
Some fragments of second-order logic over the

reals for which satisfiability and equivalence are

(un)decidable

Rafael Grimson∗ and Bart Kuijpers†

November 14, 2013

Abstract

We consider the Σ1
0-fragment of second-order logic over the vocabu-

lary 〈+,×, 0, 1, <, S1, ..., Sk〉, interpreted over the reals, where the predi-
cate symbols Si are interpreted as semi-algebraic sets. We show that, in
this context, satisfiability of formulas is decidable for the first-order ∃∗-
quantifier fragment and undecidable for the ∃∗∀- and ∀∗-fragments. We
also show that for these three fragments the same (un)decidability results
hold for containment and equivalence of formulas.

1 Introduction and summary

First-order logic over the vocabulary 〈+,×, 0, 1, <〉, interpreted in the structure
R = (R,+,×, 0, 1, <), the ordered field of the real numbers R, has received
considerable interest in several areas of theoretical computer science. One par-
ticular such area is that of constraint databases, where this logic is used as a
basis for first-order query languages ([7], in particular Chapter 2). Hereto, the
vocabulary 〈+,×, 0, 1, <〉 is extended to some vocabulary 〈+,×, 0, 1, <, S1, ...,
Sk〉, where, for i ∈ {1, ..., k}, Si is a predicate of arity ar(Si), which is a natu-
ral number strictly larger than 0. The predicates S1, ..., Sk represent the input
relations to a query. In the constraint database formalism, the predicates Si

are interpreted by first-order definable relations over 〈+,×, 0, 1, <〉, that is, by
semi-algebraic subsets of Rar(Si), i ∈ {1, ..., k} (see [1]). Since first-order logic
over the reals admits quantifier elimination [8], in constraint databases, it is
assumed that the input relations S1, ..., Sk are given by quantifier-free formulas.
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First-order logic over 〈+,×, 0, 1, <, S1, ..., Sk〉 then allows the definition of
new relations by means of formulas with free variables over 〈+,×, 0, 1, <, S1, ...,
Sk〉, as well as the expression of properties of the query input relations Si by
means of sentences over 〈+,×, 0, 1, <, S1, ..., Sk〉. These newly created relations
or Boolean values represent the output to a query.

For example, the first-order query formula

ϕ(x, y) = ∃ε(0 < ε ∧ ∀x′∀y′((x− x′)2 + (y − y′)2 < ε2 → S(x′, y′))),

defines the topological interior of the binary input relation S, viewed as a subset
of R2. Likewise, the sentence

ψ = ∀x∀y∃ε(0 < ε ∧ S(x, y)

→ (∀x′∀y′((x− x′)2 + (y − y′)2 < ε2 ∧ S(x′, y′)→ x = x′ ∧ y = y′)))

expresses the Boolean (topological) property that all elements of the binary
input relation S are isolated points of S. When S is restricted to be interpreted
by semi-algebraic subsets of R2, this statement is equivalent to expressing that
S has finite cardinality.

From Tarski’s theorem [8], which says that first-order logic over the reals
is decidable (via quantifier elimination), we obtain, by plugging-in quantifier-
free first-order descriptions of the input relations in the query formula and then
eliminating the quantifiers from the obtained formula, a quantifier-free first-
order description of the output. This amounts to an effective query evaluation
strategy for constraint database queries of this type.

We can also view the above example formulas as second-order formulas (with-
out second-order quantifiers) over the vocabulary 〈+,×, 0, 1, <〉, if we view S as
a binary relation variable. In a second-order context, we would write ϕ(x, y, S)
and ψ(S) to indicate both the free first- and second-order variables of these
formulas. To be precise, we consider formulas in Σ1

0. A second-order formula
belongs to this syntactic fragment if its quantifiers range only over first-order
variables, although it may have free second-order variables.

If we stick to this second-order view of query formulas, the following defini-
tion specifies what we mean by a Σ1

0 second-order formula over the reals being
satisfiable. This definition uses the Henkin-semantics (that interprets relation
symbols by semi-algebraic subsets of R` rather than by arbitrary subsets of R`,
where ` is the appropriate arity), that is also used in constraint databases [7].

