2,520 research outputs found

    Secrecy Constrained Distributed Inference in Wireless Sensor Networks

    Get PDF
    Comprised of a large number of low-cost, low-power, mobile and miniature sensors, wireless sensor networks are widely employed in many applications, such as environmental monitoring, health-care, and diagnostics of complex systems. In wireless sensor networks, the sensor outputs are transmitted across a wireless communication network to legitimate users such as fusion centers for final decision-making. Because of the wireless links across the network, the data are vulnerable to security breaches. For many applications, the data collected by local sensors are extremely sensitive, and care must be taken to prevent that information from being leaked to any malicious third parties, e.g., eavesdroppers. Eavesdropping is one of the most significant threats to wireless sensor networks, where local sensors are tapped by an eavesdropper in order to intercept information. I considered distributed inference in the presence of a global, greedy and informed eavesdropper who has access to all local node outputs rather than access. My goal is to develop secured distributed systems against eavesdropping attacks using a physical-layer security approach instead of cryptography techniques because of the stringent constraints on sensor networks energy and computational capability. The physical-layer security approach utilizes the characteristics of the physical layer, including transmission channels noises, and the information of the source. Additionally, physical-layer security for distributed inference is scalable due to the low computational complexity. I first investigate secrecy constrained distributed detection under both Neyman-Pearson and Bayesian frameworks. I analyze the asymptotic detection performance and proposed a novel way of analyzing the maximum performance trade-off using Kullback-Leibler divergence ratio between the fusion center and eavesdropper. Under the Neyman-Pearson framework, I show that the eavesdropper\u27s detection performance can be limited such that her decision-making is no better than random guessing; meanwhile, the detection performance at the fusion center is guaranteed at the prespecified level. Similar analyses and proofs are provided under the Bayesian framework, where it was shown that an eavesdropper can be constrained to an error probability level equal to her prior information. Additionally, I derive the asymptotic error exponent and show that asymptotic perfect secrecy and asymptotic perfect detection are possible by increasing the number of sensors under both frameworks if the fusion center has noiseless channels to the sensors. For secrecy constrained distributed estimation, I conducted similar analysis under both a classical setting and Bayesian setting. I derived the maximum achievable secrecy performance and show that under the condition that the eavesdropper has noisy channels and the fusion center has noiseless channels, both asymptotic perfect secrecy and asymptotic perfect estimation can be achieved under a classical setting. Similarly, under a Bayesian setting, I derived the performance trade-off using Fisher information ratio and show that the fusion center outperforms the eavesdropper significantly in the simulation section. Secrecy constrained in distributed inference with Rayleigh fading binary symmetric channel is considered as well. Similarly, I derive the maximum achievable secrecy performance ratio for both detection and estimation. The maximum achievable trade-off turns out to be almost the same in distributed estimation as in distributed detection. This suggests that a universal framework for generally structured inference problems are feasible. Further investigations are needed to justify this conjecture for more general applications

    Secure Hop-by-Hop Aggregation of End-to-End Concealed Data in Wireless Sensor Networks

    Full text link
    In-network data aggregation is an essential technique in mission critical wireless sensor networks (WSNs) for achieving effective transmission and hence better power conservation. Common security protocols for aggregated WSNs are either hop-by-hop or end-to-end, each of which has its own encryption schemes considering different security primitives. End-to-end encrypted data aggregation protocols introduce maximum data secrecy with in-efficient data aggregation and more vulnerability to active attacks, while hop-by-hop data aggregation protocols introduce maximum data integrity with efficient data aggregation and more vulnerability to passive attacks. In this paper, we propose a secure aggregation protocol for aggregated WSNs deployed in hostile environments in which dual attack modes are present. Our proposed protocol is a blend of flexible data aggregation as in hop-by-hop protocols and optimal data confidentiality as in end-to-end protocols. Our protocol introduces an efficient O(1) heuristic for checking data integrity along with cost-effective heuristic-based divide and conquer attestation process which is O(lnn)O(\ln{n}) in average -O(n) in the worst scenario- for further verification of aggregated results

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Wireless Heterogeneous Networks and Next Generation Internet

    Get PDF
    The recent advances in wireless access technologies as well as the increasing number of mobile applications have made Wireless Internet a reality. A wide variety of bandwidth demanding services including high speed data delivery and multimedia communication have been materialized through the convergence of the next generation Internet and heterogeneous wireless networks. However, providing even higher bandwidth and richer applications necessitates a fundamental understanding of wireless Internet architecture and the interactions between heterogeneous users. Consequently, fundamental advances in many concepts of the wireless Internet are required for the ultimate goal of communication anytime anywhere. This special issue of the ACM Mobile Networks and Applications Journal is dedicated to the recent advances in the area of Wireless Internet. We accepted 10 papers out of 59 submissions from all over the world with a 17% acceptance rate. Papers describing management schemes, protocols, models, evaluation methods, and experimental studies of Wireless Internet are included in this special issue to provide a broad view of recent advances in this field

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)
    corecore