11,771 research outputs found

    Network Performance Measurement through Machine to Machine Communication in Tele-Robotics System

    Get PDF
    Machine-to-machine (M2M) communication devices communicate and exchange information with each other in an independent manner to perform necessary tasks. The machine communicates with another machine over a wireless network. Wireless communication opens up the environment to huge vulnerabilities, making it very easy for hackers to gain access to sensitive information and carry out malicious actions. This paper proposes an M2M communication system through the internet in Tele-Robotics and provides network performance security. Tele-robotic systems are designed for surgery, treatment and diagnostics to be conducted across short or long distances while utilizing wireless communication networks. The systems also provide a low delay and secure communication system for the tele-robotics community and data security. The system can perform tasks autonomously and intelligently, minimizing the burden on medical staff and improving the quality and system performance of patient care. In the medical field, surgeons and patients are located at different places and connected through public networks. So the design of a medical sensor node network with LEACH protocol for secure and reliable communication ensures through the attack and without attack performance. Finally, the simulation results show low delay and reliable secure network transmission

    PRIVACY-PRESERVING DATA TRANSMISSION PROTOCOL FOR WIRELESS MEDICAL SENSOR DATA

    Get PDF
    Wireless Sensor Networks (WSN) has fascinated to great extent significance in the last decade. It opened a new series of applications such as monitoring including environmental monitoring large area, exploration of wildlife, and real-time patient medical data which is collected by wireless sensors. The WSN provides the options of flexibilities and costs saving for patients and healthcare enterprises. At the same time, there is a viable concern about the hospitals’ ability to provide adequate care during emergency events. Tools that automate patient monitoring have likely to improve efficiency and quality of health care significantly. In hospitals, medical information sensors which monitor patients produce an increasingly large amount of real-time data. The delivery of this data through wireless networks in a hospital becomes a critical problem because the pathological information of an individual is highly sensitive. It must be kept private and secure. In this article, we propose a realistic approach to preventing the inside attack by ensuring secure data transmission. The main contribution of this article is securely distributing the patient data by implementing Privacy-Preserving Data Transmission Protocol and employing the Paillier and ElGamal cryptosystems to perform statistic analysis on the patient data without compromising the patients’ privacy. We enhance this protocol to reduce the overhead by implementing secure data aggregation method

    Relay based thermal aware and mobility support routing protocol for wireless body sensor networks

    Get PDF
    The evolvement of wireless technologies has enabled revolutionizing the health-care industry by monitor patient health condition requiring early diagnosis and interfering when a chronic situation is taking place. In this regard, miniaturized biosensors have been manufactured to cover various medical applications forming therefore a Wireless Body Sensor Network (WBSN). A WBSN is comprised of several small and low power devices capable of sensing vital signs such as heart rate, blood glucose, body temperature etc.. Although WBSN main purpose is to provide the most convenient wireless setting for the networking of human body sensors, there are still a great number of technical challenges to resolve such as: power source miniaturization, low power transceivers, biocompatibility, secure data transfer, minimum transmission delay and high quality of service. These challenges have to be taken into consideration when creating a new routing protocol for WBSNs. This paper proposes a new Relay based Thermal aware and Mobile Routing Protocol (RTM-RP) for Wireless Body Sensor Networks tackling the problem of high energy consumption and high temperature increase where the mobility is a crucial constraint to handle

    BANZKP: a Secure Authentication Scheme Using Zero Knowledge Proof for WBANs

    Full text link
    -Wireless body area network(WBAN) has shown great potential in improving healthcare quality not only for patients but also for medical staff. However, security and privacy are still an important issue in WBANs especially in multi-hop architectures. In this paper, we propose and present the design and the evaluation of a secure lightweight and energy efficient authentication scheme BANZKP based on an efficient cryptographic protocol, Zero Knowledge Proof (ZKP) and a commitment scheme. ZKP is used to confirm the identify of the sensor nodes, with small computational requirement, which is favorable for body sensors given their limited resources, while the commitment scheme is used to deal with replay attacks and hence the injection attacks by committing a message and revealing the key later. Our scheme reduces the memory requirement by 56.13 % compared to TinyZKP [13], the comparable alternative so far for Body Area Networks, and uses 10 % less energy

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    e-SAFE: Secure, Efficient and Forensics-Enabled Access to Implantable Medical Devices

    Full text link
    To facilitate monitoring and management, modern Implantable Medical Devices (IMDs) are often equipped with wireless capabilities, which raise the risk of malicious access to IMDs. Although schemes are proposed to secure the IMD access, some issues are still open. First, pre-sharing a long-term key between a patient's IMD and a doctor's programmer is vulnerable since once the doctor's programmer is compromised, all of her patients suffer; establishing a temporary key by leveraging proximity gets rid of pre-shared keys, but as the approach lacks real authentication, it can be exploited by nearby adversaries or through man-in-the-middle attacks. Second, while prolonging the lifetime of IMDs is one of the most important design goals, few schemes explore to lower the communication and computation overhead all at once. Finally, how to safely record the commands issued by doctors for the purpose of forensics, which can be the last measure to protect the patients' rights, is commonly omitted in the existing literature. Motivated by these important yet open problems, we propose an innovative scheme e-SAFE, which significantly improves security and safety, reduces the communication overhead and enables IMD-access forensics. We present a novel lightweight compressive sensing based encryption algorithm to encrypt and compress the IMD data simultaneously, reducing the data transmission overhead by over 50% while ensuring high data confidentiality and usability. Furthermore, we provide a suite of protocols regarding device pairing, dual-factor authentication, and accountability-enabled access. The security analysis and performance evaluation show the validity and efficiency of the proposed scheme

    Wireless Medical Sensor Networks: Design Requirements and Enabling Technologies

    Get PDF
    This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols—namely, Bluetooth® (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)—are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home

    A Study of IEEE 802.15.4 Security Framework for Wireless Body Area Network

    Full text link
    A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN.Comment: 14 pages, 7 figures, 2 table
    • …
    corecore