

DEFENDING SERVERS AGAINST NAPTHA ATTACK BY USING AN EARLY
CLIENT AUTHENTICATION METHOD

CHENG HAN PIN

UNIVERSITI SAINS MALAYSIA

2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository@USM

https://core.ac.uk/display/11933165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DEFENDING SERVERS AGAINST NAPTHA ATTACK BY USING AN EARLY

CLIENT AUTHENTICATION METHOD

by

CHENG HAN PIN

Thesis submitted in fulfilment of the
requirements for the degree

of Master of Science

JUNE 2008

I dedicate this thesis to my beloved parents, brothers, sister, and Yuan Jin.
For their continuous loves, supports and encouragements.

 ii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deepest gratitude to my

supervisor, Associate Professor Dr. Sureswaran Ramadass, for his advices, guidance,

helps, encouragements and motivations throughout the progress in completing my

research. I would not have chosen this fascinating area of research without his

inspiration. I still remember the moment we met and he suggested to me: “Why not

Denial of Service attacks”.

This research was supported by University Postgraduate Research Scholarship

Scheme (PGD) under the auspices of Ministry of Science, Technology and Innovation

(MOSTI), Malaysia. I am grateful to this scheme; the interviewers: Associate Professor

Dr. Bahari Belaton and Associate Professor Dr. Azman Samsudin; Also, to Dr. Shahida

Binti Sulaiman, Miss Tee Yuan Jin, Miss Cheng Lee Siang, and Associate Professor Dr.

Rahmat Budiarto who have helped me in completing the agreement.

Lastly, to all my friends and lecturers, you have enlightened my life, thank you

very much.

 iii

TABLE OF CONTENTS

Page

DEDICATION ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

LIST OF ABBREVIATIONS ix

ABSTRAK x

ABSTRACT xi

CHAPTER ONE : INTRODUCTION

1.0

Introduction

1

1.1 Denial of Service and Distributed Denial of Service Attacks 1

1.2 Transmission Control Protocol (TCP) and Naptha Attack 3

1.3 Research Problem 5

1.4 Research Objectives 6

1.5 Significant of the Research 6

1.6 Thesis Overview 7

CHAPTER TWO : LITERATURE REVIEW

2.0

Introduction

8

2.1 TCP Stack Attacks Detection and Reactive Mechanisms 9

2.2 TCP Stack Attacks Prevention Mechanisms 10

 2.2.1 Internet Key Exchange (IKEv2) 11

 2.2.2 Computational Intensive Puzzle 13

 2.2.3 Completely Automated Public Turing test to tell
Computers and Humans Apart (CAPTCHA)

15

 2.2.4 Other Defensive Methods 16

2.3 Summary 16

CHAPTER THREE : THEORETICAL FRAMEWORK

3.0 Introduction 18

3.1 File Transfer Protocol (FTP) 18

 iv

3.2 Early Client Authentication Method (ECAM) 20

3.3 Security Considerations 24

3.4 Research Methodology 25

3.5 Summary 26

CHAPTER FOUR : THE IMPLEMENTATION

4.0 Introduction 27

4.1 Implementation of ECAM at Kernel Level 27

 4.1.1 ECAM Server at Kernel Level 27

 4.1.2 ECAM Client at Kernel Level 30

4.2 Implementation of ECAM at Application Level 35

 4.2.1 ECAM Server at Application Level 35

 4.2.2 ECAM Server at Application Level 36

4.3 Summary 36

CHAPTER FIVE : RESULTS AND DISCUSSIONS

5.0 Introduction 37

5.1 Impact of Naptha Attack on Default System 37

5.2 Experiment Setup 38

5.3 Availability of ECAM System and Default System under Naptha
Attack

40

5.4 Discussions 44

5.5 Summary 45

CHAPTER SIX : CONCLUSION AND FUTURE WORK

 CONCLUSION AND FUTURE WORK 47

BIBLIOGRAPHY 49

APPENDICES

A ECAM SERVER APPLICATION

B ECAM CLIENT APPLICATION

C COLLECTED RESULTS

 v

LIST OF TABLES

Page

2.1 Notation in IKEv2

12

2.2 Summary of Related Defensive Methods

17

 vi

LIST OF FIGURES

Page

1.1 Three-way Handshake, Resources Allocation, and Client Login
Process

3

1.2 Naptha Attack

4

2.1 Common Defence Techniques in TCP Stack Attacks

8

2.2 Initial Exchange of IKEv2

12

2.3 Exchange of Computational Intensive Puzzle

14

2.4 Example of CAPTCHA Used on Web Server

15

3.1 Three-way Handshake and FTP Login Process

19

3.2 State of Current Server when A New Connection is Established

20

3.3 Early Client Authentication Method

21

3.4 Advantages of ECAM 21

3.5 Three-way Handshake and FTP Login Process using ECAM

22

3.6 State of ECAM Server when A New Connection is Established

24

4.1 ECAM Server

28

4.2 SO_ECAM Entry at Kernel Level

29

4.3a SO_ECAM Entry at SetSocketOption (sosetopt)

29

4.3b SO_ECAM Entry at GetSocketOption (sogetopt)

