7 research outputs found

    Secret Sharing, Rank Inequalities, and Information Inequalities

    Get PDF
    Beimel and Orlov proved that all information inequalities on four or five variables, together with all information inequalities on more than five variables that are known to date, provide lower bounds on the size of the shares in secret sharing schemes that are at most linear on the number of participants. We present here another two negative results about the power of information inequalities in the search for lower bounds in secret sharing. First, we prove that all information inequalities on a bounded number of variables can only provide lower bounds that are polynomial on the number of participants. And second, we prove that the rank inequalities that are derived from the existence of two common informations can provide only lower bounds that are at most cubic in the number of participants

    Secret sharing, rank inequalities, and information inequalities

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Beimel and Orlov proved that all information inequalities on four or five variables, together with all information inequalities on more than five variables that are known to date, provide lower bounds on the size of the shares in secret sharing schemes that are at most linear on the number of participants. We present here another two negative results about the power of information inequalities in the search for lower bounds in secret sharing. First, we prove that all information inequalities on a bounded number of variables can only provide lower bounds that are polynomial on the number of participants. Second, we prove that the rank inequalities that are derived from the existence of two common informations can provide only lower bounds that are at most cubic in the number of participants.Postprint (author's final draft

    Optimal non-perfect uniform secret sharing schemes

    Get PDF
    A secret sharing scheme is non-perfect if some subsets of participants that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes. To this end, we extend the known connections between polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information that every subset of participants obtains about the secret value. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, the ones whose values depend only on the number of participants, generalize the threshold access structures. Our main result is to determine the optimal information ratio of the uniform access functions. Moreover, we present a construction of linear secret sharing schemes with optimal information ratio for the rational uniform access functions.Peer ReviewedPostprint (author's final draft

    On the information ratio of non-perfect secret sharing schemes

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00453-016-0217-9A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes and the construction of efficient linear non-perfect secret sharing schemes. To this end, we extend the known connections between matroids, polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information on the secret value that is obtained by each subset of players. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, access functions whose values depend only on the number of players, generalize the threshold access structures. The optimal information ratio of the uniform access functions with rational values has been determined by Yoshida, Fujiwara and Fossorier. By using the tools that are described in our work, we provide a much simpler proof of that result and we extend it to access functions with real values.Peer ReviewedPostprint (author's final draft

    Secret Sharing, Rank Inequalities and Information Inequalities

    No full text
    Beimel and Orlov proved that all information inequalities on four or five variables, together with all information inequalities on more than five variables that are known to date, provide lower bounds on the size of the shares in secret sharing schemes that are at most linear on the number of participants. We present here another negative result about the power of information inequalities in the search for lower bounds in secret sharing. Namely, we prove that all information inequalities on a bounded number of variables only can provide lower bounds that are polynomial on the number of participants

    Secret sharing, rank inequalities, and information inequalities

    No full text
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Beimel and Orlov proved that all information inequalities on four or five variables, together with all information inequalities on more than five variables that are known to date, provide lower bounds on the size of the shares in secret sharing schemes that are at most linear on the number of participants. We present here another two negative results about the power of information inequalities in the search for lower bounds in secret sharing. First, we prove that all information inequalities on a bounded number of variables can only provide lower bounds that are polynomial on the number of participants. Second, we prove that the rank inequalities that are derived from the existence of two common informations can provide only lower bounds that are at most cubic in the number of participants

    Secret sharing, rank inequalities, and information inequalities

    No full text
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Beimel and Orlov proved that all information inequalities on four or five variables, together with all information inequalities on more than five variables that are known to date, provide lower bounds on the size of the shares in secret sharing schemes that are at most linear on the number of participants. We present here another two negative results about the power of information inequalities in the search for lower bounds in secret sharing. First, we prove that all information inequalities on a bounded number of variables can only provide lower bounds that are polynomial on the number of participants. Second, we prove that the rank inequalities that are derived from the existence of two common informations can provide only lower bounds that are at most cubic in the number of participants
    corecore