmission protocol based on
constellation rotation approach in the presence of a SUD
untrusted relay and without employing any jammer. Finally,
optimal power allocation and secrecy sum rate analysis in
the two-way untrusted relaying conducting MUD has been
studied in [18]. The authors in [18] highlighted that FJ scenario
improves the secrecy performance significantly compared to
without employing an external jammer.

A paramount issue in many wireless communication appli-
cations is this fact that some of communication nodes may
not have access to permanent power sources due to mobility.
Furthermore, frequent recharging and replacement of batteries
would be inconvenient in certain circumstances; e.g., in wire-
less body area network applications, where medical devices
are required to be implanted inside patients’ body. For such
network, energy harvesting (EH) from ambient resources, e.g.,
solar and wind has been introduced as a promising approach
to prolong the lifetime of energy-constrained wireless nodes
[19]. However, conventional EH methods are usually uncon-
trollable, and thus may not satisfy the quality of service (QoS)
requirement of wireless networks. To overcome this issue, a
new type of EH solution called wireless information and power
transfer (WIPT) was introduced in [20]. The key idea behind
WIPT is to capture radio frequency (RF) signal propagated
by a source node and then converting the RF signal to direct
current to charge its battery, and also for signal processing or
information transmission. In the area of cooperative networks,
two main relaying protocols, i.e., time switching (TS) and
power splitting (PS) policies have been proposed to implement
the WIPT technology. In recent research, great efforts have
been dedicated to the study of WIPT for non-security based
[21], [22] and security based systems [23], [24]. To be specific,
the authors in [23] proposed employing a wireless-powered
jammer to provide secure communication between a source
and a destination. Then, the authors in [23] derived a closed-
form expression for the throughput, and characterized the long-
term behavior of the proposed protocol. In untrusted relaying
networks, Kalamkar et al. in [24] studied secure one-way
communication in the presence of an untrusted relay based
on WIPT technology, where either TS or PS is adopted at the
relay.

B. Our Contributions and Key Results

In contrast to the aforementioned works, in this paper we
take into account the PLS of a two-way amplify-and-forward
(AF) relaying, where two sources exchange confidential mes-
sages using an untrustworthy MUD relay with the help of

an external jammer to enhance the PLS. A self-reliant coop-
erative wireless network is proposed in which the relay and
jammer as energy-starved helping devices are powered with
wireless energy of RF signals. We assume that the TS receiver
architecture is adopted at both the relay and jammer. The role
of the relay is to harvest the energy in order to forward the
received information signal to the sources, while the mission
of the jammer is to utilize the harvested energy to degrade
the wiretap channel of the untrusted relay. For this proposed
secure transmission scheme, we derive new tight lower-bound
expressions for the ergodic secrecy sum rate (ESSR) of the
following three scenarios in the high signal-to-noise ratio
(SNR) regime: 1) Without jamming (WoJ), where the jammer
is not activated, 2) FJ, where the jamming signal is known a
priori at the two sources, and 3) GNJ, where the jamming
signal is unknown at the sources. We further characterize
the high SNR slope and the high SNR power offset for
the ESSR of the WoJ, FJ, and GNJ scenarios, to explicitly
determine the impact of network parameters on the ESSR
[25]. Based on our analytical results, we further highlight
the impact of several system design parameters including the
EH time ratio, power allocation factor, transmit SNR, nodes
distance, and path loss exponent on the ESSR performance.
Numerical examples show that the proposed two-way FJ pro-
vides significantly better ESSR compared with its traditional
counterparts namely the one-way communication [24] and
the two-way constellation rotation (CR) based communication
[17], as well as our proposed WoJ and GNJ schemes. We also
observe that unlike the ESSR performance of WoJ, FJ, one-
way communication, and CR, the ESSR of GNJ scenario is
limited to a secrecy rate ceiling in the high SNR regime. This
interesting observation indicates the importance of sharing a
pre-defined jamming signal between the two sources.

Our work is different from the following most related
papers: While the authors in [21], considered a point-to-point
communication based on the WIPT strategies via a relay, they
investigated the throughput analysis. Unlike [21], we adopt
the WIPT technology to develop an EH based communi-
cation network under the constraint of secure transmission.
Therefore, the use of EH in [21] is fundamentally different
from our work. Different from [14], [18], in this work, we
consider using wireless-powered relay and jammer to help the
secure communication. Different from [14], we assume that
the MUD is adopted at the untrusted relay to consider the
worst-case scenario in our network. It is worth noting that
this is the first paper studying the GNJ scenario in untrusted
relaying network. In [24], the authors studied the one-way
secure transmission based on wireless EH at the untrusted
relay. Different from [24], we consider the two-way untrusted
MUD relaying in which two sources are able to exchange
their information. Furthermore, we propose to employ an
external jammer to boost the secrecy sum rate of the network.
This paper is also fundamentally different from [23] where
a wireless-powered jammer is utilized to facilitate the secure
communication between a pair of source-destination nodes.
Different from [23], in our work, extending the coverage area
of transmission by using a relay is undeniable in terms of
practicality inasmuch as we assume lack of direct link between
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Fig. 1. System model of a wireless-powered secure two-way network
using an untrusted relay and an external jammer.

the two communication nodes. In other words, in our proposed
scheme a relay must be exploited to provide communication.
This scenario is applicable for communication networks when
two sources are located far apart or within heavily shadowed
areas. Therefore, the network design and the performance
analysis of our work is different from [23].

The remainder of this paper is organized as follows. System
model and the proposed relaying protocols are presented in
Section II, followed by signals and powers representation in
Section III. Section IV and V investigate the secrecy perfor-
mance of the proposed protocol and derive new closed-form
expressions for the ESSR, as well as analyze the asymptotic
ESSR including the high SNR slope and the high SNR
power offset. Simulation results and discussions are detailed
in Section VI. Finally, conclusions are given in Section VII.

II. SYSTEM MODEL

We consider a two-way communication scenario illustrated
in Fig. 1, where the two transceivers called (S1) and (S2)
communicate with each other via an untrusted AF relay (R).
In the proposed system, we assume that all the nodes are
equipped with a single antenna and operate in half-duplex
mode, i.e., sending and receiving data concurrently is not
possible. The direct link between S1 and S2 is assumed to be
unavailable. As such, using the relay service is mandatory [21].
Unlike S1 and S2 that need to decode one signal, we assume
that R adopts MUD to extract both of the sources’ signals.
Additionally, the channels between the nodes are assumed to
be reciprocal, following a quasi-static block-fading Rayleigh
model, where the channel properties remain constant over the
block time of one message exchange. We denote hij as the
channel coefficient between the nodes i and j, with channel
reciprocity where hij = hji. The channel power gain |hij |2
follows an exponential distribution with mean µij . We also
denote f|hij |2(x) as the probability density function (PDF)
of random variable (RV) |hij |2. Furthermore, we assume
that the sources have perfect knowledge of the channel state
information (CSI) of the links S1–R, S2–R, and J –R [14].

Three secure transmission scenarios taken into account in
this paper are detailed as follows:

• WoJ scenario: To see how employing a jammer can impact
on the secrecy performance of the proposed communication

network, the WoJ scenario is studied, in which the data
transmission policy is as follows. At the beginning, R is
charged by the two sources in the first phase to facilitate the
relaying. Next, S1 and S2 start to send their superimposed
signals to R in the second phase, followed by forwarding the
received data to the sources after amplification by R during
the last phase. Finally, each source decodes the signal of the
opposite node. It is worth mentioning that the WoJ brings high
simplicity with very low cost compared with the FJ and GNJ
scenarios.