29

4.4 SO_ECAM at TCP Stack

30

4.5 ECAM Client

31

4.6a ECAM Client: sys_writebuf System Call

32

4.6b ECAM Client: Skip Connection Established Check

33

4.6c ECAM Client: Protocol User Request with PRU_ECAM

33

4.6d ECAM Client: Send Login to Socket Buffer

34

4.6e ECAM Client: Protocol User Request Entry

34

4.6f ECAM Client: Protocol User Request Character Array Pointer

35

4.7 Enable SO_ECAM at Server Application

35

 vii

5.1 Screenshot of User Unable to Execute any Command during
Naptha Attack

37

5.2 Screenshot of Root User Unable to Login System during
Naptha Attack

38

5.3 Screenshot of Client unable to Access Web Server

38

5.4 Screenshot of Client unable to Access Remote Server using
SSH

38

5.5 Experiment Setup

39

5.6a Cumulative Percentage of Successful Logins without Attack

40

5.6b Cumulative Percentage of Successful Logins under 1 Attack
per Second

41

5.6c Cumulative Percentage of Successful Logins under 5 Attacks
per Second

41

5.6d Cumulative Percentage of Successful Logins under 10 Attacks
per Second

42

5.6e Cumulative Percentage of Successful Logins under 50 Attacks
per Second

42

5.6f Cumulative Percentage of Successful Logins under 100
Attacks per Second

43

5.6g Cumulative Percentage of Successful Logins under 500
Attacks per Second

43

5.6h Cumulative Percentage of Successful Logins under 600
Attacks per Second

44

5.7 Percentage of Login Completion When Default System under
Different Attack Rates

44

5.8 Comparison of Default System and ECAM System under
Naptha Attack

45

 viii

LIST OF ABBREVIATIONS

 ACK Acknowledgement in Three-way Handshake

 ARP Address Resolution Protocol

 CA Certificate Authority

 CAPTCHA Completely Automated Public Turing test to tell
Computers and Humans Apart

 CUSUM Cumulative Sum

 DoS Denial of Service

 DDoS Distributed Denial of Service

 ECAM Early Client Authentication Method

 FTP File Transfer Protocol

 HTTP Hyper Text Transfer Protocol

 HIP Host Identification Protocol

 ICMP Internet Control Message Protocol

 IKEv2 Internet Key Exchange version 2

 IPSec Internet Protocol Security

 pTCP Puzzle TCP

 SA Security Associations

 SMTP Simple Mail Transfer Protocol

 SRP Secure Remote Password

 SSH Secure Shell

 SYN Synchronize in Three-way Handshake

 TCB TCP Control Block

 TCP Transmission Control Protocol

 URL Universal Resource Locator

 ix

Melindungi Pelayan daripada Serangan Naptha dengan Menggunakan
Kaedah Pengesahan Awal Pelanggan

ABSTRAK

Serangan Naptha bertujuan mengganggu layanan TCP yang ditawarkan oleh

sesuatu pelayan dengan menjanakan banyak sambungan palsu terhadap pelayan

tersebut. Pelayan sasaran termasuklah pelayan capaian selamat, pelayan mel,

pelayan laman web dan pelayan fail. Pelayan-pelayan ini biasanya membuka satu

proses atau satu talian untuk setiap permintaan yang ditubuhkan, sama ada

permintaan itu sah atau tidak. Sebaik sahaja had maksimum proses atau had

maksimum talian tercapai, permintaan baru akan ditutup dan digugurkan. Dengan itu,

serangan Naptha juga merupakan sejenis serangan penolakan layanan. Dalam kajian

ini, kami mengutarakan kaedah pengesahan awal pelanggan dalam usaha untuk

melindungi pelayan daripada serangan Naptha. Kaedah ini menampal jurang di antara

penubuhan sambungan dan pengesahan pelanggan, di mana ia wujud dalam

pelaksanaan TCP masa kini. Kelebihan kaedah pengesahan yang dicadangkan ialah

mudah, cekap dan ia tidak memperkenalkan transaksi tambahan di antara pelanggan

dan pelayan. Keputusan daripada mesin ujian kami menunjukkan kaedah pengesahan

awal pelanggan adalah cekap dalam menguruskan serangan Naptha sewaktu

melayani pelanggannya.

 x

DEFENDING SERVERS AGAINST NAPTHA ATTACK BY USING AN EARLY
CLIENT AUTHENTICATION METHOD

ABSTRACT

Naptha attack aims to disrupt TCP service a server provides by generating

large amount of forged connections to the server. The targeted server includes secure

shell server, mail server, web server and file server. These servers typically create one

process or one thread for each established incoming request regardless of whether the

client is legitimate or not. Once the maximum process limit or thread limit is reached,

new request will be closed and dropped. Hence, Naptha attack is also a Denial of

Service attack. In this research, we propose Early Client Authentication Method (ECAM)

in defending server that required client login against Naptha DoS attack. This method

patches the gap between connection establishment and client validation which appears

in current TCP implementation. The advantages of the proposed authentication method

are simple, efficient and it does not introduce additional transaction between client and

server. Results show that the proposed ECAM is capable in handling the attack on our

test machine while continue serving its client.

 xi

CHAPTER ONE
INTRODUCTION

1.0 Introduction

There are two known Transmission Control Protocol (TCP) stack attacks,

namely TCP SYN attack and Naptha attack. Both attacks prevent legitimate users from

using TCP services on a server and therefore, are categorized under Denial of Service

(DoS) attacks. Before in depth explanation on Naptha attack is carried out, we first

describe the threat of DoS attacks.

