187 research outputs found

    Investigation into the security and privacy of iOS VPN applications

    Get PDF
    Due to the increasing number of recommendations for people to use Virtual Private Networks (VPNs) to protect their privacy, more application developers are creating VPN applications and publishing them on the Apple App Store and Google Play Store. In this ‘gold rush’, applications are being developed quickly and, in turn, not being developed with security in mind.This paper investigated a selection of VPN applications available on the Apple App Store (for iOS devices) and tested the applications for security and privacy issues. This includes testing for any traffic being transmitted over plain HTTP, DNS leakage and transmission of personally identifiable information (such as phone number, International Mobile Equipment Identity (IMEI), email address, MAC address) and evaluating the security of the tunneling protocol used by the VPN.The testing methodology involved installing VPN applications on a test device, simulating network traffic for a pre-defined period of time and capturing the traffic. This allows for all traffic to be analysed to check for anything being sent without encryption. Other issues that often cause de-anonymization with VPN applications such as DNS leakage were also considered.The research found several common security issues with VPN applications tested, with a large majority of applications still using HTTP and not HTTPS for transmitting certain data. A large majority of the VPN applications failed to route additional user data (such as DNS queries) through the VPN tunnel. Furthermore, just fifteen of the tested applications were found to have correctly implemented the best-recommended tunneling protocol for user security.Outside of the regular testing criteria, other security anomalies were observed with specific applications, which included outdated servers with known vulnerabilities, applications giving themselves the ability to perform HTTPS interception and questionable privacy policies. From the documented vulnerabilities, this research proposes a set of recommendations for developers to consider when developing VPN applications

    Defending Servers Against Naptha Attack By Using An Early Client Authentication Method [TK5105.585. C518 2008 f rb].

    Get PDF
    Serangan Naptha bertujuan mengganggu layanan TCP yang ditawarkan oleh sesuatu pelayan dengan menjanakan banyak sambungan palsu terhadap pelayan tersebut. Naptha attack aims to disrupt TCP service a server provides by generating large amount of forged connections to the server

    Internet Authentication for Remote Access

    Get PDF
    It is expected that future IP devices will employ a variety of different network access technologies to gain ubiquitous connectivity. Currently there are no authentication protocols available that are lightweight, can be carried over arbitrary access networks, and are flexible enough to be re-used in the many different contexts that are likely to arise in future Internet remote access. Furthermore, existing access procedures need to be enhanced to offer protection against Denial-of-Service (DoS) attacks, and do not provide non-repudiation. In addition to being limited to specific access media, some of these protocols are limited to specific network topologies and are not scalable. This thesis reviews the authentication infrastructure challenges for future Internet remote access supporting ubiquitous client mobility, and proposes a series of solutions obtained by adapting and reinforcing security techniques arising from a variety of different sources. The focus is on entity authentication protocols that can be carried both by the IETF PANA authentication carrier and by the EAP mechanisms, and possibly making use of an AAA infrastructure. The core idea is to adapt authentication protocols arising from the mobile telecommunications sphere to Internet remote access. A proposal is also given for Internet access using a public key based authentication protocol. The subsequent security analysis of the proposed authentication protocols covers a variety of aspects, including: key freshness, DoS-resistance, and "false-entity-in-the-middle" attacks, in addition to identity privacy of users accessing the Internet via mobile devices. This work aims primarily at contributing to ongoing research on the authentication infrastructure for the Internet remote access environment, and at reviewing and adapting authentication solutions implemented in other spheres, for instance in mobile telecommunications systems, for use in Internet remote access networks supporting ubiquitous mobilit

    Potential Applications of IPsec in Next Generation Networks

    Get PDF

    Validation of the Security of Participant Control Exchanges in Secure Multicast Content Delivery

    Get PDF
    In Content Delivery Networks (CDN), as the customer base increases, a point is reached where the capacity of the network and the content server become inadequate. In extreme cases (e.g., world class sporting events), it is impossible to adequately serve the clientele, resulting in extreme customer frustration. In these circumstances, multicast content delivery is an attractive alternative. However, the issue of maintaining control over the customers is difficult. In addition to controlling the access to the network itself, in order to control the access of users to the multicast session, an Authentication, Authorization and Accounting Framework was added to the multicast architecture. A successful authentication of the end user is a prerequisite for authorization and accounting. The Extensible Authentication Protocol (EAP) provides an authentication framework to implement authentication properly, for which more than thirty different available EAP methods exist. While distinguishing the multicast content delivery requirements in terms of functionality and security, we will be able to choose a smaller set of relevant EAP methods accordingly. Given the importance of the role of the ultimate chosen EAP method, we will precisely compare the most likely to be useful methods and eventually pick the Extensible Authentication Protocol - Flexible Authentication via Secure Tunneling (EAP-FAST) framework as the most suitable one. Based on the work on receiver participant controls, we present a validation of the security of the exchanges that are required to ensure adequate control and revenue recovery