Definition 1. We say that a formula ϕ(x1, ..., xn, S1, ..., Sk) in the the Σ1
0-

fragment of second-order over 〈+,×, 0, 1, <〉 with free first-order variables x1, ...,
xn and free relation variables S1, ..., Sk of arities ar(S1), ..., ar(Sk), respectively,
is satisfiable if there exist real numbers a1, ..., an and semi-algebraic subsets
A1, ..., Ak of Rar(S1), ...,Rar(Sk), respectively, such that

R |= ϕ[a1, ..., an, A1, ..., An]

holds. ut
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We have a similar definition of the containement and the equivalence of two
second-order formulas.

Definition 2. Let ϕ(x1, ..., xn, S1, ..., Sk) and ψ(x1, ..., xn, S1, ..., Sk) be two re-
lational second-order formulas over 〈+,×, 0, 1, <〉, which have the same free
first-order variables x1, ..., xn and the same free relation variables S1, ..., Sk. We
say that (the interpretation of) ϕ(x1, ..., xn, S1, ..., Sk) is contained in (the in-
terpretation of) ψ(x1, ..., xn, S1, ..., Sk) denoted ϕ(x1, ..., xn, S1, ..., Sk) ⊆ ψ(x1,
..., xn, S1, ..., Sk), if for all real numbers a1, ..., an and all semi-algebraic subsets
A1, ..., Ak of Rar(S1), ...,Rar(Sk) respectively, we have that

R |= (ϕ→ ψ)[a1, ..., an, A1, ..., An]

holds.
We say that ϕ(x1, ..., xn, S1, ..., Sk) and ψ(x1, ..., xn, S1, ..., Sk) are equivalent,

denoted ϕ(x1, ..., xn, S1, ..., Sk) ≡ ψ(x1, ..., xn, S1, ..., Sk), if both ϕ(x1, ..., xn,
S1, ..., Sk) ⊆ ψ(x1, ..., xn, S1, ..., Sk) and ψ(x1, ..., xn, S1, ..., Sk) ⊆ ϕ(x1, ..., xn,
S1, ..., Sk) hold. ut

Clearly, the decidability of containment implies the decidability of equiva-
lence. Since finiteness of the relations S1, ..., Sk is expressible in second-order
logic over 〈+,×, 0, 1, <〉, as illustrated by the above example, Proposition 2.6.4
in [7] says that, in general, satisfiability, containment and equivalence are un-
decidable properties of second-order formulas over 〈+,×, 0, 1, <〉.

In this paper, we are interested in first-order quantifier-prefix fragments of
second-order logic over 〈+,×, 0, 1, <〉, for which satisfiability, containment and
equivalence are (un)decidable. By a first-order quantifier-prefix fragment of
second-order logic over 〈+,×, 0, 1, <〉, we mean a subclass of formulas that can
be written in prenex-form

Q(y1, ..., ym)ϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk),

where Q(y1, ..., ym) is a sequence of first-order quantifiers—belonging to some
syntactic family—over y1, ..., ym and ϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk) is a quan-
tifier-free second-order formula over 〈+,×, 0, 1, <〉, with free first-order variables
y1, ..., ym, x1, ..., xn and the free relation variables S1, ..., Sk. Again, in such
classes of formulas, relation variables are not quantified.

The three last lines of the following table summarize the (un)decidability
results of this paper. For completeness, we have added, in the first line of the
table, the known results concerning conjunctive formulas in the ∃∗-fragment
(that is, conjunctions of possibly negated atomic formulas—see Chapter 2 of [7]).