1.1 Denial of Service and Distributed Denial of Service Attacks

Denial of Service (DoS) attacks are exploits which could bring services to be

temporary unavailable or permanently disabled until recovery actions are taken. Unlike

intrusion attack, DoS attacks aim to disrupt services a server provides. These attacks

may last for a few minutes to several hours. During this period, the targeted victim is

either not responding to any request or experiencing significant drop in performance.

DoS attacks had successfully brought down several well-known web servers in

the early of 21st century. Yahoo, CNN, Amazon and e-Bay were among the victims of

the attacks (David, 2000). According to Symantec Internet Security Threat Report in

2005: In the first half of 2005, the number of DoS attacks has grew by more than 680%

from 119 attacks per day to 927 attacks per day on average (Symantec, 2005); for the

next six months, Symantec detected an average of 1,402 DoS attacks per day which is

an increase of 51% from the first half of 2005 (Symantec, 2006).

Ever since the first wide spread DoS attack was discovered in 1988 (Mell and

Wack, 2000), new exploit emerges in exponential order. Numerous researches had

 1

been done in recent years, and counter measurements were proposed. Some of the

techniques effectively mitigate these attacks but none could stop it completely.

DoS attacks could be classified into two major categories: vulnerability attacks,

and flooding attacks. In the first type of attacks, attacker exploits system’s security hole

to force the targeted victim to reboot, crash, shutdown or freeze. Ping of Death,

software exploits and teardrop are examples of vulnerability attacks. Normally, a simple

system update is sufficient to patch the security hole.

For flooding attacks, attacker consumes all resources on a targeted victim and

thus prevents it to continue serving its clients. Resources here could be bandwidth,

CPU, memory, process table, buffer or anything that is limited and consumable. Under

these attacks, even the finest system could be a victim. In flooding attacks, attacker

sends large amount of traffics to the victim with the goal to deplete victim’s resources.

The victim is unable to differentiate between the attack traffics and normal traffics in

this situation, all traffics look alike. The victim could not simply filter out particular

traffics because this might drop legitimate users too. This is the main reason why DoS

attacks still remain as a threat until today. The situation becomes worse when a few

exploits are bundled and wide spread. Anyone could download and launch a large

attack without having to understand how it actually operates.

Flooding attacks often involve zombies because one attacker alone is not

enough to deplete victim’s resources. All the zombies together form a network which is

listening to the attacker and they will start flooding the targeted victim upon receiving

the correct command. A DoS attack which originates from more than one source is

known as Distributed Denial of Service (DDoS) attack. The scale of DDoS attacks

depend on the number of zombies that participate in the exploits. With enough

zombies, any server could be a victim. Due to its effectiveness, DDoS attacks are

 2

known as major threats in network security communities. More information could be

found by referring to Mirkovic et al. (2005) and Handley & Rescorla (2006).

1.2 Transmission Control Protocol (TCP) and Naptha Attack

Transmission Control Protocol (TCP) is a connection oriented protocol, which

designed to provide reliable connection over the Internet (Postel, 1981). This protocol

uses sequence number to detect lost or duplicated packets and to determine the next

expected packet. Retransmission of packet is done automatically when a connection

timed out to ensure the user at the other end could receive all information he sent.

Most of the services we use everyday rely on TCP, such as web browsing using Hyper

Text Transfer Protocol (HTTP), file exchange using File Transfer Protocol (FTP) and

email service using Simple Mail Transfer Protocol (SMTP).

ESTABLISHED,
ALLOCATE TCB
& CREATE CHILD
PROCESS

SYN

SYN, ACK

ACK

 CLIENT SERVER

ESTABLISHED

CLIENT LOGIN
PROCESS

CREATE PROCESS
& ALLOCATE TCB

Figure 1.1: Three-way Handshake, Resources Allocation, and Client Login Process

A TCP communication begins with three-way handshake. First, the client

(indicator) sends a connection request to server (responder) using a SYN

(synchronization) packet. Then the server responses packet with SYN and ACK

(acknowledgement) flags on. After the server receives an acknowledgement from the

client, connection is established. A new child process will be created at the server to

handle client requests and information such as the incoming IP address, outgoing IP

 3

address, incoming port number, outgoing port number and sequence number will be

kept in TCP Control Block (TCB). A graphical representation of three-way handshake,

resources allocation and client login procedures is shown in Figure 1.1. In current login

server communication, client login process starts after the connection establishment.

Since the client stays anonymously while resources were allocated, it can be easily

exploited and resources can be consumed.

 SYN from attacker using spoofed IP

Attacker captures SYN, ACK

Attacker replies the ACK

SPOOFED CLIENT ATTACKER SERVER

ESTABLISHED,
ALLOCATE TCB
& CREATE CHILD
PROCESS

Figure 1.2: Naptha Attack

In Naptha attack, attacker tries to fill up the maximum processes limit by

generating large army of spurious connections to the targeted victim and leave them

alive until the TCP session time out. Once the limit is reached, server will drop any new

incoming connection request. The similarity between Naptha attack and the well-known

TCP SYN attack is the disruption of TCP services through flooding. The difference is

that they target different resource. TCP SYN attack tries to exhaust the application’s

backlog while Naptha attack tries to deplete the maximum processes limit of a system.

In TCP SYN attack, attacker merely send large amount of crafted SYN packet to victim,

however, in Naptha attack, the procedures involved are slightly more complex because

attacker must complete all bogus connections he made as illustrated in Figure 1.2. The

figure shows that the attacker sits between forged client and server during Naptha

attack. The spoofed host does not actually exist, but the server who cannot validate

 4

this will still establish the connection and allocate resources to the peer. Server that

creates new thread for each incoming connection denies new incoming request as well

when the maximum thread limit is reached.

