4,367 research outputs found

    An efficient pending interest table control management in named data network

    Get PDF
    Named Data Networking (NDN) is an emerging Internet architecture that employs a new network communication model based on the identity of Internet content. Its core component, the Pending Interest Table (PIT) serves a significant role of recording Interest packet information which is ready to be sent but in waiting for matching Data packet. In managing PIT, the issue of flow PIT sizing has been very challenging due to massive use of long Interest lifetime particularly when there is no flexible replacement policy, hence affecting PIT performance. The aim of this study is to propose an efficient PIT Control Management (PITCM) approach to be used in handling incoming Interest packets in order to mitigate PIT overflow thus enhancing PIT utilization and performance. PITCM consists of Adaptive Virtual PIT (AVPIT) mechanism, Smart Threshold Interest Lifetime (STIL) mechanism and Highest Lifetime Least Request (HLLR) policy. The AVPIT is responsible for obtaining early PIT overflow prediction and reaction. STIL is meant for adjusting lifetime value for incoming Interest packet while HLLR is utilized for managing PIT entries in efficient manner. A specific research methodology is followed to ensure that the work is rigorous in achieving the aim of the study. The network simulation tool is used to design and evaluate PITCM. The results of study show that PITCM outperforms the performance of standard NDN PIT with 45% higher Interest satisfaction rate, 78% less Interest retransmission rate and 65% less Interest drop rate. In addition, Interest satisfaction delay and PIT length is reduced significantly to 33% and 46%, respectively. The contribution of this study is important for Interest packet management in NDN routing and forwarding systems. The AVPIT and STIL mechanisms as well as the HLLR policy can be used in monitoring, controlling and managing the PIT contents for Internet architecture of the future

    Caution Ahead: Overdue Investments in New York's Aging Infrastructure

    Get PDF
    While Superstorm Sandy focused much-needed attention on key pieces of New York City's infrastructure, the city faces a number of other infrastructure vulnerabilities that have little to do with storm-preparedness -- from aging water mains and deteriorating roads to crumbling public schools. If left unchecked, they could wreak havoc on the city's economy and quality of life

