3,199 research outputs found

    Performance of ultrawideband wireless tags for on-body radio channel characterisation

    Get PDF
    Experimental characterisation of on-body radio channel for ultrawideband (UWB) wireless active tags is reported in this paper. The aim of this study is to investigate the performance of the commercially available wireless tags on the UWB on-body radio channel characterisation. Measurement campaigns are performed in the chamber and in an indoor environment. Statistical path loss parameters of nine different on-body radio channels for static and dynamic cases are shown and analyzed. Results demonstrated that lognormal distribution provides the best fits for on-body propagation channels path loss model. The path loss was modeled as a function of distance for 34 different receiver locations for propagation along the front part of the body. A reduction of 11.46% path loss exponent is noticed in case of indoor environment as compared to anechoic chamber. In addition, path loss exponent is also extracted for different body parts (trunk, arms, and legs). Second-order channel parameters as fade probability (FP), level crossing rate (LCR), and average fade duration (AFD) are also investigated

    IR-UWB Detection and Fusion Strategies using Multiple Detector Types

    Full text link
    Optimal detection of ultra wideband (UWB) pulses in a UWB transceiver employing multiple detector types is proposed and analyzed in this paper. We propose several fusion techniques for fusing decisions made by individual IR-UWB detectors. We assess the performance of these fusion techniques for commonly used detector types like matched filter, energy detector and amplitude detector. In order to perform this, we derive the detection performance equation for each of the detectors in terms of false alarm rate, shape of the pulse and number of UWB pulses used in the detection and apply these in the fusion algorithms. We show that the performance can be improved approximately by 4 dB in terms of signal to noise ratio (SNR) for perfect detectability of a UWB signal in a practical scenario by fusing the decisions from individual detectors.Comment: Accepted for publishing in IEEE WCNC 201

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    A Novel Millimeter-Wave Channel Simulator and Applications for 5G Wireless Communications

    Full text link
    This paper presents details and applications of a novel channel simulation software named NYUSIM, which can be used to generate realistic temporal and spatial channel responses to support realistic physical- and link-layer simulations and design for fifth-generation (5G) cellular communications. NYUSIM is built upon the statistical spatial channel model for broadband millimeter-wave (mmWave) wireless communication systems developed by researchers at New York University (NYU). The simulator is applicable for a wide range of carrier frequencies (500 MHz to 100 GHz), radio frequency (RF) bandwidths (0 to 800 MHz), antenna beamwidths (7 to 360 degrees for azimuth and 7 to 45 degrees for elevation), and operating scenarios (urban microcell, urban macrocell, and rural macrocell), and also incorporates multiple-input multiple-output (MIMO) antenna arrays at the transmitter and receiver. This paper also provides examples to demonstrate how to use NYUSIM for analyzing MIMO channel conditions and spectral efficiencies, which show that NYUSIM is an alternative and more realistic channel model compared to the 3rd Generation Partnership Project (3GPP) and other channel models for mmWave bands.Comment: 7 pages, 8 figures, in 2017 IEEE International Conference on Communications (ICC), Paris, May 201

    Body-Centric Radio Propagation Channels:characteristics and models

    Get PDF

    Performance analysis of ultra wide band indoor channel

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2008.Cataloged from PDF version of thesis report.Includes bibliographical references (page 41).Research on wireless communication system has been pursued for many years, but there is a renewed interest in ultra-wideband (UWB) technology for communication within short range, because of its huge bandwidth and low radiated power level. This emerging technology provides extremely high data rate in short ranges but in more secured approach. In order to build systems that realize all the potential of UWB, it is first required to understand UWB propagation and the channel properties arise from the propagation. In this research, the properties of UWB channel for indoor industrial environment was evaluated. A few indoor channel models have been studied so far for different environments but not for indoor industrial environment and various data rates are obtained according to wireless channel environments. Therefore, an accurate channel model is required to determine the maximum achievable data rate. In this thesis, we have proposed a channel model for indoor industrial environment considering the scattering coefficient along with the other multipath gain coefficient. This thesis addresses scattering effect while modeling UWB channel. Here, the performance of UWB channel model is analyzed following the parameters, such as power delay profile and the temporal dispersion properties which are also investigated in this paper.Kazi Afrina YasmeenA. K. M. WahiduzzamanMD. Ahamed ImtiazB. Computer Science and Engineerin

    Unmanned aerial vehicle-to-wearables (UAV2W) indoor radio propagation channel measurements and modeling

    Get PDF
    In this paper, off-body ultra-wide band (UWB) channel characterization and modeling are presented between an unmanned aerial vehicle (UAV) and a human subject. The wearable antenna was patched at nine different body locations on a human subject during the experiment campaign. The prime objective of this work was to study and evaluate the distance and frequency dependent path loss factors for different bandwidths corresponding to various carrier frequencies, and also look into the time dispersion properties of such unmanned aerial vehicle-to-wearables (UAV2W) system. The environment under consideration was an indoor warehouse with highly conductive metallic walls and roof. Best fit statistical analysis using Akaike Information Criteria revealed that the Log-normal distribution is the best fit distribution to model the UWB fading statistics. The study in this paper will set up a road map for future UAV2W studies to develop enhanced retail and remote health-care monitoring/diagnostic systems
    corecore