1.3 Research Problem

Although Naptha attacks were discovered and documented since 2000

(CERT/CC, 2000), the threat still exist. There is no solution to prevent or stop these

exploits thoroughly. Naptha attack can effectively disable a server for a period of time

depends on the attacker. Since all attack connections to the server are completely

identical to normal legitimate connections, it helps to cover the attacker’s track and

makes prevention harder to achieve.

During Naptha attack, it fills up the victim’s processes limit with crafted hosts.

Recent operating system tries to mitigate this problem by increasing the total number of

supported concurrent processes to several thousands and by closing idle connections

quickly. While this tactic seems to work fine, the threat remains. Even though the

server could continue to serve during the attack in this situation, CPU power and

memory usage are wasted to process bogus data and this directly decreases server

performance.

Internet services nowadays are vulnerable to Naptha attack despite of whether

the services required user login or not. We proposed Early Client Authentication

Method (ECAM) to defense servers against Naptha attack. Login information is

appended to the three-way handshake to allow server to identify the client at

connection establishment stage. Our primary goal is to prevent resources allocation to

any forged connections generated by Naptha attack.

 5

1.4 Research Objectives

The objectives of this research are:

1. To examine the behavior and impact of Naptha attack.

2. To propose and develop algorithm for ECAM.

3. To implement and evaluate ECAM.

The first objective of this research is to examine the behavior of Naptha attack.

This goal focuses on how the attack exploits the TCP stack implementation, the target

of Naptha attack and its damages to a system.

The next objective is to propose and develop ECAM algorithm. The goal aims to

prevent resources consumption to unidentified user by authenticate all incoming

requests at the early stage. Any bogus connections which failed the authentication

process will not be entertained, and thus fails the attack.

The third objective is to implement and evaluate ECAM. We used OpenBSD, an

open source operating system, in our research. The default system and ECAM system

will be tested against Naptha attack. It is expected Internet services that required user

login will become immune to the attack on an ECAM enabled system.

1.5 Significant of the Research

This research aims to protect TCP services that required user login against

Naptha DoS attack. The newly proposed ECAM will verify the client before the system

proceeds to serve him. Bogus incoming requests will eventually be dropped and

consequently, all active processes and threads are maintained only for clients who had

login successfully. This method ensures Naptha attack that consumes maximum

process limit using forged TCP connection will never be succeeded.

 6

1.6 Thesis Overview

This thesis is organized into six chapters. Chapter 1 presents the background of

this thesis. It starts by defining Denial of Service attacks and Distributed Denial of

Service attacks. Then, we describe the current TCP stack problem and Naptha attack.

The research problem and research objectives are explained next. We discuss the

significant of our research in section 1.5.

Chapter 2 is a literature review of related protection methods against Naptha

attack. These methods could generally be divided into two categories, which are the

filtering mechanism and the prevention mechanism. We concentrate in the prevention

mechanism because our method falls into this category. We also discuss some other

immediate defensive methods.

Chapter 3 details our proposed ECAM to protect servers against Naptha attack.

First, we describe the design of ECAM and the advantages of it compared to the

current FTP authentication method. The security considerations in ECAM and their

counter measurements are discussed next in the chapter. The methodology to carry

out this research is also presented.

Chapter 4 details the ECAM implementation at kernel level and application level

of both ECAM client and ECAM server. Chapter 5 presents the results and discussions

of ECAM system and current default system under Naptha attack. Chapter 6 is the final

chapter of this thesis. It gives a conclusion of ECAM and it also outlines the possible

future works to enhance the proposed ECAM.

 7

CHAPTER TWO
LITERATURE REVIEW

2.0 Introduction

We described the threat of Naptha attacks in the previous chapter. In this

chapter, we discuss the related defence techniques from the perspective of TCP stack

implementation. Researches and counter measurements in this area generally could

be divided into two categories. The first category concentrates on detection and filtering

mechanisms. During network monitoring, any detected attack attempt will activate the

filtering action. The second category concentrates on prevention mechanisms. During

the development process, the Internet protocol is reviewed and enhanced in order to

prevent future exploit on the specific protocol. Figure 2.1 below is a graphical

representation of common defence techniques in TCP stack attacks. Our research falls

into the second category.

Figure 2.1: Common Defence Techniques in TCP Stack Attacks

 8

2.1 TCP Stack Attacks Detection and Filtering Mechanisms

TCP stack attacks detection techniques often involve statistical modelling of

incoming and/or outgoing traffics. The traffic collected will be compared to previous

data in real time and any abnormal behaviour will trigger the alarm. This mechanism is

suitable to detect large scale of TCP stack attacks in which the attacker tries to flood

and congest the victim. Two of the most widely used detection methods are entropy

and Cumulative Sum techniques (CUSUM) (Feinstein et al., 2003). Entropy allows the

server to measure the randomness of the traffic while the CUSUM can detect any

abrupt change to the traffic pattern. For example, these methods could be used to

detect sudden increment of SYN packet, ICMP (Internet Control Message Protocol)

packet and ARP (Address Resolution Protocol) packet. Usually, the detection focuses

on one or more fields in the IP header as targets of monitoring, such as the port

number, IP address and TCP flags.