    Cyber-security protection techniques to mitigate memory errors exploitation

    Full text link
    Tesis por compendio[EN] Practical experience in software engineering has demonstrated that the goal of building totally fault-free software systems, although desirable, is impossible to achieve. Therefore, it is necessary to incorporate mitigation techniques in the deployed software, in order to reduce the impact of latent faults. This thesis makes contributions to three memory corruption mitigation techniques: the stack smashing protector (SSP), address space layout randomisation (ASLR) and automatic software diversification. The SSP is a very effective protection technique used against stack buffer overflows, but it is prone to brute force attacks, particularly the dangerous byte-for-byte attack. A novel modification, named RenewSSP, has been proposed which eliminates brute force attacks, can be used in a completely transparent way with existing software and has negligible overheads. There are two different kinds of application for which RenewSSP is especially beneficial: networking servers (tested in Apache) and application launchers (tested on Android). ASLR is a generic concept with multiple designs and implementations. In this thesis, the two most relevant ASLR implementations of Linux have been analysed (Vanilla Linux and PaX patch), and several weaknesses have been found. Taking into account technological improvements in execution support (compilers and libraries), a new ASLR design has been proposed, named ASLR-NG, which maximises entropy, effectively addresses the fragmentation issue and removes a number of identified weaknesses. Furthermore, ASLR-NG is transparent to applications, in that it preserves binary code compatibility and does not add overheads. ASLR-NG has been implemented as a patch to the Linux kernel 4.1. Software diversification is a technique that covers a wide range of faults, including memory errors. The main problem is how to create variants, i.e. programs which have identical behaviours on normal inputs but where faults manifest differently. A novel form of automatic variant generation has been proposed, using multiple cross-compiler suites and processor emulators. One of the main goals of this thesis is to create applicable results. Therefore, I have placed particular emphasis on the development of real prototypes in parallel with the theoretical study. The results of this thesis are directly applicable to real systems; in fact, some of the results have already been included in real-world products.[ES] La creación de software supone uno de los retos más complejos para el ser humano ya que requiere un alto grado de abstracción. Aunque se ha avanzado mucho en las metodologías para la prevención de los fallos software, es patente que el software resultante dista mucho de ser confiable, y debemos asumir que el software que se produce no está libre de fallos. Dada la imposibilidad de diseñar o implementar sistemas libres de fallos, es necesario incorporar técnicas de mitigación de errores para mejorar la seguridad. La presente tesis realiza aportaciones en tres de las principales técnicas de mitigación de errores de corrupción de memoria: Stack Smashing Protector (SSP), Address Space Layout Randomisation (ASLR) y Automatic Software Diversification. SSP es una técnica de protección muy efectiva contra ataques de desbordamiento de buffer en pila, pero es sensible a ataques de fuerza bruta, en particular al peligroso ataque denominado byte-for-byte. Se ha propuesto una novedosa modificación del SSP, llamada RenewSSP, la cual elimina los ataques de fuerza bruta. Puede ser usada de manera completamente transparente con los programas existentes sin introducir sobrecarga. El RenewSSP es especialmente beneficioso en dos áreas de aplicación: Servidores de red (probado en Apache) y lanzadores de aplicaciones eficientes (probado en Android). ASLR es un concepto genérico, del cual hay multitud de diseños e implementaciones. Se han analizado las dos implementaciones más relevantes de Linux (Vanilla Linux y PaX patch), encontrándose en ambas tanto debilidades como elementos mejorables. Teniendo en cuenta las mejoras tecnológicas en el soporte a la ejecución (compiladores y librerías), se ha propuesto un nuevo diseño del ASLR, llamado ASLR-NG, el cual: maximiza la entropía, soluciona el problema de la fragmentación y elimina las debilidades encontradas. Al igual que la solución propuesta para el SSP, la nueva propuesta de ASLR es transparente para las aplicaciones y compatible a nivel binario sin introducir sobrecarga. ASLR-NG ha sido implementado como un parche del núcleo de Linux para la versión 4.1. La diversificación software es una técnica que cubre una amplia gama de fallos, incluidos los errores de memoria. La principal dificultad para aplicar esta técnica radica en la generación de las "variantes", que son programas que tienen un comportamiento idéntico entre ellos ante entradas normales, pero tienen un comportamiento diferenciado en presencia de entradas anormales. Se ha propuesto una novedosa forma de generar variantes de forma automática a partir de un mismo código fuente, empleando la emulación de sistemas. Una de las máximas de esta investigación ha sido la aplicabilidad de los resultados, por lo que se ha hecho especial hincapié en el desarrollo de prototipos sobre sistemas reales a la par que se llevaba a cabo el estudio teórico. Como resultado, las propuestas de esta tesis son directamente aplicables a sistemas reales, algunas de ellas ya están siendo explotadas en la práctica.[CA] La creació de programari suposa un dels reptes més complexos per al ser humà ja que requerix un alt grau d'abstracció. Encara que s'ha avançat molt en les metodologies per a la prevenció de les fallades de programari, és palès que el programari resultant dista molt de ser confiable, i hem d'assumir que el programari que es produïx no està lliure de fallades. Donada la impossibilitat de dissenyar o implementar sistemes lliures de fallades, és necessari incorporar tècniques de mitigació d'errors per a millorar la seguretat. La present tesi realitza aportacions en tres de les principals tècniques de mitigació d'errors de corrupció de memòria: Stack Smashing Protector (SSP), Address Space Layout Randomisation (ASLR) i Automatic Software Diversification. SSP és una tècnica de protecció molt efectiva contra atacs de desbordament de buffer en pila, però és sensible a atacs de força bruta, en particular al perillós atac denominat byte-for-byte. S'ha proposat una nova modificació del SSP, RenewSSP, la qual elimina els atacs de força bruta. Pot ser usada de manera completament transparent amb els programes existents sense introduir sobrecàrrega. El RenewSSP és especialment beneficiós en dos àrees d'aplicació: servidors de xarxa (provat en Apache) i llançadors d'aplicacions eficients (provat en Android). ASLR és un concepte genèric, del qual hi ha multitud de dissenys i implementacions. S'han analitzat les dos implementacions més rellevants de Linux (Vanilla Linux i PaX patch), trobant-se en ambdues tant debilitats com elements millorables. Tenint en compte les millores tecnològiques en el suport a l'execució (compiladors i llibreries), s'ha proposat un nou disseny de l'ASLR: ASLR-NG, el qual, maximitza l'entropia, soluciona el problema de la fragmentació i elimina les debilitats trobades. Igual que la solució proposada per al SSP, la nova proposta d'ASLR és transparent per a les aplicacions i compatible a nivell binari sense introduir sobrecàrrega. ASLR-NG ha sigut implementat com un pedaç del nucli de Linux per a la versió 4.1. La diversificació de programari és una tècnica que cobrix una àmplia gamma de fa\-llades, inclosos els errors de memòria. La principal dificultat per a aplicar esta tècnica radica en la generació de les "variants", que són programes que tenen un comportament idèntic entre ells davant d'entrades normals, però tenen un comportament diferenciat en presència d'entrades anormals. S'ha proposat una nova forma de generar variants de forma automàtica a partir d'un mateix codi font, emprant l'emulació de sistemes. Una de les màximes d'esta investigació ha sigut l'aplicabilitat dels resultats, per la qual cosa s'ha fet especial insistència en el desenrotllament de prototips sobre sistemes reals al mateix temps que es duia a terme l'estudi teòric. Com a resultat, les propostes d'esta tesi són directament aplicables a sistemes reals, algunes d'elles ja estan sent explotades en la pràctica.Marco Gisbert, H. (2015). Cyber-security protection techniques to mitigate memory errors exploitation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/57806TESISCompendi