We remark that a substantial differences with the classical decision prob-
lem [3], is that we consider a logic in which certain functions, relations and
constants (+,×, <, 0, 1) have a fixed interpretation in the reals and for which
the remaining predicate symbols are also restricted to range over semi-algebraic
sets. It is not clear if other results concerning the classical decision problem can
be carried over to our setting of the reals.
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quantifier-prefix satisfiability containment equivalence

∃∗(conjunctive) decidable[7] decidable [7] decidable [7]
∃∗ decidable (FMP) undecidable undecidable
∃∗∀ undecidable undecidable undecidable
∀∗ undecidable undecidable undecidable

This paper is organized as follows. We give, in Section 2, an elementary
proof that satisfiability is decidable for the ∃∗-fragment of the Σ1

0-fragment of
second-order logic over 〈+,×, 0, 1, <〉. We show, in particular, that in case
of satisfiability, the predicates S1, ..., Sk can be interpreted by finite sets. In
Section 3, we show that satisfiability is undecidable for the ∃∗∀-fragment of
of second-order logic over 〈+,×, 0, 1, <〉 and in Section 4, we show the same
for the ∀∗-sentences. In Section 5, we show the results in the above table for
containment and equivalence.

2 For the ∃∗-fragment satisfiability is decidable

It is known that satisfiability, containment and equivalence of conjunctive for-
mulas, i.e., conjunctions of possibly negated atomic formulas preceded by a
first-order ∃∗-prefix, in the Σ1

0-fragment of second-order logic over the vocab-
ulary 〈+,×, 0, 1, <, S1, ..., Sk〉 are decidable [7, Chapter 2]. We first show that
this is no longer the case if also disjunctions are allowed.

In this section, we prove the following result. Although this result is already
known [7, Chapter 2], we provide an elementary proof and also give a complexity
result.

Theorem 3. For the (first-order) ∃∗-quantifier fragment of the Σ1
0-fragment of

second-order logic over the vocabulary 〈+,×, 0, 1, <, S1, ..., Sk〉, satisfiability is
decidable. Furthermore, in case of satisfiability, the relations S1, ..., Sk may be
interpreted by finite sets. Our decision procedure requires exponential time in
the length of the formula.

Proof of Theorem 3. We remark that it is sufficient to prove the theorem
for any quantifier-free formula of the Σ1

0-fragment of second-order logic over the
vocabulary 〈+,×, 0, 1, <, S1, ..., Sk〉. Let ϕ(x1, ..., xn) be such a quantifier-free
formula over 〈+,×, 0, 1, <, S1, ..., Sk〉. We can write ϕ(x1, ..., xn) in disjunctive
normal form as

d∨
i=1

ϕi(x1, ..., xn), (1)

for some d ∈ N \ {0} (N denotes the set of natural numbers), where for i ∈
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{1, ..., d}, ϕi(x1, ..., xn) has the form

k∧
j=1

(

pij∧
r=1

Sj(uijr) ∧
qij∧
s=1

¬Sj(vijs)) ∧
pi∧
j=1

Pij(x1, ..., xn) θij 0, (2)

where pij , qij , pi ∈ N and Pij(x1, ..., xn) are polynomials in the variables x1, ...,
xn with integer coefficients, with θij ∈ {<,>,≤,≥} and where uijr and vijs are
ar(Sj)-tuples of terms over the vocabulary 〈+,×, 0, 1, <〉 with variables from
x1, ..., xn.

Clearly, ϕ(x1, ..., xn) is satisfiable if and only if ϕi(x1, ..., xn) is satisfiable
for some i ∈ {1, ..., d}.

Notation: In the following we denote by uijr[a1, ..., an] the ar(Sj)-tuple that
has as `-th component, for ` ∈ {1, ..., ar(Sj)}, the `-th term of uijr with the
variables x1, ..., xn instantiated to a1, ..., an. ut

To the formulas ϕi(x1, ..., xn), for i ∈ {1, ..., d}, written in this normal form,
we associate a formula

ψi(x1, ..., xn) :=

k∧
j=1

(

pij∧
r=1

qij∧
s=1

uijr 6= vijs) ∧
pi∧
j=1

Pij(x1, ..., xn) θij 0,

where for vectors of terms t = (t1, .., tN ), s = (s1, ..., sN ), t 6= s abbreviates the
formula ∨Ni=1¬(ti = si).