DoS attacks detection is not complete without proper reactive action. The

reactive mechanisms employed depend heavily on the detection techniques and the

location of the action took place. For example, a stateful filtering mechanism is suitable

to be implemented at the host base because it required deep inspection during

detection and precise instructions to filter the traffic. Even a tiny mistake will drop

legitimate users. Another common technique used by the upstream router is rate-

limiting mechanism which is low resources intended. This approach drops traffic

exceeded certain threshold.

Naptha attack detection was carried out by Information System Technology

group (IST) of MIT (Massachusetts Institute of Technology) Lincoln laboratory in 1998

and 1999, categorized under DoS – process table attack. However, the purpose of the

evaluation on process table was not to protect the server against it but to check against

the buggy code that might create many connections in rapid fire sequence (Haines et

 9

al., 2001). The following quote is picked from the technical report by Haines et al. The

report stated that the only way to detect process table attack is by monitoring the total

number of connections reaches the server at a time.

“Because this attack consists of abuse of a perfectly legal action, an intrusion
detection system trying to detect a Process Table attack will need to use
somewhat subjective criteria for identifying the attack. The only clue that such
an attack is occurring is an unusually large number of connections active on a
particular port. Unfortunately an ‘unusual’ number of connections is different for
every host … …” (Haines et al., 2001).

Normally, the challenges faced by this intrusion detection are false positive and

false negative. Also, the total number of connections handled by a server is different

from one domain to another, as well as from time to time. Network administrator

normally set the total number of allowed connections to several percents higher than

usual incoming requests before the server triggers the alarm. False positive is a

condition where the detector sounds the alarm but an attack does not take place; this

happens when there is sudden increase in legitimate users accessing services a server

provide, called flash crowd. On the other hand, false negative is a condition where the

detector could not detect a present attack; this occurs if the rate of attack is lower than

the detection threshold. In order to bypass this detection, the attacker could run a

series of training to fool the server to increase the threshold limit so that the actual

attack stays undetected as long as the attacker hold the attack rate well below the limit.

2.2 TCP Stack Attacks Prevention Mechanisms

In TCP stack attacks prevention, developers modified the TCP implementation

to make the attacks completely unsuccessful or less destructive. Although prevention is

effective, it might require kernel recompilation. The algorithm developed is often attack

specific and cannot be used to defend against other type of DoS attack. However, this

method does mitigate some DoS attacks that are hard or impossible to be differentiated

 10

or filtered from daily traffics. Furthermore, well defined prevention technique does not

produce false positive or false negative.

Since Naptha attack takes place before any authentication process starts,

attacker normally leave little or no track to be traced. Recent researches in this area

concentrate on lower layer protection to mitigate similar DoS attacks before a

connection is established. Some examples are: Internet Key Exchange (IKEv2) used

by Internet Protocol Security (IPSec) and computational intensive puzzle used by Host

Identification Protocol (HIP).

We describe Internet Key Exchange (IKEv2) in section 2.2.1 and computational

intensive puzzle in section 2.2.2. Both techniques are designed to be implemented at

network layer and transport layer respectively to protect system against DoS attacks.

CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans

Apart) at application layer is explained in 2.2.3, while section 2.2.4 briefly discusses

other defensive methods.

2.2.1 Internet Key Exchange (IKEv2)

Internet Key Exchange (IKEv2) is a protocol used to negotiate, set up and

maintain security associations (SAs) (Kaufman, 2005). A SA contains shared security

information needed by IPSec to provide confidentiality, data origin authentication, anti-

replay, connectionless integrity, and limited traffic flow confidentiality (Kent & Seo,

2005). Figure 2.2 shows the initial exchange of IKEv2 and the notations are listed in

Table 2.1. In the first two transactions, the initiator and the responder agree on a set of

cryptographic suite, and the following messages flow between them will be encrypted

and integrity protected. Integrity protection assured that unauthorized alteration of data

in the middle of transaction will be detected.

 11

 HDR, SAi1, KEi, Ni

HDR, SAr1, KEr, Nr, [CERTREQ]

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr}

HDR, SK {IDr, [CERT,] AUTH, SAr2, TSi, TSr}

Initiator Responder

Figure 2.2: Initial Exchange of IKEv2

Table 2.1: Notation in IKEv2

Notation Description
AUTH Authentication
CERT Certificate
CERTREQ Certificate Request
HDR IKE Header
ID Identification
KE Key Exchange
Ni, Nr Nonce
SA Security Association
SK{ … } Payload in brackets are encrypted and integrity protected
TSi, TSr Traffic Selector

In the third and forth transactions, identification payload and optional certificate

payload are used together with authentication field to assert peer’s identity. This is very

important because when we browse the Internet, there is no guarantee that the URL

(Universal Resource Locator) we typed will always point to the location we want.

Sometime it gets redirected to somewhere else. Normally, an attacker will try to redirect

the user to a location that mimic the original web site (called a phishing site), so that

when the user keyed in the username, password and credit card number, the attacker

could steal them. The certificate is used to verify the genuineness of identification

payload and it relies on the third trusted person, called Certificate Authority (CA) to

provide the verification.

 12

IKEv2 together with IPSec provide solutions to many security problems that

haunted the network administrator for many years. However, a network administrator

should not rely on IPSec completely, because there is no guarantee that all hosts

inside the network will never be compromised. A host could easily be inflected through

external source such as thumb drive, or laptop which plugged into various network. An

attacker could also get through when the user browses some malicious web site,

opened email attachment or received file from peer during chatting. The inflected host

that we mentioned will be able to attack any machine through an IPSec link because

IPSec blocks traffic based on rules in the configuration and it does not know how to

block an inflected host dynamically.