    InfoTech Update, Volume 9, Number 6, November/December 2000

    Get PDF
    https://egrove.olemiss.edu/aicpa_news/4983/thumbnail.jp

    Hardware acceleration for power efficient deep packet inspection

    Get PDF
    The rapid growth of the Internet leads to a massive spread of malicious attacks like viruses and malwares, making the safety of online activity a major concern. The use of Network Intrusion Detection Systems (NIDS) is an effective method to safeguard the Internet. One key procedure in NIDS is Deep Packet Inspection (DPI). DPI can examine the contents of a packet and take actions on the packets based on predefined rules. In this thesis, DPI is mainly discussed in the context of security applications. However, DPI can also be used for bandwidth management and network surveillance. DPI inspects the whole packet payload, and due to this and the complexity of the inspection rules, DPI algorithms consume significant amounts of resources including time, memory and energy. The aim of this thesis is to design hardware accelerated methods for memory and energy efficient high-speed DPI. The patterns in packet payloads, especially complex patterns, can be efficiently represented by regular expressions, which can be translated by the use of Deterministic Finite Automata (DFA). DFA algorithms are fast but consume very large amounts of memory with certain kinds of regular expressions. In this thesis, memory efficient algorithms are proposed based on the transition compressions of the DFAs. In this work, Bloom filters are used to implement DPI on an FPGA for hardware acceleration with the design of a parallel architecture. Furthermore, devoted at a balance of power and performance, an energy efficient adaptive Bloom filter is designed with the capability of adjusting the number of active hash functions according to current workload. In addition, a method is given for implementation on both two-stage and multi-stage platforms. Nevertheless, false positive rates still prevents the Bloom filter from extensive utilization; a cache-based counting Bloom filter is presented in this work to get rid of the false positives for fast and precise matching. Finally, in future work, in order to estimate the effect of power savings, models will be built for routers and DPI, which will also analyze the latency impact of dynamic frequency adaption to current traffic. Besides, a low power DPI system will be designed with a single or multiple DPI engines. Results and evaluation of the low power DPI model and system will be produced in future