• FJ scenario: In this scenario, one external jammer (J ) is
employed to enhance the security of the network by degrading
the relay channel capacity through sending its jamming signal.
In the FJ scenario, the data exchange between two sources
is implemented in three phases. In the first phase, as shown
with solid lines in Fig. 1, S1 and S2 transmit non-information
signals toward J and R, to charge them via the RF signals.
Note that both R and J are assumed to be energy-starved
nodes, yet equipped with rechargeable batteries with infinite
capacity. It is also assumed that most of the nodes’ energy
are consumed for data transmission, and energy consumption
for signal processing is ignored for simplicity [21]. During the
second phase, the source nodes send their information signals
to R. Simultaneously, J deteriorates the channel capacity
of R by transmitting the jamming signal powered by the
sources in the first stage, as demonstrated with dashed lines.
Finally, R broadcasts the scaled version of the received signal
to S1 and S2, and then each source extracts its corresponding
information signal after self-interference and jamming signal
cancellation, as demonstrated with dotted lines in Fig. 1. In
this scenario we assume the sources have perfect knowledge
of the jamming signal transmitted by J for they have paid
for the jamming service. In other words, we assume that
the jamming signal can be fully canceled at the sources but
cannot be removed at the relay. This is a common assumption
in the FJ literature, e.g., [14], [23], [26], and [27], where
the pre-defined jamming signal can be generated by using
some pseudo-random codes or some cryptographic signals that
are known to both the friendly jammer and the sources but
not available to the curious relay. We also note that the FJ
scenario has been widely exploited in the literature for both
performance analysis and network optimization design [5], [6],
[14], [18], [28].

For the sake of availability of the jamming signal at the
sources, we can use either 1) Cryptography-based or 2) PLS-
based approaches, where the former can be practically realized
similar to the methods used in the literature, e.g., [29], [30],
where a large set of random sequences (jamming signals)
with Gaussian distribution can be pre-stored at the friendly
jammer and their indices are the keys. The friendly jammer
indiscriminately selects a sequence and sends its key to the
sources before the data transmission period, which can ensure
the two legitimate users obtain the jamming signal before
exchanging their confidential messages. Note that the key
can be sent in a secret manner as the corresponding random
sequence is only available at the sources (and also stored at the
friendly jammer) such that any potential eavesdropper cannot
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access the random sequence1.
Apart from the above-mentioned cryptography-based ap-

proach, another method based on the PLS can be used2, which
adopts the CJ technique. In this scheme, the transmission of
the jamming signal from J to S1 and S2 can be accomplished
before data transmission, leading to the acquisition of the
jamming signal solely by the legitimate receivers. In light of
this method, J sends the specific jamming signal to S1, while
simultaneously, S2 transmits an artificial noise to confuse the
curious R. Owning to the fact that we assume no direct
link between the two sources, the wiretap channel can be
adequately deteriorated by the artificial noise sent by the other
source node. Accordingly, R fails to decode the transmitted
jamming signal while S1 can confidentially achieve the prede-
fined jamming signal. The same procedure can be implemented
by exchanging the role of S1 and S2 to obtain the jamming
signal by S2 as well. In addition, another method based on
the destination-based CJ could also be implemented wherein
before data transmission J sends the specific jamming signal
to R, while simultaneously, S1 transmits an artificial noise to
confuse R. In the next step, the relay broadcasts the amplified
version of the received signal and consequently, S1 can extract
the jamming signal. The same procedure can also be imple-
mented by S2 to obtain the jamming signal. In this method,
there is no need to utilize the other source for generating
artificial noise and each of the sources pays their own jamming
service.

Remark 1: A problem may arise here is that the friendly
jammer might fail to harvest enough energy to send the
jamming signal to the sources or jam the untrusted relay
which could decrease the efficiency of the proposed scenario
to a great extent. To consider this fact in our work, we take
into account the power outage phenomenon at the energy
harvesting-based nodes, i.e., the energy-limited nodes might
not be activated to participate in the transmission when they
are not sufficiently charged. As we shall see later, for ad-
equately high transmit SNRs by the communication nodes
during the EH phase, J and R are most likely to harvest
enough energy to participate in the next phases for data
transmission. However, in the low SNR regime the energy
harvesting nodes go to sleep and the secure transmission is
compromised. Therefore, the amount of transmit power by
the sources during the EH phase plays a paramount role in
the proposed FJ scenario, and hence, intelligently setting this

1It should be noted that the key-assisted approach is normally exclusively
used for cryptography to secure the transmission, while physical-layer meth-
ods are traditionally adopted when the shared keys are not available or too hard
to implement. However, some recent works, e.g., [31], [32], have considered
applying physical-layer security to enhance cryptographic secrecy, showing
the potentials to have the best of both worlds of secrecy approaches.

2As known, the information theoretic based PLS has emerged as an
alternative security paradigm to traditional cryptographic methods. While the
increased complexity of cryptography effectively boosts the security level
of wireless transmissions, it suffers from: 1) more processing resources for
encryption and decryption and hence, increasing the imposed latency, 2)
additional redundancy which leads to an increased overhead and, 3) easy to
be decrypted by an eavesdropper using an exhaustive key search (also known
as brute-force attack). Based on these reasons, the PLS solution relying on
exploiting the physical characteristics of wireless channels is more attractive
specially when the low-complexity users are energy-harvesting based nodes
[2], [3].

Fig. 2. Time switching relaying protocol for two-way secure commu-
nication via a wireless-powered untrusted relay and a jammer.

parameter enables us to benefit from the efficiency of the FJ
in the long-running transmission. Needless to say that there
are also various advanced methods which can be employed to
ensure that the energy harvesting and then the power transfer
are most likely enabled successfully. For example, extending
the number of antennas at the jammer side and/or at the
sources and using the maximum ratio combining (MRC) and
the maximum ratio transmission (MRT) techniques, to name
but a few. Investigating such scenarios with optimal parameters
is left for our future work.
• GNJ scenario: In this scenario, the data transmission

protocol is the same as the FJ. Different from the FJ, the
two sources have no knowledge about the jamming signal and
therefore, the jamming signal is considered as an interfering
signal at S1 and S2. Based on this fact, the proposed GNJ
network experiences performance loss compared with the
FJ scenario. In contrast to FJ that the secrecy performance
advantage is obtained at the cost of higher implementational
complexity, the GNJ scenario enjoys having little workload of
online computation.

A. Time Switching Relaying Protocol

Fig. 2 describes the proposed wireless EH two-way relaying
transmission protocol. Using the TS policy, the relay switches
from EH to information encoding, and completes a round of
data exchange in three phases over a period of T . To be
specific, in the first phase with the duration of T1 = αT
(0 < α < 1), both R and J harvest the energy of the RF
signals transmitted by S1 and S2. In the second time slot
which lasts T2 = (1−α)T2 , S1 and S2 send their information
signals to R, and simultaneously J transmits its jamming
signal. Finally, in the third phase, R broadcasts the scaled
version of the received signal. It is worth noting that the
parameter α which indicates the ratio of EH time to the total
transmission time of one period has significant impact on the
system performance, i.e., related to the value of α, the secrecy
rate of the proposed network is changed as will be shown
numerically in Section VI.

III. SIGNALS AND POWERS REPRESENTATION

In the following, the signals and powers corresponding to
the WoJ, FJ, and GNJ scenarios are presented. We first denote
xSi , i ∈ {1, 2}, and xJ as the information signals and the
jamming signal with the powers of PSi and PTJ , respectively.
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A. Energy Harvesting at the Relay and Jammer

1) Without Jamming: In the first phase, the two source
nodes send non-information signals, to charge the relay. The
received power at R is given by

PR = PS1 |hS1R|2 + PS2 |hS2R|2. (1)

Based on the proposed TS protocol, the harvested energy EHR

in the duration of αT at R is given by

EHR = ηαT (PS1 |hS1R|2 + PS2 |hS2R|2), (2)

where η represents the energy conversion efficiency factor, and
0 < η < 1. The relay uses the harvested energy obtained in
the first phase (2) to retransmit the received signal in the third
phase with the power PTR which can be written as

PTR =
EHR

(1− α)T2
= β−1(PS1 |hS1R|2 + PS2 |hS2R|2), (3)

where β is defined as β
∆
= 1−α

2ηα .
2) Friendly Jamming/Gaussian noise jamming: In the FJ

and GNJ scenarios, EH at R is the same as the WoJ scheme.
Similarly, for the received power at J in the first phase, can
be written as

PJ = PS1 |hS1J |2 + PS2 |hS2J |2, (4)

and the amount of harvested energy at J during one frame of
communication can be represented as

EHJ = ηαT (PS1 |hS1J |2 + PS2 |hS2J |2). (5)

Furthermore, during the second phase, J uses the harvested
energy in (5) to transmit its jamming signal with the power of
PTJ , which can be expressed as

PTJ =
EHJ

(1− α)T2
= β−1(PS1 |hS1J |2 + PS2 |hS2J |2). (6)

Note that in the aforementioned scenarios, PR and PJ should
be more than the minimum predefined threshold power (Θ) to
activate the harvesting circuitry, unless the helper nodes will
remain inactive.