Current deployment of IKEv2 requires the privileged root user to manually set

up the configurations such as IP address, encryption algorithms, and security policy at

both initiator and responder in order to communicate securely. There would be no

problem if IKEv2 were to be established between two known gateways permanently,

such as between two campuses or between two offices remotely. In a client-server

communication however, if a user wishes to login into an email server but the server is

not included as an allowed IPSec peer; then, there will be no protection on that

connection. Password, credit card number and all other information transmitted will be

sent in plaintext and be revealed to the attacker in this case.

2.2.2 Computational Intensive Puzzle

Computational intensive puzzle is a challenge-response test aims to be

executed automatically between the server and client. The solution to the puzzle acts

as a proof of work or proof of existence challenge. There are some different proposals

on the implementation of computation intensive puzzle as suggested by Host

Identification Protocol (Moskowitz et at. 2007), Client Puzzles (Juels & Brainard, 1999)

and Puzzle TCP (McNevin et al., 2004). Generally, the server sends challenge on

 13

second handshake and the client reply in third handshake, as illustrated in Figure 2.3.

Initially, the client has to send a service request to the server, then the server reply with

a challenge or puzzle back to the client. Basically, the host machine must do some

computation, such as add, subtract, multiply, divide and modulus, in order to solve the

puzzle and send the result back to the server. The client will be granted permission to

access the service if the result is correct or be rejected if the result is wrong. As

explained in chapter 1, DoS attacks aims to deplete the TCB so that it drops further

service request. The purpose of this puzzle challenge is to delay the automate attack

generated by an attacker because it must solve the puzzle in order to have an entry in

TCB.

 INITIATE

CHALLENGE_REQUEST

CHALLENGE_REPLY

Client Server

Figure 2.3: Exchange of Computational Intensive Puzzle

The limitations faced by this method are the determination of which puzzle to be

used due to the processing power of the personal computer nowadays vary in wide

range. Some machines can solve a puzzle rapidly whereas some are slower. The

system might drop legitimate client who uses slower machine, either because the TCB

is filled up by the other fast machines or the session timed out before the client could

solve the challenge.

 14

2.2.3 Completely Automated Public Turing test to tell Computers and
Humans Apart (CAPTCHA)

CAPTCHA is an application layer challenge-response test used to prevent

automated attack. This test consists of distorted alphabetical letters which is

considered hard to be recognized by machines. The user must enter the correct phrase

as displayed in order to proceed. Some examples are shown in Figure 2.4. This

protection technique has been widely implemented in public services such as during

creation of new email account at Yahoo, Gmail and Hotmail.

Hotmail

Yahoo

File Storage Server A

PARC

Wikimedia

CAPTCHA

File Storage Server B Ejeliot

Figure 2.4: Example of CAPTCHA Used on Web Server

CAPTCHA successfully introduces some degree of difficulties to the attacker.

The effectiveness of CAPTCHA in differentiate crafted connection from daily traffic

depends on the algorithm employed. There are many CAPTHA algorithms already

broke by the attackers and there will be more.

 15

2.3 Other Defensive Methods

Other defensive methods include raising the total number of allowed

connections to increase the survivability of server and shorten the connections timeout

so that the idle or not responding connections could be terminated faster. Besides

these, ingress filtering makes sure the incoming packets are actually from the networks

that they claimed to be from and egress filtering prevents unauthorized traffic from

leaving the internal network (Ferguson & Senie, 2000). Nevertheless, the first two

techniques raise other problems, such as longer time to locate the TCP Control Block

when the connection table is large and the server might drop legitimate clients if a

connection timed out too fast. Also, the global deployment of ingress and egress

filtering is neither guaranteed nor likely while the attacker can use compromised

zombies to bypass the filtering (Eddy, 2007; Mirkovic et al., 2004; Faber et al., 1999).

2.4 Summary

We have reviewed some related defensive methods in this chapter, which are,

IKEv2 with IPSec, computation intensive puzzle and CAPTCHA. The summary is listed

in Table 2.2. Detection and filtering mechanisms limit the attack traffic; IKE and IPSec

provide a set of security suite including authentication to identify the remote peer;

Computational intensive puzzle and CAPTCHA protect server against automated

attack.

However, the threat of Naptha attack still exists due to the limitations of the

defence techniques or Naptha attack is outside the coverage of a protection schemes.

Although a system administrator could minimize the impact of Naptha attack through

proper configurations and complicated network surveillance system, we proposed a

simple and transaction saving method to guard servers against Naptha attack in the

next chapter.

 16

Table 2.2: Summary of Related Defensive Methods

Method Strength Limitation
Detection and
Filtering

• Detect almost instantly any
statistical change to
incoming and outgoing
traffic.

• Normally the action taken is
rate limiting.

• Since the attack traffic could
not be isolated, Naptha
attack still can get through
the firewall.

• False positive and false
negative

IKE and IPSec • Provide confidentiality, data
origin authentication, anti-
replay, and connectionless
integrity.

• Security features depend on
system configuration which
controlled by system
administrator, not end user.

• It does not identify and block
attack traffic from getting
through IPSec.

Computational
Intensive
Puzzle

• The client must solve a
puzzle in order to get
access.