    The InfoSec Handbook

    Get PDF
    Computer scienc

    Quality of service optimization of multimedia traffic in mobile networks

    Get PDF
    Mobile communication systems have continued to evolve beyond the currently deployed Third Generation (3G) systems with the main goal of providing higher capacity. Systems beyond 3G are expected to cater for a wide variety of services such as speech, data, image transmission, video, as well as multimedia services consisting of a combination of these. With the air interface being the bottleneck in mobile networks, recent enhancing technologies such as the High Speed Downlink Packet Access (HSDPA), incorporate major changes to the radio access segment of 3G Universal Mobile Telecommunications System (UMTS). HSDPA introduces new features such as fast link adaptation mechanisms, fast packet scheduling, and physical layer retransmissions in the base stations, necessitating buffering of data at the air interface which presents a bottleneck to end-to-end communication. Hence, in order to provide end-to-end Quality of Service (QoS) guarantees to multimedia services in wireless networks such as HSDPA, efficient buffer management schemes are required at the air interface. The main objective of this thesis is to propose and evaluate solutions that will address the QoS optimization of multimedia traffic at the radio link interface of HSDPA systems. In the thesis, a novel queuing system known as the Time-Space Priority (TSP) scheme is proposed for multimedia traffic QoS control. TSP provides customized preferential treatment to the constituent flows in the multimedia traffic to suit their diverse QoS requirements. With TSP queuing, the real-time component of the multimedia traffic, being delay sensitive and loss tolerant, is given transmission priority; while the non-real-time component, being loss sensitive and delay tolerant, enjoys space priority. Hence, based on the TSP queuing paradigm, new buffer managementalgorithms are designed for joint QoS control of the diverse components in a multimedia session of the same HSDPA user. In the thesis, a TSP based buffer management algorithm known as the Enhanced Time Space Priority (E-TSP) is proposed for HSDPA. E-TSP incorporates flow control mechanisms to mitigate congestion in the air interface buffer of a user with multimedia session comprising real-time and non-real-time flows. Thus, E-TSP is designed to provide efficient network and radio resource utilization to improve end-to-end multimedia traffic performance. In order to allow real-time optimization of the QoS control between the real-time and non-real-time flows of the HSDPA multimedia session, another TSP based buffer management algorithm known as the Dynamic Time Space Priority (D-TSP) is proposed. D-TSP incorporates dynamic priority switching between the real-time and non-real-time flows. D-TSP is designed to allow optimum QoS trade-off between the flows whilst still guaranteeing the stringent real-time component’s QoS requirements. The thesis presents results of extensive performance studies undertaken via analytical modelling and dynamic network-level HSDPA simulations demonstrating the effectiveness of the proposed TSP queuing system and the TSP based buffer management schemes

    Towards Scalable Network Traffic Measurement With Sketches

    Get PDF
    Driven by the ever-increasing data volume through the Internet, the per-port speed of network devices reached 400 Gbps, and high-end switches are capable of processing 25.6 Tbps of network traffic. To improve the efficiency and security of the network, network traffic measurement becomes more important than ever. For fast and accurate traffic measurement, managing an accurate working set of active flows (WSAF) at line rates is a key challenge. WSAF is usually located in high-speed but expensive memories, such as TCAM or SRAM, and thus their capacity is quite limited. To scale up the per-flow measurement, we pursue three thrusts. In the first thrust, we propose to use In-DRAM WSAF and put a compact data structure (i.e., sketch) called FlowRegulator before WSAF to compensate for DRAM\u27s slow access time. Per our results, FlowRegulator can substantially reduce massive influxes to WSAF without compromising measurement accuracy. In the second thrust, we integrate our sketch into a network system and propose an SDN-based WLAN monitoring and management framework called RFlow+, which can overcome the limitations of existing traffic measurement solutions (e.g., OpenFlow and sFlow), such as a limited view, incomplete flow statistics, and poor trade-off between measurement accuracy and CPU/network overheads. In the third thrust, we introduce a novel sampling scheme to deal with the poor trade-off that is provided by the standard simple random sampling (SRS). Even though SRS has been widely used in practice because of its simplicity, it provides non-uniform sampling rates for different flows, because it samples packets over an aggregated data flow. Starting with a simple idea that independent per-flow packet sampling provides the most accurate estimation of each flow, we introduce a new concept of per-flow systematic sampling, aiming to provide the same sampling rate across all flows. In addition, we provide a concrete sampling method called SketchFlow, which approximates the idea of the per-flow systematic sampling using a sketch saturation event
    corecore