B. Signals Representation

1) Without Jamming: For the WoJ scenario, the received
signal at R in the second phase, can be expressed as

yR =
√

PS1xS1hS1R +
√

PS2xS2hS2R + nR, (7)

where nR is considered as a zero-mean additive white Gaus-
sian noise (AWGN) at R. Based on the received signal yR
in (7) and considering the MUD at R, the SNR at R can be
obtained as

γR =
PS1 |hS1R|2 + PS2 |hS2R|2

N0
, (8)

where N0 denotes the power of AWGN at R, and for simplic-
ity the processing noise is ignored [24].

Finally, in the third phase, R broadcasts the amplified
version of the received signal which is given by

xR = GyR, (9)

where G is the scaling factor of R as

G =

√
PTR

PS1 |hS1R|2 + PS2 |hS2R|2 +N0
. (10)

Next, we focus on the received signal at S2, from which
similar expressions can be derived for the received signal at S1.
By using (7) and (9), the received signal at S2 after self-
interference cancellation can be expressed as

yS2
=
√
PS1

GhS1RhRS2
xS1

+GhRS2
nR + nS2

. (11)

Substituting (10) into (11), the received instantaneous end-
to-end SNR at S2 after some algebraic manipulations can be
obtained as

γS2 =
PS1 |hS1R|2|hRS2 |2

N0|hRS2 |2 +N0β + ϵ
, (12)

where ϵ =
N2

0β
PS1 |hS1R|2+PS2 |hS2R|2 . Following the same proce-

dure for calculation of γS2 , the resultant instantaneous end-to-
end SNR at S1 is also given by

γS1 =
PS2 |hS2R|2|hRS1 |2

N0|hRS1 |2 +N0β + ϵ
. (13)

2) Friendly Jamming: For the FJ scenario, the received
signal at R in the second phase, can be expressed as

yR =
√
PS1xS1hS1R +

√
PS2xS2hS2R

+
√
PTJxJ hJR + nR. (14)

Substituting PTJ given by (6) into (14), the SNR at R can be
obtained as

γR =
PS1 |hS1R|2 + PS2 |hS2R|2

PTJ |hJR|2 +N0

=
PS1 |hS1R|2 + PS2 |hS2R|2

β−1(PS1 |hS1J |2 + PS2 |hS2J |2)|hJR|2 +N0
, (15)

Finally, R broadcasts the amplified version of the received
signal, xR = GyR, with the amplification factor of

G=

√
PTR

PS1 |hS1R|2+PS2 |hS2R|2+PTJ |hJR|2+N0
. (16)

Moreover, by using (14) and (16), the received signal at S2 can
be expressed as

y′S2
= xRhRS2

+ nS2

=
√
PS1GhS1RhRS2xS1 +

√
PS2GhS2RhRS2xS2

+
√

PTJGhJRhRS2xJ +GhRS2nR + nS2 , (17)

Since the jamming signal in FJ scenario is fully
known at the sources, as well as the CSI of the
links S1–R, S2–R, and R–J , S2 can eliminate the
jamming signal and its own self-interference from (17),
which simplifies as

yS2 =
√
PS1GhS1RhRS2xS1 +GhRS2nR + nS2 . (18)
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Substituting (16) into (18), and then using PTJ given by (6),
the received instantaneous end-to-end SNR at S2 is given by

γS2
=

PS1
|hS1R|2|hRS2

|2

N0|hRS2 |2+
N0

(
PS1 |hS1J |2+PS2 |hS2J |2

)
|hJR|2

PS1 |hS1R|2+PS2 |hS2R|2 +N0β+ϵ

,

(19)

Similarly, the received SNR at S1 is obtained as

γS1=
PS2 |hS2R|2|hRS1 |2

N0|hRS1 |2+
N0

(
PS1

|hS1J |2+PS2
|hS2J |2

)
|hJR|2

PS1 |hS1R|2+PS2 |hS2R|2 +N0β+ϵ

.

(20)

3) Gaussian Noise Jamming: For GNJ, the received SNR
at R is the same as the FJ. However, in this scenario, since
the jamming signal is not available at both S1 and S2, the
term related to the jamming signal xJ in (17) is considered as
a noise-like interference. Consequently, after self-interference
cancellation, the received signal-to-interference-plus-noise ra-
tio (SINR) at S2 can be computed as

γS2=
PS1 |hS1R|2|hRS2 |2(

PS1 |hS1J |2+ PS2 |hS2J |2
)(

β−1|hRS2 |2+ δ
)
|hJR|2

+N0|hRS2 |2+N0β+ϵ

,

(21)

where δ
∆
= N0

PS1 |hS1R|2+PS2 |hS2R|2 . A similar expression can
be obtained for γS1 by changing S2 with S1 in (21).

To make the further analysis tractable, we consider the high
SNR assumption for all the scenarios by replacing ϵ = 0 in
Eqs. (12), (13) and (19)-(21).

IV. ERGODIC SECRECY SUM RATE ANALYSIS

In this section, we first derive closed-form expressions for
the power outage probability at the helping nodes to take into
account the fact that the EH may fail at either R or J .
Then, we analytically obtain new closed-form lower-bound
expressions for the ESSR of WoJ, FJ, and GNJ.

We assume the helping nodes only utilize the wireless
EH for data transmission. As such, the received power at
either R or J , should be greater than the minimum required
power for the activation of their EH circuitry [19], unless
they maintain inactive as we assume the helping nodes only
utilize the wireless EH technology and have no other power
resources. This phenomenon is characterized by the power
outage probability, and denoted by Ppo. In this section, we
first derive closed-form expressions for the power outage
probability at R (PR

po), and J (PJ
po). As such, the probability

of power outage for the helper node K, where K ∈ {R, J }
is defined precisely as

PK
po = Pr{PK < Θ}, (22)

in which the analytical expression for PK
po is obtained in

Proposition 1.

Proposition 1. The power outage probability at the helper
node K, where K ∈ {R, J } is given by

PK
po =


1− γ̄S2K

γ̄S2K−γ̄S1K
exp(− Θ

γ̄S2K
)

− γ̄S1K
γ̄S1K−γ̄S2K

exp(− Θ
γ̄S1K

), γ̄S1K ̸= γ̄S2K

Υ(2, Θ
γ̄S1K

), γ̄S1K = γ̄S2K

(23)

where γ̄S1K
∆
= PS1µS1K, γ̄S2K

∆
= PS2µS2K, and Υ(s, x) =∫ x

0
t(s−1)e−tdt is the lower incomplete Gamma function [33].

Proof. See Appendix A.

In principle, the ergodic secrecy rate determines the rate
below which any average secure transmission is accessible
[1]. Since we assume the MUD is performed at the untrusted
relay to decode both the signals xS1 and xS2 , the integrated
secrecy rate of the communication network is considered as
[14]. Therefore, the instantaneous secrecy sum rate RSec is
evaluated by

RSec = [IS1 + IS2 − IR]
+
, (24)

where for K ∈{S1, R, S2}

IK =
(1− α)

2
log2(1 + γK), (25)

By combining (24) and (25), RSec can be rewritten as

RSec =

[
(1− α)

2
log2

(1 + γS1)(1 + γS2)

(1 + γR)

]+
, (26)

where [x]+ = max(x, 0) and the pre-log factor 1−α
2 is due

to the efficient time of information exchange between the two
sources. Moreover, γS1 , γS2 , and γR are the received SNR
at S1, S2, and R, respectively. We note that by taking average
over RSec given by (26), one can obtain the ESSR as

R̄Sec = E{RSec}. (27)

In the following, we proceed to derive the ESSR of the WoJ,
FJ, and GNJ scenarios.

