28 research outputs found

    Robust AN-Aided Beamforming Design for Secure MISO Cognitive Radio Based on a Practical Nonlinear EH Model

    Get PDF
    Energy harvesting techniques are promising in next generation wireless communication systems. However, most of the existing works are based on an ideal linear energy harvesting model. In this paper, a multiple-input single-output cognitive radio network is studies under a practical non-linear energy harvesting model. In order to improve the security of both the primary network and the secondary network, a cooperative jamming scheme is proposed. A robust artificial noise aided beamforming design problem is formulated under the bounded channel state information error model. The formulated problem is non-convex and challenging to be solved. Using S-procedure and the semidefinite relaxation method, a suboptimal beamforming can be obtained. Simulation results show that the performance achieved under the non-linear energy harvesting model may be better than that obtained under the linear energy harvesting model. It is also shown that the cooperation betwen the primary network and the secondary network can obtain a performance gain compared with that without this cooperation

    Transceiver design for wireless energy harvesting cooperative networks

    Get PDF
    In this thesis, the RF energy harvesting technique is studied in the cooperative wireless network, and different optimization studies are investigated. First, an energy-efficient optimization is considered in the cooperative system with the time switching relaying and power splitting relaying protocols. Then, a security issue in the cooperative network with energy harvesting is proposed, in which the optimization problem is designed to maximize the secrecy rate. We also consider the application of energy harvesting in the full-duplex relaying network with a self-energy recycling protocol. Finally, the energy harvesting is studied in the full-duplex cooperative cognitive radio network. The system performance of all studies is verified in the thesis with MATLAB simulation results

    Security and Reliability Analysis of Satellite-Terrestrial Multi-Relay Networks with Imperfect CSI

    Get PDF
    This work investigates the security and reliabil- ity analysis for a novel satellite-terrestrial (SatTer) network. Specifically, a satellite attempts to transmit confidential infor- mation to a ground user (GU) via the support of multiple relay nodes in the presence of an eavesdropper that tries to overhear the information. A friendly jammer is deployed to improve the secure transmission between the satellite and the relays. Furthermore, satellite-to-relay generalized Rician fading channels and imperfect channel state information (CSI) are deployed to examine a general system model. In this context, the closed-formed expressions for the outage probability (OP) and intercept probability (IP) are derived corresponding to an amplify-and-forward (AF)-based relaying scheme, which is challenging and has not been studied before. Finally, the exactness of the mathematical analyses is validated through Monte Carlo simulations. Furthermore, the effects of various key parameters (e.g., channel estimation errors, satellite’s transmit power, relay’s transmit power, number of relays, and fading severity parameter) are examine

    Performance Analysis and Beamforming Design of a Secure Cooperative MISO-NOMA Network.

    Get PDF
    This paper studies the cell-edge user's performance of a secure multiple-input single-output non-orthogonal multiple-access (MISO-NOMA) system under the Rayleigh fading channel in the presence of an eavesdropper. We suppose a worst-case scenario that an eavesdropper has ideal user detection ability. In particular, we suggest an optimization-based beamforming scheme with MISO-NOMA to improve the security and outage probability of a cell-edge user while maintaining the quality of service of the near-user and degrading the performance of the eavesdropper. To this end, power allocation coefficients are adjusted with the help of target data rates of both the users by utilizing a simultaneous wireless information and power transfer with time switching/power splitting protocol, where the near-user is used to forward the information to cell-edge user. The analytical results demonstrate that our beamformer analysis can achieve reduced outage probability of cell-edge user in the presence of the eavesdropper. Moreover, the provided simulation results validate our theoretical analysis and show that our approach improves the overall performance of a two-user cooperative MISO-NOMA system

    Secrecy outage performance analysis for energy harvesting sensor networks with a jammer using relay selection strategy

    Get PDF
    In this paper, we study radio frequency energy harvesting (EH) in a wireless sensor network in the presence of multiple eavesdroppers (EAVs). Specifically, the sensor source and multiple sensor relays harvest energy from multiple power transfer stations (PTSs), and then, the source uses this harvested energy to transmit information to the base station (BS) with the help of the relays. During the transmission of information, the BS typically faces a risk of losing information due to the EAVs. Thus, to enhance the secrecy of the considered system, one of the relays acts as a jammer, using harvested energy to generate interference with the EAVs. We propose a best-relay-and-best-jammer scheme for this purpose and compare this scheme with other previous schemes. The exact closed-form expression for the secrecy outage probability (SOP) is obtained and is validated through Monte Carlo simulations. A near-optimal EH time algorithm is also proposed. In addition, the effects on the SOP of key system parameters such as the EH efficiency coefficient, the EH time, the distance between the relay and BS, the number of PTSs, the number of relays, and the number of EAVs are investigated. The results indicate that the proposed scheme generally outperforms both the best-relay-and-random-jammer scheme and the random-relay-and-best-jammer scheme in terms of the secrecy capacity

    Fundamentals of Wireless Information and Power Transfer: From RF Energy Harvester Models to Signal and System Designs

    Full text link
    Radio waves carry both energy and information simultaneously. Nevertheless, Radio-Frequency (RF) transmission of these quantities have traditionally been treated separately. Currently, we are experiencing a paradigm shift in wireless network design, namely unifying wireless transmission of information and power so as to make the best use of the RF spectrum and radiations as well as the network infrastructure for the dual purpose of communicating and energizing. In this paper, we review and discuss recent progress on laying the foundations of the envisioned dual purpose networks by establishing a signal theory and design for Wireless Information and Power Transmission (WIPT) and identifying the fundamental tradeoff between conveying information and power wirelessly. We start with an overview of WIPT challenges and technologies, namely Simultaneous Wireless Information and Power Transfer (SWIPT),Wirelessly Powered Communication Network (WPCN), and Wirelessly Powered Backscatter Communication (WPBC). We then characterize energy harvesters and show how WIPT signal and system designs crucially revolve around the underlying energy harvester model. To that end, we highlight three different energy harvester models, namely one linear model and two nonlinear models, and show how WIPT designs differ for each of them in single-user and multi-user deployments. Topics discussed include rate-energy region characterization, transmitter and receiver architecture, waveform design, modulation, beamforming and input distribution optimizations, resource allocation, and RF spectrum use. We discuss and check the validity of the different energy harvester models and the resulting signal theory and design based on circuit simulations, prototyping and experimentation. We also point out numerous directions that are promising for future research.Comment: guest editor-authored tutorial paper submitted to IEEE JSAC special issue on wireless transmission of information and powe
    corecore