    Do we need to change some things? Open questions posed by the upcoming post-quantum migration to existing standards and deployments

    Get PDF
    Cryptographic algorithms are vital components ensuring the privacy and security of computer systems. They have constantly improved and evolved over the years following new developments, attacks, breaks, and lessons learned. A recent example is that of quantum-resistant cryptography, which has gained a lot of attention in the last decade and is leading to new algorithms being standardized today. These algorithms, however, present a real challenge: they come with strikingly different size and performance characteristics than their classical counterparts. At the same time, common foundational aspects of our transport protocols have lagged behind as the Internet remains a very diverse space in which different use-cases and parts of the world have different needs. This vision paper motivates more research and possible standards updates related to the upcoming quantum-resistant cryptography migration. It stresses the importance of amplification reflection attacks and congestion control concerns in transport protocols and presents research and standardization takeaways for assessing the impact and the efficacy of potential countermeasures. It emphasizes the need to go beyond the standardization of key encapsulation mechanisms in order to address the numerous protocols and deployments of public-key encryption while avoiding pitfalls. Finally, it motivates the critical need for research in anonymous credentials and blind signatures at the core of numerous deployments and standardization efforts aimed at providing privacy-preserving trust signals

    A Security Framework for Routing Protocols

    Get PDF
    With the rise in internet traffic surveillance and monitoring activities, the routing infrastructure has become an obvious target of attack as compromised routers can be used to stage large scale attacks. Routing protocols are also subjected to various threats such as capture and replay of packets that disclose the network information, forged routing control messages that may compromise a connection by deception, disruption of an on-going connection causing DoS attacks and spreading of unauthentic routing information in the network. Presently, strong cryptographic suites and key management mechanisms (IPsec and IKE) are available to secure host-to-host data communication but none of them focus on securing routing protocols. Today's routing protocols use a shared secret to perform mutual authentication and authorization, and depend on manual keying methods. For message integrity, they either rely on some built-in or external security feature that uses the same shared secret. The KARP working group of the IETF identified that the work is required to tighten the security of the routing protocols and demonstrated that automated key management solutions are needed for increasing security. Towards this goal we propose the RPsec framework. RPsec provides a common baseline for development of KMPs for the routing protocols, supports both automated and manual key management, and overcomes the weakness of existing manual key methods

    Secure Remote Access IPSEC Virtual Private Network to University Network System

    Get PDF
    With the popularity of the Internet and improvement of information technology, digital information sharing increasingly becomes the trend. More and More universities pay attention to the digital campus, and the construction of digital library has become the focus of digital campus. A set of manageable, authenticated and secure solutions are needed for remote access to make the campus network be a transit point for the outside users. Remote Access IPSEC Virtual Private Network gives the solution of remote access to e-library resources, networks resources and so on very safely through a public network. It establishes a safe and stable tunnel which encrypts the data passing through it with robust secured algorithms. It is to establish a virtual private network in Internet, so that the two long-distance network users can transmit data to each other in a dedicated network channel. Using this technology, multi-network campus can communicate securely in the unreliable public internet

    Internet Key Exchange Protocol Version 2 (IKEv2)

    Full text link

    IPv6 Network Mobility

    Get PDF
    Network Authentication, Authorization, and Accounting has been used since before the days of the Internet as we know it today. Authentication asks the question, “Who or what are you?” Authorization asks, “What are you allowed to do?” And fi nally, accounting wants to know, “What did you do?” These fundamental security building blocks are being used in expanded ways today. The fi rst part of this two-part series focused on the overall concepts of AAA, the elements involved in AAA communications, and highlevel approaches to achieving specifi c AAA goals. It was published in IPJ Volume 10, No. 1[0]. This second part of the series discusses the protocols involved, specifi c applications of AAA, and considerations for the future of AAA
    corecore