A. Without Jamming

In this scenario, R may experience power outage due to bad
channel conditions. Hence, the ESSR of WoJ can be stated as

R̄WoJ
Sec = (1− PR

po)R̄
WoJ
Act , (28)

where the exact expression of R̄WoJ
Act is obtained by substitut-

ing (8), (12), and (13) into (27) as

R̄WoJ
Act =

∫ ∞

0

∫ ∞

0

Rsec(x, y)fX(x)fY (y)dxdy, (29)

where X=|hS1R|2 and Y=|hS2R|2 are defined in (29).
The corresponding lower-bound expression for R̄WoJ

Act can
be analytically formulated as

R̄WoJ
LB =

1− α

2 ln(2)

[
Î1 + Î2 − I3

]+
, (30)
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where

Î1(2)=ln

[
1 + exp

(
− 2Φ + ln

(
γ̄S1(2)RµRS2(1)

βN0

)

+ exp
( β

µRS2(1)

)
Ei
(
− β

µRS2(1)

))]
, (31)

where Φ≈0.577215 is the Euler’s constant [34], and Ei(x)=

−
∫∞
−x

exp(−t)
t dt is the exponential integral [33]. Furthermore,

the term I3 is given by

I3 =
γ̄S1R

γ̄S2R − γ̄S1R
exp

(
N0

γ̄S1R

)
Ei

(
− N0

γ̄S1R

)
+

γ̄S2R

γ̄S1R − γ̄S2R
exp

(
N0

γ̄S2R

)
Ei

(
− N0

γ̄S2R

)
. (32)

Proof. See Appendix B.

B. Friendly Jamming

By considering this fact that the power outage may occur
at either R or J , the ESSR for FJ can be written as

R̄FJ
Sec = PJ

poR̄
WoJ
Sec + (1− PR

po)(1− PJ
po)R̄

FJ
Act. (33)

We mention that the exact ESSR expression for FJ assuming
all the nodes are active, R̄FJ

Act, can be written as

R̄FJ
Act =

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

Rsec(x, y, z, w, u)

× fX(x)fY (y)fZ(z)fU (u)fW (w)dxdydzdudw, (34)

where we define X = |hS1R|2, Y = |hS2R|2, Z = |hS1J |2,
W=|hS2J |2, and U=|hRJ |2 in the RVs of γR, γS2 , and γS1 ,
which are respectively given by (15), (19), and (20).

Although the multiple integral expression in (34) can be
evaluated numerically, a closed-form expression is not straight-
forward to obtain. As such, we proceed by deriving a new
compact lower-bound expression for R̄FJ

Act in Proposition 2.

Proposition 2. The lower-bound expression for the ESSR of
FJ scenario when both the helpers maintain active (R̄FJ

LB) can
be expressed as

R̄FJ
LB =

1− α

2 ln(2)
[L1 + L2 − L3]

+
, (35)

where

L1≥ln

1+ exp
[
− 2Φ+ln

(
PS1µS1RµS2R

)]
N0

[
µRS2+β+µJR

PS1
µS1J+PS2

µS2J
PS1

µS1R−PS2
µS2R

ln
PS1

µS1R
PS2

µS2R

]
 .

(36)

L2≥ln

1+ exp
[
− 2Φ+ln

(
PS2µS2RµS1R

)]
N0

[
µRS1+β+µJR

PS1
µS1J+PS2

µS2J
PS1

µS1R−PS2
µS2R

ln
PS1

µS1R
PS2

µS2R

]
 .

(37)

and
L3 ≤ ln

(
1 +A0

[
F(A1)−F(A2)

])
, (38)

where
A0 =

2β (PS1µS1R + PS2µS2R)

(PS2µS2J − PS1µS1J )µRJ
, (39)

and

A1 =

√
4βN0

PS1µS1J µRJ
, A2 =

√
4βN0

PS2µS2JµRJ
, (40)

and, also for m ∈ {1, 2}

F(Am) = −2

∞∑
n=1

n∑
i=1

Λ(1, n, i)

(
9

2

Γ(n− 3
4 )Γ(n+ 3

2 )

Γ(n− 1
2 )Γ(n+ 5

2 )
+ 2

)

×Ai−2
m



(
(−1)k

[
ci(Am) cos(Am) + si(Am) sin(Am)

]
+ 1

A2k−2
m

k−1∑
j=1

(2k − 2j − 1)!(−A2
m)j−1

)
, i = 2k

(
(−1)k

[
ci(Am) sin(Am)− si(Am) cos(Am)

]
+ 1

A2k−1
m

k∑
j=1

(2k − 2j)!(−A2
m)2j−1

)
, i = 2k + 1

(41)

where

Λ(1, n, i) = − (−2)
i √

πL(i, n)√
πΓ (n+ 1) (4n2 − 1)

, (42)

where L(i, n) =
(
n−1
i−1

)
n!
i! for n, i > 0 represents the Lah num-

bers (e.g. [35]), Γ(·) is Gamma function. Also, ci(x) and si(x)

are the Sine and Cosine integrals, i.e., si(x) = −
∫∞
x

sin(t)
t dt

and ci(x) = −
∫∞
x

cos(t)
t dt, respectively.

Proof. See Appendix C.

As shown in the numerical results, the novel lower-bound
expression given by (35) is significantly tight, especially in
the moderate-to-high SNR regime.

C. Gaussian Noise Jamming
The ESSR of GNJ scenario can be obtained following the

same procedure done for FJ scenario. We must only add the
term β−1

(
PS1µS1J + PS2µS2J

)
µRSiµJR, for i ∈ {1, 2},

to the denominator of rational functions in (36) and (37),
respectively.

V. ASYMPTOTIC ERGODIC SECRECY SUM RATE ANALYSIS

In this section, we obtain the asymptotic ESSR when the
transmit SNR of each node goes to infinity by deriving the
high SNR slope in bits/s/Hz (S∞) and the high SNR power
offset in 3 dB units (L∞), which are defined respectively as

S∞ = lim
ρ→∞

R̄∞
Sec

log2 ρ
and L∞ = lim

ρ→∞

(
log2 ρ−

R̄∞
Sec

S∞

)
, (43)

where
R̄∞

Sec = S∞(log2 ρ− L∞), (44)

is the general asymptotic form of the ESSR performance [25].
For the ease of presentation, we assume that PS1 and PS2

grow large with PS1 = ξPS2 for some fixed ratio 0 < ξ < ∞.
Furthermore, we define ρ =

PS2

N0
as the transmit SNR by S2.
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1) Without Jamming: In the high SNR regime with ρ → ∞
and based on (8), (12), and (13), we conclude that ln(1+γSi) ≈
ln(γSi) for i ∈ {1, 2}, and ln(1 + γR) ≈ ln(γR). As such,

Y1≈E{ln(γS1
)} = E

{
ln(

ξρXY

X + β
)
}

= ln(ξρ) + E
{
ln(XY )

}
− E

{
ln(X + β)

}
, (45)

Y2≈E{ln(γS2
)} = E

{
ln(

ρXY

Y + β
)
}

= ln(ρ) + E
{
ln(XY )

}
− E

{
ln(Y + β)

}
, (46)

Y3≈E{ln(γR)} = E
{
ln(ξρX + ρY )

}
= ln(ξρ) + E

{
ln(X +

1

ξ
Y )
}
, (47)

where the terms E{ln(XY )}, E{ln(X + C)} and E{ln(X +
CY )} can be evaluated using the lemma mentioned below.

Lemma 1. Let C be a strictly positive constant, and X and Y
be two different exponential RVs with means of mx and my ,
respectively. Therefore, we have the following results.