• This slow down the attacker
from filling up the resource
rapidly.

• The system might drop
legitimate client who uses
slow machine.

CAPTCHA • Generate test that is hard to
be solved by machines and
hence it prevent automated
attack.

• Many algorithms used to
generate the test already
broke by attackers.

Increase
Process Slots

• Increase the survivability of
server against Naptha
attack.

• Performance drops when
the TCB grows.

Reduce
Session
Timeout

• Clear idle connection faster. • Legitimate client get
disconnected from server
frequently.

Ingress/Egress
Filtering

• Make sure the incoming
traffic from router is from
where it claims to be from.

• Prevent unauthorized traffic
from leaving the network.

• Global deployment is neither
guaranteed nor likely.

• Attack from zombies using
valid IP address is not
filtered.

 17

CHAPTER THREE
THEORETICAL FRAMEWORK

3.0 Introduction

We have already seen that the root cause of successful Naptha attack is

resources allocation to all incoming requests. Those requests were not verified nor

identified first before the server allocates TCB to them. The challenge to Naptha attack

protection is to differentiate legitimate traffics and attack traffics from the daily packets

flow. In this chapter, we take FTP as an example to illustrate the problem in current

TCP stack implementation, then, we propose Early Client Authentication Method

(ECAM) to overcome the problem by identifying each and every request during

connection establishment and to isolate the Naptha attack traffics. Advantages and

security considerations regarding the ECAM are also discussed in this chapter.

3.1 File Transfer Protocol (FTP)

The main objective of FTP is to enable file sharing among hosts across the

Internet (Postel & Reynolds, 1985). We concentrate our discussion on the initial

exchange between FTP client and FTP server, the weaknesses in FTP and how the

attacker launches Naptha attack on the server. Figure 3.1 illustrates the transactions

between FTP client and FTP server in details. The first three transactions is the three-

way handshake we described in section 1.2. It followed by the FTP user login process.

When the client’s machine received server ready message, it prompts user for login

name. Next, the server asks the client for password of the login name. Finally, the

server sends welcome message and login successfully message to the client if both

the username and password are correct. Notice that the server acknowledges all

messages sent from client, so does the client, who acknowledges all messages sent

from the server. Acknowledgment could be made cumulatively, which acknowledges

 18

two or more messages from the peer, as did by the client at the end of the login

process.

TCP SYN

TCP SYN+ACK

TCP ACK

FTP 220

USER ftp

TCP ACK

FTP 331

TCP ACK

PASS ftp@ftp.com

TCP ACK

FTP 230

FTP 230

TCP ACK

Client initiate a connection
request to FTP server

The server responds with SYN +
ACK
Client responds with ACK

Server sends FTP Server Ready
TCP ACK

Client acknowledges FTP 220

Client logins using user name “ftp”

Server acknowledges USER login

Server requests for password

Client acknowledges FTP 331

Client sends password

Server acknowledges the client that
the password is received

Welcome message from server

User “ftp” logged in notification

Client acknowledges the messages
sent from server

Display Server Ready Message
Prompt for login name.

User input login name

Prompt for password

User input password

FTP Client FTP Server

User starts FTP client and
wishes to connect to ftp server

Output server massage

Output server massage

Figure 3.1: Three-way Handshake and FTP Login Process

When the FTP server starts, it creates a process which always waiting to accept

new client connection. For each accepted connection, the server spawns a new child

process which will handle all server-client operation, such as client login process, file

transfer and client session termination. The purpose of child process spawning is to

support multiple concurrent client requests at a time and it is created once the three-

way handshake is completed. Figure 3.2 illustrates the state of FTP server accepts

new connection and spawns new child process when a connection is established. The

problems are there is a limit to the maximum concurrent processes that could co-exist

 19

on a machine and that the server did not identify the peer first before spawning new

process. This means, one attack connection request also consumes one process slot.

The server could not simply terminate a connection within a short time frame because it

must wait for reply from the client during client identification process. The server rejects

new connection request when the process table is full. An attacker could fill up the

table easily by flooding the server using only connection requests, and this is what

happening during Naptha attack. There is not much things that a network administrator

could do because of the similarity of attack traffic to the normal traffic.

Waiting to
Accept New
Connection

Spawning
New Child
Process

Server-Client
operation

New Connection Accepted
(three-way handshake

completed)

Loop

Client Request and Server
Response Loop

Child Process
Termination

Connection Ended
or Timed OutMain Process

Child Process

Client
Authentication

Process
SPAWN

LOGIN OK

Figure 3.2: State of Current Server when A New Connection is Established

3.2 Early Client Authentication Method (ECAM)

In order to distinguish between the attack connections and legitimate

connections, there is a need to verify the genuineness of all incoming requests. We

propose Early Client Authentication Method to include login information in the third

handshake of connection establishment. This action is completely legal and it does not

 20

violate Transmission Control Protocol stated in RFC 793 (Postel, 1981). Figure 3.3

illustrates the idea of ECAM and Figure 3.4 shows the advantages of ECAM.

ECAM Client ECAM SERVER

SYN

SYN, ACK

LOGIN, ACK

Figure 3.3: Early Client Authentication Method

ECAM

Transparent to applicationProtect server against
Naptha attack

Simple

Capable to integrated to security
protocols such as IPSec, zero
knowledge password proof with
no contradiction.

