13,539 research outputs found

    Fingerprint Verification Using Spectral Minutiae Representations

    Get PDF
    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and orientations suffering from various deformations such as translation, rotation, and scaling. The spectral minutiae representation introduced in this paper is a novel method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with template protection schemes that require a fixed-length feature vector. This paper introduces the concept of algorithms for two representation methods: the location-based spectral minutiae representation and the orientation-based spectral minutiae representation. Both algorithms are evaluated using two correlation-based spectral minutiae matching algorithms. We present the performance of our algorithms on three fingerprint databases. We also show how the performance can be improved by using a fusion scheme and singular points

    Wide spread spectrum watermarking with side information and interference cancellation

    Full text link
    Nowadays, a popular method used for additive watermarking is wide spread spectrum. It consists in adding a spread signal into the host document. This signal is obtained by the sum of a set of carrier vectors, which are modulated by the bits to be embedded. To extract these embedded bits, weighted correlations between the watermarked document and the carriers are computed. Unfortunately, even without any attack, the obtained set of bits can be corrupted due to the interference with the host signal (host interference) and also due to the interference with the others carriers (inter-symbols interference (ISI) due to the non-orthogonality of the carriers). Some recent watermarking algorithms deal with host interference using side informed methods, but inter-symbols interference problem is still open. In this paper, we deal with interference cancellation methods, and we propose to consider ISI as side information and to integrate it into the host signal. This leads to a great improvement of extraction performance in term of signal-to-noise ratio and/or watermark robustness.Comment: 12 pages, 8 figure

    Deep Convolutional Neural Network to Detect J-UNIWARD

    Full text link
    This paper presents an empirical study on applying convolutional neural networks (CNNs) to detecting J-UNIWARD, one of the most secure JPEG steganographic method. Experiments guiding the architectural design of the CNNs have been conducted on the JPEG compressed BOSSBase containing 10,000 covers of size 512x512. Results have verified that both the pooling method and the depth of the CNNs are critical for performance. Results have also proved that a 20-layer CNN, in general, outperforms the most sophisticated feature-based methods, but its advantage gradually diminishes on hard-to-detect cases. To show that the performance generalizes to large-scale databases and to different cover sizes, one experiment has been conducted on the CLS-LOC dataset of ImageNet containing more than one million covers cropped to unified size of 256x256. The proposed 20-layer CNN has cut the error achieved by a CNN recently proposed for large-scale JPEG steganalysis by 35%. Source code is available via GitHub: https://github.com/GuanshuoXu/deep_cnn_jpeg_steganalysisComment: Accepted by IH&MMSec 2017. This is a personal cop

    DWT-SMM-based audio steganography with RSA encryption and compressive sampling

    Get PDF
    Problems related to confidentiality in information exchange are very important in the digital computer era. Audio steganography is a form of a solution that infuses information into digital audio, and utilizes the limitations of the human hearing system in understanding and detecting sound waves. The steganography system applies compressive sampling (CS) to the process of acquisition and compression of bits in binary images. Rivest, Shamir, and Adleman (RSA) algorithms are used as a system for securing binary image information by generating encryption and decryption key pairs before the process is embedded. The insertion method uses statistical mean manipulation (SMM) in the wavelet domain and low frequency sub-band by dividing the audio frequency sub-band using discrete wavelet transform (DWT) first. The optimal results by using our system are the signal-to-noise ratio (SNR) above 45 decibel (dB) and 5.3833 bit per second (bps) of capacity also our system has resistant to attack filtering, noise, resampling and compression attacks
    corecore