1) E
{
lnX

}
= ln(mx)− Φ,

2) E
{
ln(X + C)

}
= ln(C)− e

C
mx Ei(− C

mx
)

3) E
{
ln(X + CY )

}
=

Cmxmy

mx − Cmy

×
[
Φ+ ln(mx)

mx
−Φ+ ln(Cmy)

Cmy

]
.

Proof. This lemma can be proved using [34, Eq. (4.331.1)]
for expression 1, using [34, Eq. (4.337.1)] for expression 2,
and using [34, Eq. (4.352.2)] for expression 3.

Applying Lemma 1 to (45), (46), and (47), and then
substituting them into (27), the closed-form expression for the
asymptotic ESSR of the WoJ, can be obtained as

R̄WoJ,∞
Sec =

(
1− PR

po

)
R̄WoJ,∞

Act

=
(
1− PR

po

)1− α

2 ln 2

(
ln(ρ) + 2 ln

(mxmy

β

)
− 4Φ + e

β
mx Ei

(
− β

mx

)
+ e

β
my Ei

(
− β

my

)
− mxmy

ξmx −my

[
Φ+ ln(mx)

mx
−

ξΦ+ ξ ln(
my

ξ )

my

])
.

(48)

By substituting (48) into (43), we arrive at the high SNR slope
and the high SNR power offset respectively, as

SWoJ
∞ = (1− PR

po)
1− α

2
. (49)

and

LWoJ
∞ =

1

ln 2

(
4Φ− e

β
mx Ei(− β

mx
)− e

β
my Ei(− β

my
)

+
mxmy

ξmx −my

[Φ+ ln(mx)

mx
−

ξΦ+ ξ ln(
my

ξ )

my

])
− 2 log2(

mxmy

β
). (50)

2) Friendly Jamming: The asymptotic ESSR for the FJ
scenario becomes as

R̄FJ,∞
Sec = PJ

poR̄
WoJ,∞
Sec + (1− PR

po)(1− PJ
po)R̄

FJ,∞
Act , (51)

where R̄FJ
Act,∞ in (51), can be expressed as

R̄FJ,∞
Act =

1− α

2 ln 2

[
E
{
ln(γS1)

}
︸ ︷︷ ︸

J1

+E
{
ln(γS2)

}
︸ ︷︷ ︸

J2

−E
{
ln(γR)

}
︸ ︷︷ ︸

J3

]
,

(52)

where using (20), (19) and (15), the terms J1, J2 and J3 are
derived as follows:

J1 = E

{
ln

(
ρXY

X + ξZ+W
ξX+Y U + β

)}

= E
{
ln(ρXY )

}
− E

{
ln
(
X +

ξZ +W

ξX + Y
U + β

)}
(a)

≥ ln(ρ) + E
{
ln(XY )

}
− ln

(
E
{
X +

ξZ +W

ξX + Y
U + β

})
(b)
= ln(ρ) + ln(mxmy)− 2Φ

− ln
[
β +mx +

ξmz +mw

ξmx −my
mu ln(

ξmx

my
)
]
, (53)

where (a) follows from Jensen’s inequality, and (b) follows
from using Lemma 1. Similar to J1, we obtain J2 as

J2≥ ln(ρ) + ln(ξmxmy)− 2Φ

− ln
[
β +my +

ξmz +mw

ξmx −my
mu ln(

ξmx

my
)
]
. (54)

Ultimately, the term J3 is derived as

J3 = E

{
ln

(
X + 1

ξY
1
β (Z + 1

ξW )U + ϵ

)}
(a)
≈ E

{
ln(X +

1

ξ
Y )
}
− E

{
ln(Z +

1

ξ
W )
}

− E
{
ln(U)

}
+ lnβ

(b)
=

1
ξmxmy

mx − 1
ξmy

[Φ+ ln(mx)

mx
−

Φ+ ln(
my

ξ )
1
ξmy

]
−

1
ξmzmw

mx − 1
ξmw

[Φ+ ln(mz)

mz
−

Φ+ ln(mw

ξ )
1
ξmw

]
+ ln

( β

mu

)
+Φ, (55)

where (a) follows from setting ϵ = 0; this means that the
untrusted relay is considered as an ideal eavesdropper with
the capability of noise cancellation such that from a security
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perspective this corresponds to the maximum interception
by the eavesdropper and is the worst case assumption [36].
Furthermore, (b) follows from Lemma 1. Consequently, sub-
stituting (53)-(55) into (52), and then using (51) and (43), the
high SNR slope for the FJ, is given by

SFJ
∞ = PJ

poS
WoJ
∞ + (1− PR

po)(1− PJ
po)S

FJ,Act
∞ , (56)

where by plugging (52) into (43), the expression SFJ,Act
∞ can

be expressed as
SFJ,Act
∞ = (1− α). (57)

Ultimately, substituting (57) into (56), and then after simple
manipulations results in

SFJ
∞ = (1− PR

po)(1−
PJ
po

2
)(1− α). (58)

Finally, for the calculation of the high SNR power offset for
the FJ, plugging (51) into (43) results in

LFJ
∞ =lim

ρ→∞

(
log2 ρ−

[
PJ
poR̄

WoJ,∞
Act +(1− PJ

po)R̄
FJ,∞
Act

(1− PJ
po

2 )(1− α)

])
. (59)

Now, we consider two special cases 1) jammer is always
active, i.e., PJ

po = 0, which is an ideal case maximizing LFJ
∞ ,

2) Jammer is off, PJ
po = 1, which is also an artificial case but

minimizing LFJ
∞ . we delve into such computations to acquire

a deep engineering insight to these criteria. To this end, if
PJ
po = 0, then

LFJ,Act
∞ =

1

2 ln 2

(
ln

β

ξm2
xm

2
ymu

+ 5Φ

+ ln
[
β +mx +

ξmz +mw

ξmx−my
mu ln(

ξmx

my
)
]

+ ln
[
β +my +

ξmz +mw

ξmx −my
mu ln(

ξmx

my
)
]

+

1
ξmxmy

mx− 1
ξmy

[Φ+ln(mx)

mx
−
Φ+ln(

my

ξ )
1
ξmy

]
−

1
ξmzmw

mz− 1
ξmw

[Φ+ ln(mz)

mz
−
Φ+ln(mw

ξ )
1
ξmw

])
, (60)

and if PJ
po = 1, which also means that there is no jammer in

the scenario, accordingly, LFJ,min
∞ is equal to LWoJ

∞ as (50).

Remark 2: By comparing (49) and (58), we can obtain
SFJ
∞

SWoJ
∞

= 2(1− PJ
po

2 ). This result expresses that the FJ scenario
can achieve more high SNR slope compared to the WoJ when
a jammer with low threshold to activate the EH circuitry is
exploited. Specifically, when J is always active, FJ achieves
twice as the high SNR slope as WoJ. Furthermore, based on
(58) which precisely specifies that the power outage at the
external jammer has less impact to the high SNR slope rate
compared to the power outage at the relay, therefore we can
elicit this fact that the jammer’s EH component structure can
be relatively simple than the relay’s.