Claim: The formula ϕi(x1, ..., xn) is satisfiable if and only if the first-order
quantifier-free formula ψi(x1, ..., xn) is satisfiable.

Proof of the claim: For the only-if direction, assume that ϕi(x1, ..., xn) is
satisfiable. This means that there exists real numbers a1, ..., an and 〈+,×,
0, 1, <〉-definable relations A1, ..., Ak such that R |= ϕi[a1, ..., an, A1, ..., Ak].
Therefore, for all j ∈ {1, ..., k}, r ∈ {1, ..., pij} and s ∈ {1, ..., qij} we have
uijr[a1, ..., an] ∈ Aj and vijs[a1, ..., an] 6∈ Aj . Then it follows that for any i, r
and s, uijr[a1, ..., an] = vijs[a1, ..., an] is impossible. Since Pij(a1, ..., an) θij 0,
for all j ∈ {1, ..., pi} this implication is proven.

For the if-direction, the satisfiability of ψi(x1, ..., xn) implies that there exists
real numbers a1, ..., an such that R |= ψi[a1, ..., an]. Since any non-empty semi-
algebraic set contains points with real algebraic coordinates, we may assume
that a1, ..., an are real algebraic numbers. Let

Aj := {uijr[a1, ..., an] | r ∈ {1, ..., pij}},

for j ∈ {1, ..., k}. We remark that, being finite sets of points with real alge-
braic coordinates, these Aj are first-order definable over 〈+,×, 0, 1, <〉. Then,
R |= ϕi[a1, ..., an, A1, ..., Ak] because for all j ∈ {1, ..., k} and r ∈ {1, ..., pij},
uijr[a1, ..., an] ∈ Aj per definition of Aj and vijs[a1, ..., an] 6∈ Aj , for all s ∈
{1, ..., qij} , because vijs[a1, ..., an] differs from all uijr[a1, ..., an] for r ∈ {1, ..., pij}.
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Also Pij(a1, ..., an) θij 0, for all j ∈ {1, ..., pi} remains true. This concludes the
proof of the claim. ut

From the claim it is immediately clear that satisfiability of formulas in the ∃∗-
fragment of the Σ1

0-fragment of second-order logic 〈+,×, 0, 1, <, S1, ..., Sk〉 is de-
cidable. Indeed, given a quantifier-free formula ϕ(x1, ..., xn) = ∨di=1ϕi(x1, ..., xn)
in this fragment, the formula ψ(x1, ..., xn) = ∨di=1ψi(x1, ..., xn) is created and
satisfiability of this formula adds up to deciding the truth of the 〈+,×, 0, 1, <〉-
sentence ∃x1 · · · ∃xnψ(x1, ..., xn), which is possible because of the decidability
of first-order logic over the reals (for example, via quantifier elimination), first
proven by Tarski [8].

From the proof of the claim above, it is also clear that, in case of satisfiability,
the semi-algebraic sets Aj := {uijr[a1, ..., an] | r ∈ {1, ..., pij}} are finite.

For what concerns the complexity of the decision procedure, we remark that
it might take exponential time and space to put the original formula in the
disjunctive normal form given by Equations (1) and (2) [2]. Afterwards, the
procedure described by Grigoriev and Vorobjov [4] to decide emptiness of semi-
algebraic sets described by first-order formulas can be applied to the formulas
ψi, for i ∈ {1, ..., d}. This last step is simply exponential in the number of
variables of the formula. Since the number of variables of the original formula
is not increased in the transformation to the normal form, we obtain that the
whole decision procedure for an arbitrary input formula of length L can be

performed in time LLO(1)

. This finishes the proof. ut

3 For the ∃∗∀-fragment satisfiability is undecid-
able

In this section, we prove the following result.

Theorem 4. For the ∃∗∀-fragment of the Σ1
0-fragment of second-order logic

over 〈+,×, 0, 1, <, S1, ..., Sk〉 satisfiability is undecidable. ut

First we give a lemma.