Transaction saving

Provides better solution then
filtering, no false positive, no

false negative

Figure 3.4: Advantages of ECAM

There are many advantages of ECAM. First is the protection against Naptha

attack, which is our main purpose. Naptha attack launches a DoS attack by depleting

the free process slot using only simple connection requests. For that large amount of

connection requests, the server could not simply terminate them. As shown in Figure

3.1, the server must wait for human responses twice in order to verify the peer, once

for the login name and another for the password. The waiting time lasted for at least a

 21

few seconds each, which creates a ‘golden period’ for the attacker to launch a flooding

attack. During this period, the server could not drop that connection. With ECAM, each

and every request must be appended with login information. Since there is no waiting

time during the login period, as shown in Figure 3.5, and no unauthorized access to the

process table, we can assure that the Naptha attack will never be succeed.

TCP SYN

TCP SYN+ACK

TCP ACK+LOGIN

TCP ACK

FTP 230

FTP 230

TCP ACK

Client initiate a connection
request to ECAM server
The server responds with SYN +
ACK
Client responds with ACK and
sends login (username+password)
Server acknowledges the client that
the login is received

Welcome message from server

User “ftp” logged in notification

Client acknowledges the messages
sent from server

User input login name

User input password

ECAM FTP Client ECAM FTP Server

User starts FTP client and
wishes to connect to ftp server

ECAM client prompts user
for login name

ECAM client prompts user
for password

Output server message

Output server message

Figure 3.5: Three-way Handshake and FTP Login Process using ECAM

Figure 3.5 shows the three-way handshake and FTP login process using

ECAM. By comparing Figure 3.5 to Figure 3.1, we see that current FTP uses 14

transactions to login the system while FTP with ECAM uses only 7 transactions, which

is half of the original FTP. Obviously, ECAM consumes much less bandwidth. If both

the FTP and FTP-ECAM were given a limited bandwidth, FTP-ECAM system could

certainly serve more clients. We gain better performance in FTP-ECAM.

 22

As mentioned in Chapter 2, statistical modelling and filtering mechanisms are

not able to isolate or stop Naptha attack. Moreover, those mechanisms might produce

false positive and false negative results. Also, the threshold setting to trigger the

filtering action is different from site to site and it is possible to be tricked by an attacker.

ECAM on the other hand, does not need extra computational power to model the

incoming and outgoing traffic. There is no threshold setting too, ECAM just stays in the

system, identify the requests and isolates the attack.

ECAM is implemented at the kernel of an operating system. Any application that

uses TCP/IP, such as email server and email client; file storage server and file storage

client; web server and we client, could take advantage of it. Network programmer does

not have to write their own function for each program in order to prevent Naptha attack.

He/She just needs to enable the ECAM communication at the TCP socket and the

operating system will handle the attack silently.

By inspection, ECAM is simple and efficient. It uses less computation and

transactions than normal TCP/IP communication but yet, ECAM is capable to defeat

the Naptha attack. It does not employ long mathematic to judge if an attack has took

place. It simply identifies the client at the beginning of a connection. Our intention is not

to complicate the problem, but to solve the attack effectively.

ECAM could be used with any other security protocol which tries to provide

secure communication across the Internet without contradiction. Currently, the Secure

Remote Password (SRP), a zero knowledge password proof security protocol,

negotiates a security session with the peer after the three-way handshake, which is

vulnerable to Naptha attack. The vulnerability is not due to the protocol itself, but where

it takes place. The negotiation could actually be carried out earlier by integrated with

ECAM to protect the server against the attack. There is no contradiction because the

 23

area of research is different. SRP is a protocol to allow the server to identify the client

without having the client to actually send out the password while ECAM concentrates

on Naptha DoS attack.

Figure 3.6 illustrates the state of ECAM server when a new connection is

established. Previously, we mentioned that the current server could not terminate an

unauthorized connection because the client might in the process of login the server. In

ECAM however, the state is eliminated. The username and password is collected by

the ECAM client in the early stage and the server could proceed with client

authentication process immediately without client input. In this way, we can assure that

the process table will never be filled by unauthorized connection.

Figure 3.6: State of ECAM Server when A New Connection is Established

3.3 Security Considerations

The login information sent from client to server is in plaintext form. This means,

if an attacker could grab the third packet in three-way handshake, he stole the access

 24

	00 Title Page
	DEFENDING SERVERS AGAINST NAPTHA ATTACK BY USING AN EARLY CLIENT AUTHENTICATION METHOD

	01 Contents
	DEFENDING SERVERS AGAINST NAPTHA ATTACK BY USING AN EARLY CLIENT AUTHENTICATION METHOD
	CHENG HAN PIN

	TABLE OF CONTENTS
	DEDICATION
	ACKNOWLEDGEMENTS
	BIBLIOGRAPHY
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS

	05 Text of Thesis
	CHAPTER ONE
	INTRODUCTION
	CHAPTER TWO
	LITERATURE REVIEW
	CHAPTER THREE
	THEORETICAL FRAMEWORK
	CHAPTER FOUR
	THE IMPLEMENTATION
	CHAPTER FIVE
	RESULTS AND DISCUSSIONS
	CHAPTER SIX
	CONCLUSION AND FUTURE WORK

	01 References
	REFERENCES

	00 Appendixes
	APPENDIX A
	ECAM SERVER APPLICATION
	APPENDIX B
	ECAM CLIENT APPLICATION
	APPENDIX C
	COLLECTED RESULTS