3) Gaussian Noise Jamming: In this scenario, the asymp-
totic ESSR can be obtained as (51), but by replacing both the
expressions J1 and J2 indicated in (52) with the expressions

respectively, given by

J̃1 ≥ ln(ρ) + ln(mxmy)− 2Φ

− ln

[
β +mx +mu(ξmz +mw)(ρmx

β
+

ln(ξmx)− ln(my)

ξmx −my

)]
, (61)

and

J̃2 ≥ ln(ρ) + ln(ξmxmy)− 2Φ

− ln

[
β +my +mu(ξmz +mw)(ρmy

β
+

ln(ξmx)− ln(my)

ξmx −my

)]
. (62)

The alternative term for R̄FJ
Act,∞ in (51) is given by

R̄GNJ,∞
Act =

1− α

2 ln 2

[
ln
( β2

mxmy

)
− J3

]
. (63)

Following the similar approach to the FJ in regards of the
asymptotic ESSR, the high SNR slope for GNJ can be ex-
pressed as

SGNJ
∞ = PJ

poS
WoJ
∞ + (1− PR

po)(1− PJ
po)S

GNJ,Act
∞ , (64)

in which the term SGNJ,Act
∞ , can be obtained as

SGNJ,Act
∞ = lim

ρ→∞

1− α

2 ln 2

[
2 ln ρ− ln(

ρ2mxmy

β2 )

log2 ρ

]
(a)
= 0, (65)

where (a) follows from applying L’Hospital’s rule to evaluate
the limit in the above expression. Finally, substituting (49) and
(65) into (64) results in

SGNJ
∞ = PJ

po(1− PR
po)

1− α

2
. (66)

At this point, we shift our focus to derive the high SNR power
offset for the GNJ. Accordingly, by using (66) and (43), we
express LGNJ

∞ as

LGNJ
∞ =lim

ρ→∞

[
log2 ρ−

(
PJ
poR̄

WoJ,∞
Act +(1−PJ

po)R̄
GNJ,∞
Act

PJ
po(1−

PJ
po

2 )(1−α
2 )

)]
. (67)

By substituting (48) and (63) into (67), and after tedious
manipulations, we can obtain that LGNJ

∞ = ∞, which can
also be concluded intuitively based on the result in (65).

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we provide some numerical examples to
verify the accuracy of the provided expressions. Furthermore,
we reveal the impact of different system parameters on the
ESSR. Two competitive counterparts, the one-way communi-
cation [24] and the two-way CR aided approach [17] are used
as benchmarks to highlight the secrecy performance of the
proposed FJ. In the simulations, unless otherwise stated, we
set the system parameters as given in Table I.

A. Transmit SNR
Fig. 3 plots the ESSR versus transmit SNR for WoJ, FJ,

GNJ, and the one-way communication, as well as the CR



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2018.2848648, IEEE
Transactions on Vehicular Technology

10

TABLE I
SYSTEM PARAMETERS

Parameter Value Unit Description

PS1 10 dBW transmit power by S1

PS2 10 dBW transmit power by S2

η 0.7 - energy conversion efficiency factor
Θ 0 dBm minimum EH circuitry threshold
N0 -10 dBm noise power
dS1R d=3 m S1 ↔ R distance
dS2R d=3 m S2 ↔ R distance
dS1J d=3 m S1 ↔ J distance
dS2J d=3 m S2 ↔ R distance
dRJ d=3 m R ↔ J distance
κ 2.7 - path loss exponent
µij d−κ

ij - mean channel power gain
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Fig. 3. ESSR versus transmit SNR for the proposed two-way WoJ, FJ,
GNJ, and the one-way communication, as well as the CR approach.

scheme. From Fig. 3, we observe that the exact numerical
expressions for the ESSR of WoJ, given by (28), (29), and for
the ESSR of FJ, given by (33), (34) are well-approximated
in the high SNR regime by the closed-form lower-bound
expressions in (28), (35) and (33), (35), respectively. As can
be seen from Fig. 3, only the ESSR of GNJ is limited a
secrecy rate ceiling when the transmit SNR goes beyond a
specific threshold, i.e., as predicted before and we observe
from Fig. 3. Particularly, the high SNR slop rate for the GNJ
scheme is near to zero. That is caused by the fact that although
increasing the transmit SNR degrades the received SINR at
the relay by augmenting the jamming signal, it also has a
detrimental impact on the received SINR at the sources as
they can not eliminate the unknown jamming signal. These
two contradictory results bring up a saturation region as can
be seen from Fig. 3. We can also find from Fig. 3 that in
the high SNR regime, the proposed two-way FJ substantially
outperforms all of its competent counterparts, e.g., in SNR
= 50 dB, the ESSR of FJ provides approximately 1 bit/s/Hz
more than the one-way transmission scenario even under the
assumption of SUD relaying, and is more than twice as much
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Fig. 4. ESSR versus TS ratio for WoJ, FJ, and GNJ.

the other two-way benchmarks are. Evidently, from Fig. 3, the
high SNR slope of the curve corresponding to the proposed
two-way FJ is twice as much as the slope of the WoJ scenario
as we pointed out this result via the mathematical analysis in
Remark 2. The last but not least point we need to mention here
is that the conventional one-way communication and the CR
approaches achieve higher secrecy data rate comparing with
WoJ and GNJ in middle-to-high range of SNR, i.e., above
SNR = 50 dB, as can be seen from Fig. 3. This observation
once again corroborates the idea that how our proposed FJ can
dramatically boost the secrecy performance of the system.

B. Time Switching Ratio (α)

Fig. 4 shows that the ESSR is a quasi-concave function
with respect to the TS ratio. For the given system parameters,
the maximum ESSR are obtained at the optimum points
αWoJ
opt = 0.63, αFJ

opt = 0.36, and αGNJ
opt = 0.14. This finding

reveals the importance of TS ratio which should be taken
into account in the system design. This observation says that
the secrecy performance of the network is highly dependent
on both the jamming strategies (WoJ, FJ, or GNJ) and the
TS ratio. If the TS ratio is too low, the harvested energy at
the relay (and the jammer) may be too low and then, power
outage may occur or the received SNR at the sources may
be too low. On the other hand, if the TS ratio is too high,
insufficient time is dedicated for the relay to broadcast the
information signal and hence, the received instantaneous SNR
at the receivers may be too low. As a consequence, the reliable
communication is influenced. As such, there is a trade-off
between a secure transmission and a reliable communication.
We consider this issue in our future works. Furthermore, Fig.
4 depicts the impact of distance between the network nodes
on the ESSR performance. We assume that all the nodes,
except the two sources, are located in equal distances from
each other denoted by d. One interesting result from Fig. 4
is that the nodes distance and TS ratio are two proportional
parameters subject to the maximum achievable ESSR, i.e.,
extending the network scale to d = 5m, the maximum ESSR
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Fig. 5. ESSR versus power allocation factor for the WoJ, FJ, and GNJ
scenarios with respect to the distance of the untrusted relay to the
sources. We set dS1K = 3, 5m, dS2K = 3, 1m, and dJR = 1.5m.
Also, K represents either R or J .

for all the scenarios is achievable if more time is dedicated
to EH than data relaying. This result is reasonable owning
to the fact that by extending the network scale, the path loss
phenomenon reduces the received SNR at the relay and the
jammer. Therefore, more time should be allocated for EH.

C. Power Allocation Factor (λ)

We provide Fig. 5 to observe the impact of power allocation
factor and the relay position with respect to the communication
nodes on the achievable ESSR of the two-way WoJ, FJ, GNJ
scenarios. Let define the power allocation factor λ (0 < λ < 1)
such that PS1 = λP and PS2 = (1 − λ)P . We can observe
from Fig. 5 that for all of the transmission scenarios except
the FJ, when the helper nodes are close to either of the
communication sources, little amount of the power budget
should be allocated to that node to maximize the ESSR. For
FJ, regardless of sources distance to the helpers, approximately
equal power allocation, i.e., λ ≈ 0.5 is required to maximize
the ESSR as can be seen from Fig. 5. It should be pointed
out that for the two-way FJ scenario, due to the symmetry of
the legitimate nodes’ placement, the more closer the source
to the untrusted relay should transmit with the less power to
provide the higher ESSR. Interestingly, we find that the ESSR
performance provided by the GNJ pales in comparison to the
WoJ for any power distribution. This observation indicates
employing a jammer with unknown jamming signal at the
sources, adversely impact on the communication secrecy.

D. Path Loss Exponent (κ)

We plot Fig. 6 to illustrate the impact of path loss exponent
on the secrecy rate with different J -to-R distances. When the
environmental path loss increases, all the relaying scenarios
incontrovertibly suffer from a decline in the ESSR. However,
our proposed two-way FJ significantly outperforms the WoJ,
GNJ, and one-way communication scenarios. Although, as J ’s
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Fig. 6. ESSR versus the environmental path loss exponent (κ).

distance to R increases, the ESSR of FJ decreases, we can see
that the FJ still presents significantly better ESSR in contrast
to the WoJ and GNJ scenarios either in urban (small κ) or in
suburban (large κ) areas. Furthermore, from another point of
view we can draw a conclusion from Fig. 6 that by intelligently
choosing the optimal jammer from a group of jammers, e.g.,
a jammer with low J -to-R distance, the proposed FJ scenario
can clearly achieve higher secrecy rate compared to the one-
way communication. In addition, we interestingly find that the
WoJ scenario outperforms the GNJ. This new result highlights
that employing an external jammer with unknown jamming
signal brings almost no improvement in terms of the secrecy
performance.

