1,125 research outputs found

    Flat Cellular (UMTS) Networks

    Get PDF
    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective it was better to concentrate traffic and to share the cost of processing equipment over a large set of users while keeping the base stations relatively cheap. However, we believe the economic reasons for designing cellular systems in a hierarchical manner have disappeared: in fact, hierarchical architectures hinder future efficient deployments. In this paper, we argue for completely flat cellular wireless systems, which need just one type of specialized network element to provide radio access network (RAN) functionality, supplemented by standard IP-based network elements to form a cellular network. While the reason for building a cellular system in a hierarchical fashion has disappeared, there are other good reasons to make the system architecture flat: (1) as wireless transmission techniques evolve into hybrid ARQ systems, there is less need for a hierarchical cellular system to support spatial diversity; (2) we foresee that future cellular networks are part of the Internet, while hierarchical systems typically use interfaces between network elements that are specific to cellular standards or proprietary. At best such systems use IP as a transport medium, not as a core component; (3) a flat cellular system can be self scaling while a hierarchical system has inherent scaling issues; (4) moving all access technologies to the edge of the network enables ease of converging access technologies into a common packet core; and (5) using an IP common core makes the cellular network part of the Internet

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Performance analysis and deployment of VoLTE mechanisms over 3GPP LTE-based networks

    Get PDF
    Long Term Evolution based networks lack native support for Circuit Switched (CS) services. The Evolved Packet System (EPS) which includes the Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) and Evolved Packet Core (EPC) is a purely all-IP packet system. This introduces the problem of how to provide voice call support when a user is within an LTE network and how to ensure voice service continuity when the user moves out of LTE coverage area. Different technologies have been proposed for the purpose of providing a voice to LTE users and to ensure the service continues outside LTE networks. The aim of this paper is to analyze and evaluate the overall performance of these technologies along with Single Radio Voice Call Continuity (SRVCC) Inter-RAT handover to Universal Terrestrial Radio Access Networks/ GSM-EDGE radio access Networks (UTRAN/GERAN). The possible solutions for providing voice call and service continuity over LTE-based networks are Circuit Switched Fall Back (CSFB), Voice over LTE via Generic Access (VoLGA), Voice over LTE (VoLTE) based on IMS/MMTel with SRVCC and Over The Top (OTT) services like Skype. This paper focuses mainly on the 3GPP standard solutions to implement voice over LTE. The paper compares various aspects of these solutions and suggests a possible roadmap that mobile operators can adopt to provide seamless voice over LTE

    Heterogeneous networks using mobile-IP technology

    Get PDF
    Whenever a mobile user moves between networks a handover must occur. This basically means that a network-layer protocol must handle the moving of the mobile device. In a cellular phone a GSM/UMTS infrastructure performs horizontal handover and the user does not notices any call or ongoing session interruption while roaming. The handover procedure begins when the received signal strength identificator (RSSI) of a mobile device falls below a level, it discovers a neighbour access point with better quality of services (QoS) than its current access point. In heterogeneous wireless networks different portions of RF spectrum are used and is difficult or impossible for a mobile node to concurrently maintain its connectivity without signal interruptions. Thus, the different network environments must be integrated and support a common platform to achieve seamless handover. The seamless or vertical handover's target is to maintain the mobile user's IP address independently of user's location or of the physical parameters the current network is using. A mechanism that keeps a mobile device to an ongoing connection by maintaining its home-location IP address is the Mobile-IP protocol which operates at the network-layer of the Open System Interconnection (OSI) model. In this M.Sc. thesis we perform heterogeneous network scenarios with the Mobile-IP technology. Moreover, we have built the system practically and assist the applicability of such heterogeneous wireless networks through real-side measurements. We used Linux operating system (Ubuntu & Debian) between different network technologies, made at the National Center for Scientific Research (NCSR) ''Demokritos'' institute, in Greece. The required applications for the Mobile-IP and 3G technologies were implemented and configured in a platform of fixed and mobile devices at Demokrito's departmental laboratory. The idea of using the Mobile-IP protocol was to gather information about time differences that occurred in handover delay between different networks.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS

    Full text link
    A finales de los años noventa, y al comienzo del nuevo milenio, las redes inalámbricas han evolucionado bastante, pasando de ser sólo una tecnología prometedora para convertirse en un requisito para las actividades cotidianas en las sociedades desarrolladas. La infraestructura de transporte también ha evolucionado, ofreciendo comunicación a bordo para mejorar la seguridad vial y el acceso a contenidos de información y entretenimiento. Los requisitos de los usuarios finales se han hecho dependientes de la tecnología, lo que significa que sus necesidades de conectividad han aumentado debido a los diversos requisitos de las aplicaciones que se ejecutan en sus dispositivos móviles, tales como tabletas, teléfonos inteligentes, ordenadores portátiles o incluso ordenadores de abordo (On-Board Units (OBUs)) dentro de los vehículos. Para cumplir con dichos requisitos de conectividad, y teniendo en cuenta las diferentes redes inalámbricas disponibles, es necesario adoptar técnicas de Vertical Handover (VHO) para cambiar de red de forma transparente y sin necesidad de intervención del usuario. El objetivo de esta tesis es desarrollar algoritmos de decisión (Vertical Handover Decision Algorithms (VHDAs)) eficientes y escalables, optimizados para el contexto de las redes vehiculares. En ese sentido se ha propuesto, desarrollado y probado diferentes algoritmos de decisión basados en la infraestructura disponible en las actuales, y probablemente en las futuras, redes inalámbricas y redes vehiculares. Para ello se han combinado diferentes técnicas, métodos computacionales y modelos matemáticos, con el fin de garantizar una conectividad apropiada, y realizando el handover hacia las redes más adecuadas de manera a cumplir tanto con los requisitos de los usuarios como los requisitos de las aplicaciones. Con el fin de evaluar el contexto, se han utilizado diferentes herramientas para obtener información variada, como la disponibilidad de la red, el estado de la red, la geolocalizaciónMárquez Barja, JM. (2012). SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17869Palanci

    Interworking in heterogeneous wireless networks: comprehensive framework and future trends

    Get PDF
    Interworking mechanisms are of prime importance to achieve ubiquitous access and seamless mobility in heterogeneous wireless networks. In this article we develop a comprehensive framework to categorize interworking solutions by defining a generic set of interworking levels and its related key interworking mechanisms. The proposed framework is used to analyze some of the most relevant interworking solutions being considered in different standardization bodies. More specifically, I-WLAN and GAN approaches for WLAN and cellular integration, solutions for WiMAX and 3GPP LTE/SAE interworking, and the forthcoming IEEE 802.21 standard are discussed from the common point of view provided by the elaborated framework.Postprint (published version

    Survey on WI-MAX System Based on Wavelet Packet Modulation Technique

    Get PDF
    A study within the field of Worldwide ability for Microwave Access system or communication system is way required as communication services. rippling Packet Modulation is AN helpful technique of multicarrier modulation that has high information measure, potency and adaptability. This paper inquires, simulation of IEEE802.16 in MATLAB software package victimization rippling packet modulation in WIMAX. The results show that BER performance of words per minute system is best than OFDM that uses cyclic prefix and consequently has higher SNR. The study is simulated over AN AWGN channel and frequency selective Rayleigh channel. BER performance of various rippling families is planned for this channel conditions OFDM is being wide utilized in wireless communication systems for its ability to cut back the information measure and enhance the information rate. The scheme provides lustiness against interference and may adapt simply to weakening eventualities. This paper offers a comparison of channel performance victimization numerous modulation techniques over completely different weakening environments. Modulation schemes include BPSK, QPSK, 64- QAM that are utilized beneath the influence of AWGN, Rayleigh, flat weakening, frequency selective and Rican attenuation channels. BER (Bit Error Rate) and SNR (Signal to Noise ratio) functions are wont to analyze the performance of information transmitted over these channels Mat research lab is employed to develop the OFDM model and analysis the performance of WiMAX system
    corecore