Lemma 5. Let S be unary predicate symbol. Then the 〈+,×, 0, 1, <, S〉-formula

I(S) := ∀x(S(0) ∧ (x < 1 ∧ S(x)→ x = 0) ∧ (x ≥ 1 ∧ S(x)→ S(x− 1)))

expresses that S is an initial segment of N.

Proof. If A = {0, 1, ..., n} for some n ∈ N, then 0 ∈ A and x < 1 and x ∈ A
imply x = 0 and x ≥ 1 and x ∈ A imply x− 1 ∈ A.

On the other hand if R |= I[A], then 0 ∈ A and no other x < 1 is in A.
Suppose x ≥ 1 belongs to A. We can write x = bxc+ r, with bxc ∈ N \ {0} and
0 ≤ r < 1. If we assume 0 < r, then also x− 1, x− 2, ..., x− bxc = r belong to
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A, which is impossible. If r = 0, then x ∈ N \ {0} and this implies that also
1, 2, ..., x ∈ A. Therefore A = {0}, A is an initial segment of N or A = N. Since
a discrete semi-algebraic subset of R is finite, the above argument implies that
A is an initial segment of N. ut

Proof of Theorem 4. Suppose that, for the sake of contradiction, satisfiabil-
ity of ∃∗∀-formulas is decidable. Let P (x1, ..., x9) be a polynomial in Z[x1, ..., x9]
(here Z denotes the set of integers).

Claim: The 〈+,×, 0, 1, <, S〉-formula

HP (x1, ..., x9, S) := I(S) ∧
9∧

i=1

S(xi) ∧ P (x1, ..., x9) = 0

is satisfiable if and only if P (x1, ..., x9) = 0 has a solution in N9.

Proof of the claim: If HP (x1, ..., x9, S) is satisfiable, there exists an A ⊂ R
that satisfies I(S) and there exist a1, ..., a9 ∈ A such that P (a1, ..., a9) = 0.
By Lemma 5, A is an initial segment of N and a1, ..., a9 are therefore natural
numbers that satisfy P (a1, ..., a9) = 0.

On the other hand, if P (x1, ..., x9) = 0 has a solution (a1, ..., a9) ∈ N9, then
we set A = {0, 1, ...,max{a1, ..., a9}} and observe that R |= (I(S)∧∧9i=1S(xi)∧
P (x1, ..., x9) = 0)[a1, .., a9, A] because a1, ..., a9 belong to A. This proves the
claim. ut

Since Hilbert’s 10th problem is undecidable for polynomials in 9 variables [5,
6], by the claim, satisfiability of the formula HP (x1, ..., x9, S), which can be
rewritten into a formula

∀x(S(0) ∧ (x < 1 ∧ S(x)→ x = 0) ∧ (x > 1 ∧ S(x)→ S(x− 1)) ∧
9∧

i=1

S(xi) ∧ P (x1, ..., x9) = 0)

of the ∃∗∀-fragment of the Σ1
0-fragment of second-order logic over 〈+,×, 0, 1, <,

S〉, must be undecidable. ut

4 For ∀∗-sentences satisfiability is undecidable

Theorem 6. For ∀∗-sentences of the Σ1
0-fragment of second-order logic over

〈+,×, 0, 1, <, S1, ..., Sk〉, satisfiability is undecidable. ut

Proof of Theorem 6. Suppose that, for the sake of contradiction, satisfiabil-
ity of ∀∗-formulas is decidable. Let P (x1, ..., x9) be a polynomial in Z[x1, ..., x9].
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Consider the sentence

∀x1 · · · ∀x9

(
9∧

i=1

(Si(0) ∧ (xi < 1 ∧ Si(xi)→ xi = 0)

∧(xi ≥ 1 ∧ Si(xi)→ Si(xi − 1)))∧(
9∧

i=1

(Si(xi) ∧ ¬Si(xi + 1))→ P (x1, ..., x9) = 0

))
.

