92,908 research outputs found

    The Strength of Abstraction with Predicative Comprehension

    Full text link
    Frege's theorem says that second-order Peano arithmetic is interpretable in Hume's Principle and full impredicative comprehension. Hume's Principle is one example of an abstraction principle, while another paradigmatic example is Basic Law V from Frege's Grundgesetze. In this paper we study the strength of abstraction principles in the presence of predicative restrictions on the comprehension schema, and in particular we study a predicative Fregean theory which contains all the abstraction principles whose underlying equivalence relations can be proven to be equivalence relations in a weak background second-order logic. We show that this predicative Fregean theory interprets second-order Peano arithmetic.Comment: Forthcoming in Bulletin of Symbolic Logic. Slight change in title from previous version, at request of referee

    A Restricted Second Order Logic for Finite Structures

    Get PDF
    AbstractWe introduce a restricted version of second order logic SOωin which the second order quantifiers range over relations that are closed under the equivalence relation ≡kofkvariable equivalence, for somek. This restricted second order logic is an effective fragment of the infinitary logicLω∞ω, but it differs from other such fragments in that it is not based on a fixed point logic. We explore the relationship of SOωwith fixed point logics, showing that its inclusion relations with these logics are equivalent to problems in complexity theory. We also look at the expressibility of NP-complete problems in this logic

    An undecidable extension of Morley's theorem on the number of countable models

    Full text link
    We show that Morley's theorem on the number of countable models of a countable first-order theory becomes an undecidable statement when extended to second-order logic. More generally, we calculate the number of equivalence classes of σ\sigma-projective equivalence relations in several models of set theory. Our methods include random and Cohen forcing, Woodin cardinals and Inner Model Theory.Comment: 31 page

    A doctrinal approach to modal/temporal Heyting logic and non-determinism in processes

    Get PDF
    The study of algebraic modelling of labelled non-deterministic concurrent processes leads us to consider a category LB , obtained from a complete meet-semilattice B and from B-valued equivalence relations. We prove that, if B has enough properties, then LB presents a two-fold internal logical structure, induced by two doctrines definable on it: one related to its families of subobjects and one to its families of regular subobjects. The first doctrine is Heyting and makes LB a Heyting category, the second one is Boolean. We will see that the difference between these two logical structures, namely the different behaviour of the negation operator, can be interpreted in terms of a distinction between non-deterministic and deterministic behaviours of agents able to perform computations in the context of the same process. Moreover, the sorted first-order logic naturally associated with LB can be extended to a modal/temporal logic, again using the doctrinal setting. Relations are also drawn to other computational model

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page

    Some fragments of second-order logic over the reals for which satisfiability and equivalence are (un)decidable

    Get PDF
    We consider the Σ1 0-fragment of second-order logic over the vocabulary h+, ×, 0, 1, <, S1, ..., Ski, interpreted over the reals, where the predicate symbols Si are interpreted as semi-algebraic sets. We show that, in this context, satisfiability of formulas is decidable for the first-order ∃ ∗ - quantifier fragment and undecidable for the ∃ ∗∀- and ∀ ∗ -fragments. We also show that for these three fragments the same (un)decidability results hold for containment and equivalence of formulas.Fil: Grimson, Rafael. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kuijpers, Bart. Hasselt University; Bélgic

    Set Theory or Higher Order Logic to Represent Auction Concepts in Isabelle?

    Full text link
    When faced with the question of how to represent properties in a formal proof system any user has to make design decisions. We have proved three of the theorems from Maskin's 2004 survey article on Auction Theory using the Isabelle/HOL system, and we have produced verified code for combinatorial Vickrey auctions. A fundamental question in this was how to represent some basic concepts: since set theory is available inside Isabelle/HOL, when introducing new definitions there is often the issue of balancing the amount of set-theoretical objects and of objects expressed using entities which are more typical of higher order logic such as functions or lists. Likewise, a user has often to answer the question whether to use a constructive or a non-constructive definition. Such decisions have consequences for the proof development and the usability of the formalization. For instance, sets are usually closer to the representation that economists would use and recognize, while the other objects are closer to the extraction of computational content. In this paper we give examples of the advantages and disadvantages for these approaches and their relationships. In addition, we present the corresponding Isabelle library of definitions and theorems, most prominently those dealing with relations and quotients.Comment: Preprint of a paper accepted for the forthcoming CICM 2014 conference (cicm-conference.org/2014): S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, Springer International Publishing Switzerland 2014. 16 pages, 1 figur
    • …
    corecore