VII. CONCLUSIONS

We proposed a wireless-powered two-way cooperative
network wherein the two sources communicate via a
wireless-powered untrusted relay. To enhance the secrecy
performance, we employed an external jammer which is
also wirelessly charged by the two sources. By adopting
the time switching (TS) protocol at the untrusted relay and
jammer, we investigated the ergodic secrecy sum rate (ESSR)
criterion for the without jamming (WoJ), friendly jamming
(FJ), and Gaussian noise jamming (GNJ) scenarios. New tight
lower-bound expressions were derived for the ESSR and the
asymptotic ESSR analysis to obtain the high SNR slope and
the high SNR power offset for the jamming-based scenarios
were also presented. Numerical examples revealed the priority
of the proposed two-way FJ compared with the WoJ, GNJ,
traditional one-way communication and constellation rotation
(CR) aided approaches. Furthermore, several engineering
insights were presented regarding the impact of different
system parameters such as the TS ratio, power allocation
factor, path loss exponent, and nodes distance on the ESSR
performance. Our results in this paper gathered new insights
to design the high rate energy harvesting based networks for
D2D communications as a part of the 5th generation wireless
communication networks.
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APPENDIX A
For the wirelessly powered nodes, R and J , the power

outage probability can be written as

PK
po = Pr{PK < Θ}, (68)

where substituting (1) or (4) into (22), one can rewrite (68) as

PK
po = Pr{PS1 |hS1K|2 + PS2 |hS2K|2 < Θ}. (69)

To evaluate PK
po, we first present the following useful lemma.

Lemma 2. Let S = X + Y be a new RV such that X and Y
are two exponential RVs with scale parameters mx and my ,
respectively. The PDF and the cumulative distribution function
(CDF) of S are as follows

fS(s) =


− e

s
mx −e

s
my

mx−my
e
− s(mx+my)

mx my , mx ̸= my

s
m2 e

− s
m , mx = my

(70)

and

FS(s)=


1− mx

mx−my
e(−

s
mx

)− my

my−mx
e
− s

my , mx ̸= my

Υ(2, s
mx

), mx = my

(71)

where Υ(s, x) =
∫ x

0
t(s−1)e−tdt is the lower incomplete

Gamma function [33]. Note that both (70) and (71) are
subjected to the condition s > 0.

Proof. We commence from evaluating the PDF of S as

fS(s) =

∫
fXY (x, s− x)dx

(a)
=

∫
fX(x)fY (s− x)dx

=
1

mxmy
e−

s
my

∫ s

0

e(
1

my
− 1

mx
)x
dx, (72)

where (a) follows from the fact that two RVs X and Y are
independent. Finally, evaluating the integral in (72) yields
the expression as in (70), and using the fact that FS(s) =∫ s

0
fS(x)dx, (71) is also obtained.

Using Lemma 2 and considering X=PS1 |hS1K|2 and Y =
PS2 |hS2K|2 (which are two exponential RVs with means equal
to mx and my , respectively) we arrive at PK

po in (23) as we
know Pr{X + Y < ΘK} = FS(ΘK).

APPENDIX B
In the following, we proceed to evaluate the terms I1, I2

and I3, respectively. We commence from I1 as follows

I1 = E {ln(1 + γS2)} = E
{
ln(1 +

RS

S + 1
)

}
(a)

≥ ln

(
1 + exp

(
E
{
ln

(
RS

S + 1

)}))

= ln

1 + exp

 φ1︷ ︸︸ ︷
E {ln [RS]} −

φ2︷ ︸︸ ︷
E {ln [S + 1]}


∆
= Î1, (73)

where R =
PS1

|hS1R|2

N0
and S =

2ηα|hRS2
|2

1−α . Furthermore, (a)
follows from the fact that ln

(
1+exp(x)

)
is a convex function

of x, since its second derivative is 1
(1+exp(x))2 > 0, hence, we

can apply Jensen’s inequality. It is worth pointing out that
the results in [37] express that this lower-bound is sufficiently
tight. Using [34, Eq. (4.352.1)] and [34, Eq. (4.331.2)], φ1

and φ2 can be calculated, respectively as

φ1 = −2Φ + ln (mRmS) , (74)

and
φ2 = − exp(

1

mS
)Ei
(
− 1

mS

)
. (75)

Note that the averages of R and S are equal to mR=
PS1µS1R

N0

and mS=
2ηαµRS2

1−α , respectively. The term Î2 is obtained sim-
ilar to (73) by replacing mR =

PS2
µS2R
N0

and mS =
2ηαµRS1

1−α .
Now, attention is shifted to calculate I3 as follows

I3 = E
{
ln

(
1 + γR

)}
=

∫ ∞

0

ln(1 + ξ)fγR(ξ) dξ

(a)
=

mx

my −mx
exp

(
1

mx

)
Ei

(
− 1

mx

)
+

my

mx −my
exp

(
1

my

)
Ei

(
− 1

my

)
, (76)

where mx =
PS1µS1R

N0
and my =

PS2µS2R
N0

, and (a) follows
from substituting the PDF of γR given by (70) and using [34,
Eq. (4.352.1)].

APPENDIX C

The lower-bound expression for the ESSR of FJ scenario
when all the nodes are active (R̄FJ

LB) can be obtained as follows

R̄FJ
Act = E

{
(1− α)

2

[
log2

(1 + γS2)(1 + γS1)

(1 + γR)

]+}
(a)

≥
[

1− α

2 ln(2)

(
E {ln (1 + γS2)}︸ ︷︷ ︸

L1

+ E {ln (1 + γS1)}︸ ︷︷ ︸
L2

− E {ln (1 + γR)}︸ ︷︷ ︸
L3

) ]+
∆
= R̄FJ

LB , (77)

where inequality (a) follows from the fact that
E{max(X,Y )} ≥max(E{X},E{Y }) [33]. Moreover, for
calculating the part L1, we first present the following lemma.

Lemma 3. Let Z = M
N be an arbitrary RV. According to these

facts that 1) ln(1 + x) = ln(1 + exp(ln(x))), and 2) ln(1 +
exp(ln(x))) is a convex function with respect to ln(x), and
then applying Jensen’s inequality, we can find a tight lower-
bound as follows:

E
{
ln(1 + Z)

}
≥ln

(
1+exp

[
E
{
lnM

}
−E
{
lnN

}])
, (78)

Now, by defining γS2

∆
= M

N in which M and N represent
the numerator and denominator of γS2 , respectively, and then
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applying Lemma 3, we can write

E
{
ln(1 + γS2)

}
≥ln

(
1+exp

[
E{lnM}+ E{ln 1

N
}
])

(a)

≥ ln

(
1+exp

[
E{lnM}︸ ︷︷ ︸

K1

]
× 1

E{N}︸ ︷︷ ︸
K2

)
, (79)

where inequality (a) follows from the facts that 1) both the
functions ln(·) and exp(·) are monotone functions 2) the
function ln( 1x ) is convex for x > 0, Therefore, applying
Jensen’s inequality results in E{ln 1

N } ≥ ln( 1
E{N} ). To obtain

K1, we can further write as

K1=E
{
ln
(
PS1 |hS1R|2|hS2R|2

)}
= − 2Φ− ln

(
1

γ̄S1RµS2R

)
, (80)

where (80) follows from Lemma 1. Furthermore, the term K2

is obtained as

K2 = E
{
N0

(
|hRS2 |2+

(
PS1

|hS1J |2+PS2
|hS2J |2

)
|hJR|2

PS1 |hS1R|2+PS2 |hS2R|2
+β
)}

(a)
=N0

[
µRS2+β+µJR

γ̄S1J+γ̄S2J

γ̄S1R−γ̄S2R
ln

γ̄S1R

γ̄S2R

]
, (81)

where (a) follows from the independency of RVs, and using
the lemma below.