By Lemma 5, the sentences on the first two lines of this formula express that
the Si are initial segments of N. The last line states that their maxima are a
solution of the equation P (x1, ..., x9) = 0. Therefore, this formula is satisfiable
if and only if there are natural numbers (the maxima of the Si) that satisfy the
equation P (x1, ..., x9) = 0, which contradicts again the fact that Hilbert’s 10th
problem is undecidable for polynomials in 9 variables [5, 6]. ut

We remark that the previous proof changes the proof of Theorem 4 in that
the existential quantifiers that express the existence of a solution of the equation
P (x1, ..., x9) = 0 have been moved to the existence of the sets S1, ..., S9.

We also remark, that instead of using 9 unary relation names we could use
one binary relation S(x, y) in which x runs from 1 to 9, and for which for each
of these x-values, the y values give an initial segment of N.

5 Undecidability results for equivalence

The results of the two previous sections have some corollaries concerning the
decidability of equivalence of formulas. It is well-known that containment and
equivalence of formulas in the Σ1

0-fragment of second-order logic over the vocab-
ulary 〈+,×, 0, 1, <, S1, ..., Sk〉 are undecidable [7, Chapter 2]. It is also known
that containment and equivalence of conjunctive formulas (that is, conjunctions
of possibly negated atomic formulas preceded by a first-order ∃∗-prefix) in this
logic 〈+,×, 0, 1, <, S1, ..., Sk〉 are decidable [7, Chapter 2]. Here, we show that
this is no longer the case if also disjunctions are allowed.

Corollary 7. For the ∃∗-fragment of the Σ1
0-fragment of second-order logic over

the vocabulary 〈+,×, 0, 1, <, S1, ..., Sk〉 equivalence, and hence containment, are
undecidable.

Proof of Corollary 7. Obvious, the undecidability of equivalence implies
the undecidability of containment. Assume, for the sake of contradiction, that
equivalence of formulas in the ∃∗-fragment of the Σ1

0-fragment of 〈+,×, 0, 1, <,
S1, ..., Sk〉 is decidable. We show that it follows that satisfiabiliy of formulas
in the ∃∗∀∗-fragment of the Σ1

0-fragment of second-order logic over 〈+,×, 0,
1, <, S1, ..., Sk〉 is decidable, which contradicts Theorems 4 and 6. Indeed, let
∀y1 · · · ∀ymϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk) be a formula in the ∃∗∀∗-fragment,
with ϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk) quantifier-free. It is clear from the defi-
nitions that ∀y1 · · · ∀ymϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk) is not satisfiable if and
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only if ¬ϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk) is equivalent to the formula 0 = 0
(true). Since, ¬ϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk) belongs to the ∃∗-fragment,
this finishes the proof. ut

Corollary 8. For the ∃∗∀-fragment , the ∃∗∀∗-fragment and for the ∀∗-sentences
of the Σ1

0-fragment of second-order logic over 〈+,×, 0, 1, <, S1, ..., Sk〉 equiva-
lence, and hence containment, are undecidable.

Proof of Corollary 8. First, assume, for the sake of contradiction, that
equivalence of formulas in the ∃∗∀-fragment of of the Σ1

0-fragment of second-
order logic over 〈+,×, 0, 1, <, S1, ..., Sk〉 is decidable. We show that it follows
that satisfiabiliy of ∃∗∀-fragment of the Σ1

0-fragment of second-order logic over
〈+,×, 0, 1, <, S1, ..., Sk〉 is decidable, which contradicts Theorem 4. Indeed, let
∀yϕ(y, x1, ..., xn) be a formula, with ϕ(y, x1, ..., xn) quantifier-free. It is clear
from the definitions that that ∀yϕ(y, x1, ..., xn) is not satisfiable if and only if
∀yϕ(y, x1, ..., xn) ≡ 0 < 0. This finishes the proof for the ∃∗∀-fragment.

For the ∃∗∀∗-fragment and for ∀∗-sentences, the proof is similar (now con-
tradicting Theorem 6), since for a sentence ∀x1 · · · ∀xnϕ(x1, ..., xn), we have
that ∀x1 · · · ∀xnϕ(x1, ..., xn) is not satisfiable if and only if ∀x1 · · · ∀xnϕ(x1, ...,
xn) ≡ 0 < 0. This finishes the proof. ut
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