Lemma 4. For two exponential RVs X and Y with the rate
parameters λx and λy, respectively, the new RV Z = 1

X+Y
with λx ̸= λy has the following distribution properties

fZ(z)=
λx λy

z2 (λx − λy)

(
−e−

λx
z + e−

λy
z

)
, (82)

FZ(z)=
1

λx − λy

(
λx e

λx
z − λy e

λy
z

)
e−

λx+λy
z . (83)

Moreover, to evaluate E
{

1
X+Y

}
one can write as

E{Z}=
∫ ∞

0

zfZ(z)dz
(a)
=

∫ ∞

0

(1− Fz(z))dz

=
λy λx

λy − λx
ln

(
λy

λx

)
, (84)

where (a) simply follows from integration by part.

Finally, the part L1 is bounded from below by

L1 ≥ ln
(
1 + exp(K1)

/
K2

)
. (85)

Following the similar steps, L2 can also be derived, but by
simply exchanging the roles of PS1 and µS1R with PS2 and
µS2R, respectively.

Finally, we try to find an upper bound for the term L3 to sat-
isfy the original inequality as well as to find a very tight lower-
bound expression for R̄sec which is our primary purpose. To
this end, we use the inequality E{ln(1 + x)} ≤ ln(1 +E{x})
from which ln(1 + x) is a concave function with respect of
x. By defining X = PS1 |hS1R|2/N0, Y = PS2 |hS2R|2/N0,
Z =

PS1
|hS1J |2

βN0
, W =

PS2
|hS2J |2

βN0
, and U = |hRJ |2 as RVs

with exponential distribution and means mx=PS1µS1R/N0,

my = PS2µS2R/N0, mz =
PS1

µS1J
βN0

, mw =
PS2

µS2J
βN0

, and
mu=µRJ , we can express

L3=E
{
ln(1 + γR)

}
=E

{
ln
(
1 +

X + Y

(Z +W )U + 1

)}
≤ ln

(
1 + E

{ X + Y

(Z +W )U + 1

})
= ln

(
1 +

2(mx +my)

(mw −mz)mu

[
F1 −F2

])
, (86)

where F1 and F2 follow from Appendix D.

APPENDIX D

Lemma 5. For two independent RVs U (exponential RV with
mean equal to mu) and S (Summation of two independent
exponential RVs, i.e., S = Z+W with the PDF and the CDF
given in Lemma 2), the new RV Q = 1

SU+1 has the following
distribution properties

fQ(q)=


2

[
K0

(
2
√

1
q
−1

√
mwmu

)
−K0

(
2
√

1
q
−1

√
mzmu

)]
q2(mw−mz)mu

, 0 < q ≤ 1

0, o.w.

(87)

and then, for q ∈ (0, 1] we have

FQ(q)=1+
2mz

mu(mw−mz)

√
mu(1− q)

mzq
K1

( 2
√
1− q

√
mzmuq

)
− 2mw

mu(mw−mz)

√
mu(1− q)

mwq
K1

( 2
√
1− q

√
mwmuq

)
. (88)

Proof. Let commence from the definition of CDF

FQ(q) = Pr
{
Q ≤ q

}
= Eu

{
Pr
{
S ≤ 1− q

qu

∣∣∣U = u
}}

= Eu

{
FS

(1− q

qu

)}
(a)
=

∫ ∞

0

(
1 +

mz

mw −mz
exp(− 1− q

mzqu
)

− mw

mw −mz
exp(− 1− q

mwqu
)

)
exp(−u

mu
)

mu
du, (89)

where (a) follows from Appendix A. Also, the last equality
can be further calculated using [34, Eq. (3.471.9)] with∫ ∞

0

xν−1 exp(−αx−β

x
)dx = 2

(
β

α

) ν
2

Kν

(
2
√
αβ
)
, (90)

where Kν(·) is the modified Bessel function of the second
kind and ν-th order. Finally, after simple manipulations as
well as using the fact that E{X} =

∫∞
0

(1 − FX(x))dx, we
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can evaluate E{Q} as

E{Q}=
∫ ∞

0

qfQ(q)dq

=

∫ 1

0

2

[
K0

( 2
√

1
q−1

√
mwmu

)
−K0

( 2
√

1
q−1

√
mzmu

)]
q(mw −mz)mu

dq

=
2

(mw −mz)mu

×

[∫ 1

0

K0

( 2
√

1
q−1

√
mwmu

)
q

dq︸ ︷︷ ︸
F1

−
∫ 1

0

K0

( 2
√

1
q−1

√
mzmu

)
q

dq︸ ︷︷ ︸
F2

]
. (91)

Now, due to symmetry of the integrals in the last equation, we
only compute the first term F1 as

F1 =

∫ 1

0

K0

(
C1

√
1
q − 1

)
q

dq, (92)

where C1 is defined as C1 = 2√
mwmu

. To proceed further,
we employ an equivalent definition, i.e., an infinite series of
modified Bessel functions of the second kind and ν-th order,
with ν > 0, as introduced in [38]

Kν(βx) = exp(−βx)
∞∑

n=0

n∑
i=0

Λ(ν, n, i)(βx)i−ν , (93)

where

Λ(ν, n, i) =
(−1)i

√
πΓ(2ν)Γ(n− ν + 1

2 )L(n, i)

2ν−iΓ( 12 − ν)Γ(n+ ν + 1
2 )n!

. (94)

However, we cannot directly apply the expression in (93)
to calculate the integral in (92) since in our case, we have
ν = 0. Therefore, using the equality Kν−2(βx) = Kν(βx)−
2(ν−1)

βx Kν−1(βx) [38] when ν = 2, we can rewrite K0(βx) as

K0(βx)=exp(−βx)
∞∑

n=0

n∑
i=0

Λ(1, n, i)(g(n)− 2)(βx)i−2,

(95)
where 3

g(n) =
Λ(2, n, i)

Λ(1, n, i)
= −9

2

Γ(n− 3
4 )Γ(n+ 3

2 )

Γ(n− 1
2 )Γ(n+ 5

2 )
. (96)

Substituting (95) in (92), and after some manipulations, one
can represent (92) as

F1 =

∞∑
n=1

n∑
i=1

Λ(1, n, i)(g(n)− 2)Ci−2
1

×
∫ 1

0

exp(−C1(
1−q
q ))(

√
1−q
q )i−2

q
dq

(a)
= 2

∫ ∞

0

exp(−C1u)u
i−1

u2 + 1
du, (97)

3Note that for the evaluation of the coefficients, Λ(ν, n, i), following results
are fruitful: L(0, 0) = 1, L(n, 0) = 0, L(n, 1) = n! for positive values of n.
In addition, for Gamma function Γ( 1

2
) =

√
π, Γ(− 1

2
) = −2

√
π, Γ(1) = 1,

and Γ(x+ 1) = xΓ(x).

where (a) follows from taking the axillary variable u=
√

1−q
q .

Using [34, Eq. (3.356.1)] and [34, Eq. (3.356.2)] we ultimately
obtain the required expression for F1,2 as

F1,2(x)=−
∞∑

n=1

n∑
i=1

Λ(1, n, i)

(
9
Γ(n−3

4 )Γ(n+
3
2 )

Γ(n−1
2 )Γ(n+

5
2 )

+4

)

× xi−2



(−1)k
[
ci(x) cos(x)+si(x) sin(x)

]
+ 1

x2k−2

∑k−1
j=1 (2k−2j−1)!(−x2)j−1, i = 2k

(−1)k
[
ci(x) sin(x)−si(x) cos(x)

]
+ 1

x2k−1

∑k
j=1(2k−2j)!(−x2)2j−1, i = 2k + 1

(98)

It should be clearly noted that F1,2(C1) = F1, and
F1,2(C2) = F2, which C2 = 2√

mzmu
.
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